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Abstract—In this paper, a novel multi-strategy adaptive
selection-based dynamic multi-objective optimization algorithm
(MSAS-DMOA) is proposed, which adopts the non-inductive
transfer learning paradigm to solve dynamic multi-objective
optimization problems (DMOPs). In particular, based on a
scoring system that evaluates environmental changes, the source
domain is adaptively constructed with several optional groups to
enrich the knowledge. Along with a group of guide solutions,
the importance of historical experiences is estimated via the
kernel mean matching (KMM) method, which avoids designing
strategies to label individuals. The proposed MSAS-DMOA is
comprehensively evaluated on 14 DMOPs, and the results show
an overwhelming performance improvement in terms of both
convergence and diversity as compared with other four popular
DMOAs. In addition, ablation studies are also conducted to
validate the superiority of the applied strategies in MSAS-
DMOA, which can effectively alleviate the negative transfer
phenomenon. Without the conventional labeling procedure, the
proposed method also yields satisfactory results, which can pro-
vide valuable reference for designing other evolutionary transfer
optimization (ETO) algorithms.

Keywords: Dynamic multi-objective optimization algorithm
(DMOA); evolutionary transfer optimization (ETO); kernel
mean matching (KMM); transfer learning (TL)

I. INTRODUCTION

Dynamic multi-objective optimization problems (DMOPs)
are frequently encountered in various real-world scenes [22],
[30], [34], [44], which consist of multiple conflicting ob-
jectives with time-varying characteristics. Particularly, due
to the existence of the dynamic behaviors, both constraints
and objective functions in DMOPs are changeable with time
[6]. As a result, the dynamic multi-objective optimization
algorithms (DMOAs) are required to accurately and rapidly
converge to the changing Pareto front (PF), and how to cope
with the dynamic property (e.g., the frequency, degree, and
type of changes) has aroused great research interests.

To deal with the dynamic behaviors in DMOPs, it is feasible
and reliable to apply the population-based evolutionary algo-
rithms (EAs) [3], [29], [32], [33], [45], [47], [51], and a great
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number of EA-based DMOAs have been proposed [&], [16],
[26], which can be generally divided into diversity-, memory-
and prediction-based methods [1]. It is worth mentioning that,
in recent years, a novel paradigm that integrates EA with
knowledge learning and transfer across related domains is
emerging, which is known as the evolutionary transfer opti-
mization (ETO) [40]. In particular, ETO algorithms for solving
DMOPs are dedicated to mining the potential associations
between successive changing environment so as to accelerate
solution convergence. In this regard, the related methods adopt
the transfer learning technique, where the advantages of both
memory and prediction mechanisms are integrated, see [15]-
[17] for some successful applications.

It should be pointed out that the source domain (D,) has
played an important role in transfer learning [36], which
contains rich useful knowledge that is required to assist
learning in the target domain (D;). In the context of applying
ETO methods to handle DMOPs, the essence is to learn from
previous Pareto solutions and provide an initialized population
with high quality in the new environment to accelerate the
convergence. A noticeable issue is that some ETO methods
have directly employed the Pareto solutions in the previous
environment as the Dy [15], [16], which implicitly assumes
that there is a strong correlation between the two successive
environments, otherwise selecting D; in this way would make
little sense. In addition, it is common to adopt a group
of individuals with high quality in the new environment to
construct the D; in many existing studies, and afterwards,
some strategies have been designed to label the samples in
Dy [15], [16], [52].

Based on above discussions, two important issues that
deserve further attention are listed as follows. 1) It is of
vital significance to figure out what the valuable information
in previous search is that can be employed to construct Dq,
and the previous Pareto solutions are not always helpful in
changing environments. 2) In ETO methods that adopt the
sample-based inductive transfer learning (TL) paradigm, it
is difficult to guarantee the reliability of labels attached on
individuals, due to the fact that available data in D; may be
limited and class-imbalanced, which can lead to great bias in
subsequent model training.

To overcome the above mentioned challenges in developing
ETO methods for solving DMOPs, a novel multi-strategy
adaptive selection-based dynamic multi-objective optimization
algorithm (MSAS-DMOA) is proposed in this paper. Particu-
larly, on the basis of Pareto solutions in previous environment,

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by
sending a request to pubs-permissions@ieee.org. For more information, see https://www.ieee.org/publications/rights/rights-policies.html



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final

publication. Citation information: DOI10.1109/TNNLS.2023.3295461, IEEE Transactions on Neural Networks and Learning Systems

FINAL VERSION

several optional groups are first formed to cover rich informa-
tion. Then, by a designed scoring system, individuals from
each group are selected with different proportions to construct
the D; in an adaptive manner. It is noticeable that the environ-
mental changes are taken into account in the scoring system
and, by doing so, values of the previous searching experiences
can be measured in each specific case, which benefits the
adaptation to unknown environment. Furthermore, a number
of guide solutions are selected from the new environment to
construct the target domain D;. Those guide solutions are
deemed to have relative high quality, which can serve as the
reference to avoid potential negative transfer phenomenon, and
after D, is constructed, the kernel mean matching (KMM)
method [ 1] is applied to match the data distribution between
the two domains. Instead of selecting a standard to attach
the pseudo-labels to samples in D; (e.g., the non-domination-
based [16] and knee-point-based [15] strategy), in the proposed
MSAS-DMOA, D is adopted to assign weights to individuals
in Dy via the KMM method, which can further reflect the
importance of each selected historical solution according to the
distribution similarity. Consequently, not only the subjective
influence in designing label strategy can be avoided, but the
trained prediction model can also be robust and adaptive to
various unknown environments.

The major contributions of this paper are outlined as fol-
lows.

1. A novel non-inductive TL-based ETO algorithm is pro-
posed to solve DMOPs, whose main idea is to design a multi-
strategy adaptive selection mechanism to construct the source
domain with rich useful knowledge.

2. The KMM method is introduced to match the distribution
between Dy and D, so that different weights can be assigned
to the historical solutions, which avoids subjectivity when
attaching pseudo labels on D;.

3. The proposed framework is quite universal that can be in-
tegrated into any static multi-objective optimization algorithms
(SMOAs) to solve the dynamic problems, thereby exhibiting the
strong generalization ability.

The remainder of this paper is organized as follows. Prelim-
inaries of this work are provided in Section II. The proposed
MSAS-DMOA is comprehensively elaborated in Section III.
Experimental results and discussions are presented in Sec-
tion IV, and finally, conclusions are drawn in Section V.

II. PRELIMINARIES
A. Formulation of DMOPs

Without loss of generality, a minimized DMOP can be
formulated as:

min F(:I:,t) = {fl(wat)v fZ(mvt)v s fm(wat)}
st. gi(z,t) <0, hj(x,t) =0 ()
i=1,2 ...p j=12 .. q

where € R™ is decision vector, ¢ is time variable and F'(-)
contains m objective functions. g(-) and h(-) are inequality and
equality constraints, respectively. Based on above formulation,
some definitions are provided as follows.

Definition 1: Dynamic Pareto domination.

2

At time t, decision vector x; is regarded to dominate xo
(denoted as x; > x2) only in conditions of:

Vie {17 27 sy m}’ fl(wbt) S fl(w27t) (2)
3 .7 € {17 27 ceey TTL}, fj(wlat) < fj(w27t)
Definition 2: Dynamic Pareto set.
At time t, if none of individuals can dominate x*, then x*
is called a Pareto solution of (1), and all such solutions consist
of current dynamic Pareto set (denoted as P.S;):

PS, = {z*|V & €R", & <, x*} 3)

where <, represents non-domination relationship opposite to
.

Definition 3: Dynamic Pareto front.

At time ¢, the dynamic Pareto front (denoted as PF}) is the
corresponding mapping results of P.S; in objective space:

PF, = {F(z,t) | x € PS;} 4)

It should be pointed out that the focus of DMOAs is
to handle the dynamic behaviors in DMOPs so that the
algorithms can converge to the time-varying PF; accurately
and rapidly. As for obtaining the Pareto solutions in each
individual environment, any SMOA (e.g., MOEA/D [53]) can
be directly applied as the optimizer.

B. Transfer Learning Paradigm

The core idea of transfer learning is to apply the gained
knowledge from previous tasks to assist solving different but
related problems. According to [36], a domain D is composed
of the sample space X and marginal probability distribution
P(X) of the samples therein, which can be denoted by D =
{X,P(X)} where X € X. Aiming at above domain D, a task
can be described as 7 = {), f(-)} where ) is the label space,
and the predictor f(-) can be learned from data {X € XY €
Y}. Accordingly, Y = f(X) means the label prediction for
sample X, and the predictor f(-) can be written as P(Y|X)
in the probability form.

With above notations, the aim of TL is to promote the
learning of a predictor f;(-) in target domain D; with the
obtained knowledge from the source domain Dy and the task
Ts, where D # Dy or Ty # T;. According to [36], in case of
Ts # Ty, it is named inductive TL, where some labeled data in
D; should be available to induce an objective predictor fi(-).
If it satisfies T, = 7; and Dy # D, the term of “transductive”
TL has been used in [36]. In addition, when labels in neither
D; nor D, is available, such case is termed as the unsupervised
TL.

It is worth mentioning that in this study, only two terms
of the inductive and non-inductive transfer learning are used,
and the former/latter refers to the case where labels are
available/unavailable in D;. For a clear view, the adopted
taxonomy according to the availability of labeled data is
presented in Fig. 1, which benefits a better understanding of
this study, and one can refer to [36] for more details of the
different TL paradigms.
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Fig. 1. A simplified taxonomy of different TL paradigms [36].

Remark 1: In this study, both the transductive and unsuper-
vised TL are termed as the non-inductive TL, due to the major
focus is whether the samples in target domain D, are labeled
via specifically designed strategies or not.

C. ETO Methods

Following the idea of TL, the population is encouraged to
take full use of the previous searching experiences in ETO
methods. In [35], historical solutions obtained from different
tasks have been considered to train a generalized model, and
an adaptive knowledge transfer framework has been proposed
to address the computationally expensive surrogate-assisted
evolutionary search problems. A centroid distribution-based
framework has been developed in [52], where the probabilistic
model of elite candidate solutions is adopted to balance the
transfer correlation between multiple domains, which has
proven effective in avoiding negative heterogeneous transfer.
Additionally, one can refer to [24], [25], [28], [46] for more
successful applications of ETO methods in various domains.

In DMOPs, it is noticeable that the Pareto solutions are
usually deemed to contain rich valuable information, and as
a result, many related ETO algorithms have paid attention
to PS in the previous environment (denoted as PS;_1). For
example, in [16], PS;_; has been selected as the source
domain, where the idea of TrAdaboost [5] is adopted to predict
movement tendency of the optimal solutions on the basis
of imbalanced knee-points. It should be pointed out that in
changing environments, not all solutions in PS;_; are useful,
and how to estimate the importance of historical searching
experience should be concerned. In [27], aiming at the multi-
objective multi-task optimization problems, the authors have
investigated how to find valuable solutions to promote the
positive knowledge transfer.

III. METHODOLOGY

In this section, the proposed MSAS-DMOA is elaborated
with details. Briefly, according to the estimation of varying
environment, individuals with various kinds of characteristics
are adaptively selected to form the source domain Dy, which
is conducive to enriching the knowledge so as to promote reli-
ability of the transfer procedure. In addition, a group of guide

3

solutions in the new environment is generated to alleviate the
negative transfer, which is mapped into a high-dimensional
space along with individuals in Dg. Then, via the KMM
method, solutions in D, can be assigned with different learning
weights to train the prediction model. Finally, above predictor
will output an initialized population, which is deemed adaptive
to the new environment so as to accelerate the convergence.

A. Environmental Change Evaluation

In a DMOFP, it is generally believed that some invisible
correlations may exist between the successive environment if
the change degree is within a certain range [14]. Following
this idea, in the proposed MSAS-DMOA, a population-based
evaluation mechanism is designed to characterize the dynamic
behaviors in DMOPs, where two changing rates R4 and R, are
defined to reflect fluctuations of the fitness value and diversity,
respectively. To be specific, the average distance to the ideal
point of solutions in PF;_; is considered in R4, which can
be depicted as:

> weps, , I1F(x,t) = P12

Dis; = (5)

|PSi_1]
where t denotes current time, || - || refers to Euclidean
distances, | - | is cardinality of a set and P; is the ideal point

of PF;_,. Referring to the ideal point P;, Dis; evaluates the
degree that PS;_; has changed. To calculate R., following
coverage scope is defined and used:
F(x,t)— F(z,t
Lx e IF@0) -~ F(z 0l
|PS:_1]

where C's; calculates the average distance between each indi-
vidual and the farthest one in population, which also evaluates
the dispersion extent of P.S;_; in the new environment. Based
on Egs. (5)-(6), R4 and R, are given as:

Csi = (6)

Rd _ |DiSt — Di8t71|
Dis; 4 )
R.— Cst — CSt_l
C Csig

By employing R; and R, changes of PS;_; in terms
of both location and dispersion can be characterized, which
benefits designing different response strategies and details are
presented in subsequent subsections. Notice that above two
rates are calculated only on the selected sensors (including
50% of individuals in PS;_;) to save the computational
resources.

B. Multi-strategy Selection Mechanism

In the Pareto solutions, some inherent information is carried
by the special points [21]. For instance, the knee-point repre-
sents large gradient that is related to the diversity, center-point
can be used to predict the tendency of population movement.
Considering that knowledge in D, can be enriched by the
information of special points, four optional groups are formed
to construct Dy, including Gps, Gre, Gip and G.p, whose
members are introduced in Table 1.
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TABLE I
FOUR OPTIONAL GROUPS FOR CONSTRUCTING Ds

Groups Members
Gs PS,
Gre Solutions generated in new environment
Grp Individuals generated around knee-point
Gep Individuals generated around center-point

In addition, to realize the adaptive construction of Dg,
following scoring system is designed on the basis of Eq. (7)
as:

max{0, 1 — Rq}, S =Gps
min{Ry, 1}, S=G,.
7(8) = il 1 © o ®
—min{0, R.}, S =Gk
02, S=Gg

As is shown, scores of G, and G, are dependent on Ry,
which reflect the severity of environmental changes. Notice
that .7 (Gps) + .7 (Gye) = 1, which implies that the generated
individuals in the new environment are complementary to
Pareto solutions in the previous one. In an extremely fluctuated
situation, knowledge of Pareto solutions in the previous envi-
ronment may not well adapt to the new one and introducing
some new solutions can be helpful. On the contrary, if Ry
is small, a fine-tuning on PS;_; is recommended and a few
newly generated individuals can supplement diversity to some
extent.

Since shrinkage of the PF coverage scope is reflected in
R., R. > 0 implies an unchanged and even better diversity,
therefore, only in condition of R. < 0 that individuals in
Gy are adopted to supplement the population diversity. It is
noticeable that the score of G, is set to a constant 0.2, which
is required to guarantee that even in dramatically changed
situations, partial historical information can be retained by
reserving a few solutions around PS center. According to the
scores calculated by Eq. (8), the weight of each group is
allocated as:

Z(G)
G =
“O) = T 5 + 7o)
where G € {Gps, Gre, Gip, Gep}. As a result, an adaptive

construction of D is realized, and the overall procedure is
displayed in Alg. 1 and Fig. 2.

9

C. Guide Solutions

To alleviate the negative knowledge transfer that may lead
the evolution towards wrong direction, a group of guide
solutions is generated in the new environment to serve as the
reference. Accordingly, it should be addressed that how to
screen the guide solutions, and to handle this issue, following
e-indicator [2] is employed in the proposed MSAS-DMOA to

evaluate the quality of individuals:
16(831,%2) = maX{F(xl, t) — F(wg,t)} (10)

where x; and x, are different solutions, and I, reflects the
largest difference in dimension-wise therein. For instance,

4

Algorithm 1 Adaptive construction of D;
Input:

Pareto set in the previous generation PS;_; and a prede-

fined capacity of source domain ng
Output:
Source domain D
Initialize D, < 0
Select sensors X from PS;_ such that |X| = 1|PS, 4|
Characterize dynamics based on Egs. (5)-(6) by x € X
Calculate R4 and R. by Eq. (7)
Gps «— PS; 4
Randomly generate solutions in new environment as G'..
Get knee-points in multiple sub-spaces of PS;_; and
generate G
Obtain center-point of P.S;_; and establish G,
: Allocate weights for each group according to Eqgs. (8)-(9)
10: For G € {Gyps,Gre, Gip, Gep}
11:  Pick 2 = ny xw(Q) individuals from G as & = {z;}7_,
12: D, +— x
13: EndFor
14: Return D,

A o

R

Calculate the Ry and R,

Adaptive Selection

Source Domain

Fig. 2. Adaptive construction of Ds.

given that F(z1) = [1,2,3]7 and F(x2) = [0,4,1]7, then
I(xy,22) = max{1 —0, 2 -4, 3 —1} = 2. Based on
Eq. (10), the quality factor of a solution z is defined as:

Q(@) = max{L(z. 2)} an

where z is another individual different from x in the popu-
lation, and a larger @@ value corresponds to a better solution.
By adopting above Q(-), the guide solutions can be screened
to ensure that the knowledge is transferred towards a proper
direction, and the details are displayed in Alg. 2. It should be
pointed out that in the proposed MSAS-DMOA, the target
domain D, is formed with those eventually selected guide
solutions, but different from several existing work, the guide
solutions are not attached with pseudo-labels via some speci-
fied strategies, and more information is presented in the next
subsection.

Remark 2: Mutation operator in Alg. 2 is used to enrich the
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Algorithm 2 Generation of guide solutions
Input:
Mutation operator M and mutation probability pas
Output:
Target domain D; consisting of guide solutions
1: Initialize D; =
2: Randomly generate two populations P; and P» in the new
environment with NV individuals
3: For n from 1 to NV
4 xl,x? < n-th individual in P, and P,
5. Generate two random numbers 71,72 € (0, 1)
6:  For i from 1 to 2
7
8
9

Ifr; <pum
2 = M)
If Q(=') < Q)
10: xy — 2
11: EndIf
12: EndIf
13:  EndFor

14: Dy« argmax Q(x)
ve{z), 23}

15: EndFor
16: Return D;

candidate solutions so as to enhance the diversity.

D. Individual-based Non-inductive Transfer Learning

In a DMOP, it is worth mentioning that labeled data are
generally accessible only in D, which refer to those already
converged solutions in previous search, and such individuals
with labels are quite lacked in the target domain as the
population enters a new environment. In addition, the non-
domination relationship among solutions may also change in
the new environment, which leads to the uncertainty of labels
in Dy and impedes the training of an accurate population
predictor. To solve above issues, some studies have employed
a certain standard to label individuals in D;. For example,
based on the domination relationship, individuals in D, are
labeled with +1 in [16], respectively; in [15], labels are
attached according to whether a solution is the knee-point.
A noticeable issue is that there may be subjectivity in manual
intervention when selecting the criterion, and in the proposed
MSAS-DMOA, we aim to avoid labeling individuals in D; to
alleviate potential subjective effects, which is in the hope of
bringing some new ideas to the related studies.

According to Section II-B, the primary purpose of TL is to
train a predictor for the target domain D;, suppose that the
model parameter is denoted as 6;, on the basis of empirical
risk minimization, the optimal ; can be obtained as follows:

0; = argeminE(x,y)EDt [L((x, Y); 0,5)] (12)

where L(-) is the loss function regarding to 6;, E denotes
expectation value and (z,y) is the sample in D;. As above
mentioned, labels in D; are always unavailable and there are
plenty of labeled data in Dg, therefore, above Eq. (12) is

5

rewritten in following form:

P t ({,C, y) A
{Ps(x,y)L((m’y)’at)}
[Pt(ylw)Pt(w)

Py(ylz) Ps(z)
where P denotes the data distribution.

It is worth mentioning that in DMOPs, the task in each
environment is consistent, which is to minimize the objective
functions. Consequently, the conditional probability of 7, and
T: is the same, that is, there will be Ps(ylx) = Pi(y|z)
in Eq. (13). Furthermore, given a density ratio defined as
Bi = Ps(w;)/Pi(x;) (v; € Ds), and let Dy = {(w4,yi) }i24
denote the source domain, then above Eq. (13) can be further
converted into following form:

. .
0; = argemm E(z,9)eD,
t

13)
= argemin E(z,y)ep, L ((x, Y); 91&)}

0F = argmin Z[ﬁzL((Ilv Yi); 04)] (14)
-1

where n; is the cardinality of Ds.

Under the circumstance of few available labels in target
domain, P;(z;) (z; € D) is always inaccessible. Hence, it
is tough to directly calculate the defined density ratio ;. To
handle this issue, the KMM method is adopted in the proposed
MSAS-DMOA to obtain ;, which aims at weighting x, €
D, via kernel tricks to match the data distribution between
Dy and Dy, so that using the information of P;(x) can be
avoided. To be specific, both D, and D; are mapped into a
high-dimensional reproducing kernel Hilbert space (RKHS),
and according to the maximum mean discrepancy theory [9],
the difference between mean values of the mapped D, and
D, is equivalent to the distance of data distribution in the
original D, and D;. Consequently, in order to match the data
distribution between D, and D; to promote reliable knowledge
transfer, one can re-weight x5 € D, in the RKHS to make the
mean value of those mapped x5 as close as that of the mapped
x; € Dy, which can be depicted as:

TN el - Y s(a)

$ 2,€D, t yeD,

(15)

B* = arg min

2
where ns = |D;| and n; = D], k(-) is the Gaussian kernel
function to generate RKHS.

Remark 3: Obtained [ is an ng-dimension vector, which
reflects the distance of n, samples in Dy to D, in the
reproducing kernel Hilbert space.

According to [9], solving above Eq. (15) is equivalent to
addressing following quadratic programming problem:

min £(8) = 2 57KS - g"5

1 & (16)
o s 1| < /ms
_ Ks,s Ks,t : — .
where K = K, . Kt,t) with the element K ; = [k(z;)

k(z;)| (z; € Ds, xj € D), and so on. g consists of element
9i = Z;”:l k(z;)-k(xj) where z; € DyUD; and z; € Dy.
As a result, the optimal 8 = [$;];"*; can be obtained via
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Fig. 3. Overall flowchart of MSAS-DMOA.

solving Eq. (16), where the element stands for the reliability of
individuals in D;. Particularly, if 3; is close to 0, then x; € D;
is deemed useless in the new environment. On the contrary,
large (3. implies that the historical solutions are valuable [11].
Then, samples in D, with 3 are adopted to train the population
predictor according to Eq. (14), where the corresponding
normalized 3 is used as the training weight. By doing so,
a great deal of available solutions with labels obtained in
previous searching can be fully used, and more importantly,
the guide solutions generated in the new environment have
not directly participated in the model training, which are only
adopted to further estimate the reference value of historical
experiences so that reliable knowledge transfer can be realized.
At last, via the trained predictor, initial population with high
quality in the new environment can be obtained, which is in
the hope of accelerating the acquisition of P.S; .

E. Overall Framework of MSAS-DMOA

The overall framework of the proposed MSAS-DMOA is
presented in Alg. 3, and the schematic diagram is illustrated
in Fig. 3. Notice that population in the first environment is
initialized through the applied SMOA, and it is from the
second generation that the initial population is provided by
the trained prediction model.

In particular, the support vector machine (SVM) is em-
ployed as the prediction model (i.e., the “classifier” in Fig. 3)
in the proposed MSAS-DMOA, whose training samples are
the previously mentioned {8;, z;, y; };=, where (x;,y;) € Ds,
and it is noticeable that the labels in source domain D, are
available based on the dominance relationship. Moreover, the
TrAdaboost technique [5] is applied for model training, and
by inputting the randomly generated solutions to the trained
SVM classifier, individuals with high-quality are outputted as
the initial population for searching in the new environment.

IV. EXPERIMENTS AND RESULTS

In this section, the proposed MSAS-DMOA is evaluated
on a series of benchmark functions, and other four popular
DMOAs are adopted for comparisons.

6

Algorithm 3 Framework of MSAS-DMOA
Input:
An SMOA optimizer S and objective functions F'
Output:
Pareto set PS = {PS;}I_, in all T environment
1: PS« 0
2: For ¢ from 1 to T'
3:  Update environmental parameters
4 Ift=1
5 Generate initial population Pop!,; by optimizer S
6: else
7
8
9

Establish source domain Dy based on Alg. 1
Build target domain D, according to Alg. 2
Train a classifier via KMM-based transfer learning

10: Output an initial population Pop?,,
11:  EndIf

12:  Obtain Pareto set PS; = S(F, Pop!,,;)
13: EndFor

14: Return PS

A. Benchmark Functions and Evaluation Metrics

For a comprehensive evaluation, the proposed MSAS-
DMOA is tested on 14 benchmark functions DF1-DF14,
and more details of these adopted DMOPs can be found in
[13]. The inverted generational distance (IGD) [12] and the
maximum spread (MS) [16] are employed as the evaluation
metrics. In particular, IGD is a comprehensive indicator that
can reflect both diversity and convergence, whereas in this
study, it is mainly adopted to evaluate the convergence, which
calculates the average distance between the obtained PF and
corresponding ground-truth one as follows:

IGD,; = L

min dmzn xaﬁ
PF| P

r€EPF}
peE t

a7

where 15Ft is the true Pareto front at time ¢, and d,,;,, stands
for the minimal Euclidean distance. Apparently, if the true
PF has covered the obtained one (i.e., the algorithm directly
obtains the ground-truth solutions), then the IGD value equals
to zero, which indicates that smaller IGD corresponds to better
convergence.

The other indicator MS is adopted to characterize the
diversity of algorithm, which measures the overlapping areas
between obtained PF and the true one as:

1 m Inin{};‘ma:c7 fmaz} _ maX{Fmin’ fmzn}
MSt = o ( . 2 max min . .
m Z Fyrer — |y

)2

(18)
where m is the number of objective functions, superscripts
man and max denote the minimal and maximal value. F' and
f refer to the true and obtained PF, respectively. Notice that
the larger the MS, the better the diversity.

k=1

In addition, given that there is T environment in total, the
average level of above two evaluation metrics is reported in
the experiments. Accordingly, the mean values of IGD and
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MS are calculated as:

MIGD = IGD,

Nl=
M=

~~
Il
—

19)

MMS = MS,

Nl =
M=

~~
Il
—

B. Comparison Algorithms and Experimental Settings

To further verify the competitiveness of the proposed
MSAS-DMOA, other four popular DMOAs are employed for
comparisons, which are DNSGA-II-B [0], T--DMOEA [14],
CR-DMOEA [39] and KT-DMOEA [15]. In both the latter
three algorithms and the proposed method, MOEA/D [53] is
selected as the SMOA optimizer.

For a DMOP, the dynamic behavior is depicted as ¢ =
i L%J where 7 is the maximum generation and ¢ stands for
current environment, n; and 7, denote severity and frequency
of environmental changes, respectively. Accordingly, on each
benchmark function, three groups of above dynamics are
adopted, including (n¢, ) € {(5,10),(10,5), (10,10)}. Fur-
thermore, the maximum generation is regulated as 7 = 30 X 7,
to ensure that the environment will change 30 times.

In addition, dimension of variable space is set to 10, and
population size is fixed at 100 and 150 to solve bi- and
tri-objective problems, respectively. To alleviate influences of
randomness, experiment on each benchmark function has run
10 times independently and the obtained results in average
level are reported.

C. Benchmark Evaluation Results

At first, the benchmark evaluation results in terms of MIGD
and MMS are reported in Table II and Table III, respectively,
where the best results are shown in boldface. In addition, the
Wilcoxon rank sum test [7] is performed at the significance
level of 0.05, where “+/—" and “=" denote that the proposed
MSAS-DMOA has performed significantly better/worse, and
equivalently in comparison to corresponding algorithm. In
addition, to provide an intuitive illustration of the algorithm
performance, results on two functions (DF9 and DF10) are
presented in the box-plot form in Fig. 4.

According to Table II, MSAS-DMOA has presented an
overwhelming performance improvement on most benchmark
problems in terms of the MIGD indicator. To be specific, in
30 out of 42 test cases, MSAS-DMOA has achieved the best
results. Especially on the five problems of DF1, DF2, DF6,
DF12 and DF14, the proposed method has ranked first in all
cases with different dynamic parameters. It is noticeable that
on DF8 and DF11, MSAS-DMOA presents a relatively worse
convergence, which may due to the complex property of those
problems, where the true PF expands or contracts with diverse
scales along the centroid. Moreover, the density of solutions
can also dramatically change, which brings difficulties in
obtaining the uniformly distributed Pareto solutions. As a
result, it is confirmed that while solving DMOPs, it is tough
to guarantee that the transferred knowledge obtained from
historical searching is always reliable, and the negative transfer
can lead to poor convergence.
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Fig. 4. Box-plots of problems DF9, DF10 on MIGD and MMS.

As reported in Table III, the proposed MSAS-DMOA
achieves 27 best results out of 42 comparisons on MMS indi-
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TABLE II
PERFORMANCE COMPARISON OF FIVE ALGORITHMS ON MIGD

Problems

N, Tt

Algorithms

DNSGA-II-B [6]

Tr-DMOEA [14]

CR-DMOEA [39]

KT-DMOEA [15]

MSAS-DMOA

DF1

5, 10
10, 5
10, 10

0.143541.67e-01(+)
0.2436::2.14e-01(+)
0.221541.82¢-01(+)

0.1397+5.17e-02(+)
0.2349£3.71e-02(+)
0.1487+2.39e-02(+)

0.1018£1.61e-02(=)
0.220145.26e-02(+)
0.1407-£4.68e-02(+)

0.1448+1.35e-02(+)
0.205445.00e-03(+)
0.1324+1.17e-02(=)

0.0983+1.93e-02
0.1838+2.47e-02
0.13214+1.97e-02

DF2

5, 10
10, 5
10, 10

0.1408+1.77e-02(+)
0.1316+1.05e-01(+)
0.1684+8.82e-02(+)

0.1291+£3.43e-02(+)
0.2145+£3.18e-02(+)
0.0835+4.13e-02(=)

0.0902-£6.30e-03(=)
0.1702£2.12e-02(+)
0.1045-£5.22e-02(+)

0.1132-£1.84e-02(+)
0.1632-£2.10e-02(+)
0.1090-£6.70e-03(+)

0.0876-+7.82e-03
0.1271£2.09e-02
0.0823+6.89¢-03

DF3

5, 10
10, 5
10, 10

0.2803+1.12¢-01(+)
0.5788+1.72e-01(+)
0.60224-2.20e-01(+)

0.2988+9.32e-02(+)
0.5482+1.12e-01(+)
0.3516+2.35e-01(+)

0.383344.56e-02(+)
0.2919+42.89e-02(+)
0.269244.37e-02(+)

0.4427+3.27e-02(+)
0.4581-£2.43e-02(+)
0.4101-£3.23e-02(+)

0.3783+3.43e-02
0.2754+1.30e-02
0.2400+3.41e-02

DF4

5, 10
10, 5
10, 10

1.1704+2.40e-01(-)
1.818843.05e-01(+)
1.679442.28¢-01(+)

1.0988-:4.77e-01(-)
1.2415+4.13e-01(-)
1.215443.25¢-01(+)

1.3300+2.22e-02(-)
1.1643+1.39e-01(-)
1.0269+1.85e-01(+)

1.1360+7.22¢-02(-)
1.1557+1.04e-01(-)
1.1736£1.55¢-01(+)

1.3570+4.42¢-02
1.3492+9.63e-02
0.9041+1.35e-01

DF5

5, 10
10, 5
10, 10

0.0612+1.72e-02(+)
0.132648.71e-02(+)
0.1000+8.86e-02(-)

1.3541£3.66e-01(+)
1.8921£6.15e-01(+)
0.8623£3.51e-01(+)

0.049324.90e-03(+)
0.127343.46e-02(+)
0.113843.78¢-02(-)

1.3278+2.68e-02(+)
1.4023£4.37e-02(+)
1.3283+1.56e-02(+)

0.0356-£5.24¢-03
0.1113+2.40e-02
0.1459+4.23e-02

DF6

5, 10
10, 5
10, 10

3.4736£2.61e+00(+)
0.765743.96e-01(+)
0.5435+2.15e-01(+)

2.2569+4.63e-01(+)
3.4311+8.23e-01(+)
1.5813£3.16e-01(+)

1.7698+5.45e-01(+)
14.5568+7.81e+00(+)
7.9292+5.35e+00(+)

2.6096-£2.46e-01(+)
4.5306+4.11e-01(+)
3.53044+2.27e-01(+)

1.6742+7.59e-01
0.5862+2.04¢-01
0.3650+3.10e-01

DF7

5, 10
10, 5
10, 10

6.8462+1.17e+00(+)
8.3965+1.16e+00(+)
7.3865+2.21e+00(+)

3.2145+1.12e+00(+)
3.17931+1.75e+00(-)
2.2264+9.21e-01(+)

2.2799+1.17e+00(+)
13.1652+8.74e+00(+)
6.3117+£3.64e+00(+)

2.8198£1.91e-01(+)
4.2143+4.70e-01(+)
3.126343.95¢-01(+)

2.0305+4.3%¢-01
3.4137+1.80e-01
1.9993-£8.64e-01

DF8

5, 10
10, 5
10, 10

0.8208+2.65e-02(-)
0.7987+1.82e-02(=)
0.7902+3.91e-02(+)

1.3579£2.12e-01(+)
1.2741£8.79e-02(+)
1.7253£3.75e-01(+)

0.8561+7.48e-02(-)
0.7877+7.41e-02(-)
0.8088+1.24e-01(+)

1.092742.22¢-02(+)
1.04934.49¢-02(+)
1.057241.91e-02(+)

0.9288+4.24e-02
0.8575+4.61e-02
0.6378+4.20e-02

DF9

5, 10
10, 5
10, 10

1.9389+6.00e-01(+)
1.2684+£6.79e-02(+)
1.2510+8.04e-02(+)

1.248249.48e-01(-)
1.6371£3.75e-01(+)
1.8649+8.23e-01(+)

1.2479+8.23e-02(-)
1.1496+£1.23e-01(+)
1.2620+1.18e-01(+)

2.0908+8.70e-02(+)
2.0497£9.14e-02(+)
2.0631+5.41e-02(+)

1.4950+3.94e-01
1.0047+2.04e-01
1.1378+2.49¢-01

DF10

5, 10
10, 5
10, 10

0.541343.27e-02(+)
0.2945+1.40e-02(+)
0.293346.70e-03(+)

0.2967+8.43e-02(+)
0.2874+£1.88e-01(+)
0.201343.12e-02(-)

0.3090-£2.50e-03(+)
0.2809-£1.31e-02(+)
0.317044.02¢-02(+)

0.270242.19e-02(+)
0.2610£1.50e-02(+)
0.2523+1.01e-02(+)

0.1867+9.55e-03
0.254343.00e-02
0.2369+2.53e-02

DFI11

5, 10
10, 5
10, 10

0.3694+1.84e-02(+)
0.521143.58e-02(+)
0.5309+4.28e-02(+)

0.3167+3.29e-02(+)
0.3933:4.19e-02(+)
0.2819+1.84e-01(+)

0.3779-£1.27e-02(+)
0.3984-:4.37e-02(+)
0.4658-£1.79e-02(+)

0.1635+£9.10e-03(+)
0.1941-:1.62e-02(-)
0.1648-:1.05e-02(-)

0.1587+1.13e-02
0.2241+£2.53e-02
0.1726£1.33e-02

DF12

5, 10
10, 5
10, 10

0.740742.96e-02(+)
0.6655-+8.84e-02(+)
0.707245.44e-02(+)

2.1365+3.79e-01(+)
2.9341+7.91e-01(+)
1.5938-£3.76e-01(+)

0.4311£1.64e-02(+)
0.4688+43.37e-02(+)
0.4353+7.00e-03(+)

0.5781-£2.50e-02(+)
0.5717-£1.89e-02(+)
0.5703-£2.76e-02(+)

0.4073+2.49e-02
0.4246+3.05e-02
0.4132£3.59¢-03

DF13

5, 10
10, 5
10, 10

0.2533+1.41¢-02(-)
0.4580+1.13¢-01(+)
0.4158+7.25¢-02(+)

2.1465+8.19e-01(+)
2.8955+1.91e+00(+)
2.9658+1.46e+00(+)

0.2699+2.82e-02(-)
0.4016+5.51e-02(=)
0.3321£1.02e-02(+)

1.3789-£1.44e-02(+)
1.467043.57¢-02(+)
1.3892-£4.90e-03(+)

0.3058+1.30e-02
0.3917+1.11e-02
0.2411+2.30e-02

DF14

5, 10
10, 5
10, 10

0.1384+9.20e-03(+)
0.4099+6.00e-02(+)
0.4387+4.77e-02(+)

0.8930+3.21e-01(+)
1.2749-£6.49¢-01(+)
0.85241.08e-01(+)

0.1157-£3.60e-03(+)
0.1960-£2.01e-02(+)
0.1801-£2.15¢-02(+)

0.8678-£6.60e-03(+)
0.9010-£9.30e-03(+)
0.8723-£4.00e-03(+)

0.0946+1.30e-03
0.1840+2.59e-02
0.1603+3.95e-02

+/-/=

\

3774171

36/51/1

32/713

37/41/1

\

cator, according to which one can conclude that the diversity
performance of MSAS-DMOA has far more exceeded other
4 algorithms. In addition, it is worth mentioning that the
TL paradigm has been introduced in both Tr-DMOEA and
KT-DMOEA to solve DMOPs, whereas above two methods
only obtain 7 and 6 best results on MMS, respectively, which
implies that the proposed MSAS-DMOA is a competitive
DMOP solver that can realize effective knowledge trans-
fer. Moreover, on 30, 30, 32 and 31 cases, MSSA-DMOA

8

presents significantly better results than DNSGA-II-B, Tr-

DMOEA, CR-DMOEA and KT-DMOEA, respectively, which

sufficiently exhibits the superiority of the proposed algorithm.

Above analysis has shown that MSAS-DMOA can yield out-
standing results on convergence and diversity simultaneously,

which can also be reflected in Fig. 4. It is mainly because
that the reference values of historical solutions are well
considered, which promotes transferring the useful knowledge
in complicated varying environment.
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TABLE III
PERFORMANCE COMPARISON OF FIVE ALGORITHMS ON MMS

Algorithms

Problems n;, 7
DNSGA-II-B [6] Tr-DMOEA [14] CR-DMOEA [39] KT-DMOEA [15] MSAS-DMOA
5,10  0.7887+£2.66e-01(+) 0.8291+3.65e-02(+) 0.7194+1.02e-01(+) 0.6979+2.45¢-02(+) 0.8942+1.94e-02
DFl1 10,5  0.9230+1.13e-01(-)  0.8743+5.83e-02(-)  0.8325+1.28e-01(-)  0.7761+5.80e-03(+) 0.8013+2.81e-02
10, 10 0.8716£3.14e-02(-)  0.8472+6.38e-02(+)  0.9010+1.14e-01(-) 0.7984+2.90e-02(+) 0.8565+1.67e-02
5,10  0.8716+3.14e-02(-)  0.8472+6.38e-02(+) 0.9010+1.14e-01(-)  0.7984+2.90e-02(+) 0.8565+1.67e-02
DF2 10,5 0.7517£1.24e-01(+) 0.8294+8.88e-02(+) 0.7123+7.60e-02(+) 0.7225+2.12e-02(+) 0.8439+7.59e-02
10, 10 0.8157+1.40e-01(+) 0.8702+5.38e-02(+) 0.831048.16e-02(+) 0.7427+1.95e-02(+) 0.9003+6.64¢-02
5,10  0.4835+1.64e-01(-)  0.4692+1.09¢-02(-)  0.3302+6.41e-02(+) 0.4292+2.21e-02(=) 0.4245+1.60e-02
DF3 10,5 0.2266+£6.08¢-02(+) 0.4284+1.34e-02(-)  0.4694+7.78e-02(-)  0.4236+3.12e-02(-)  0.4160+1.75e-02
10, 10 0.2372+1.06e-01(+)  0.6938+3.41e-02(-)  0.4984+9.17e-02(-)  0.4200+2.75e-02(=) 0.4230+9.58e-03
5,10  0.3671+3.52e-02(-)  0.4867+1.09e-02(+) 0.3941+3.74e-02(-) 0.2767+£2.22¢-02(+) 0.3379+2.18e-02
DF4 10,5  0.2866+6.57e-02(+) 0.2492+3.55e-02(+) 0.4694+2.12e-02(+) 0.2746£2.02¢-02(+) 0.5932+3.49e-02
10, 10 0.2645+3.64e-02(+) 0.33574£3.12e-02(+) 0.4629+2.92¢-02(+) 0.3163+£2.72e-02(+) 0.5505+3.00e-02
5,10 0.9923+3.00e-04(-) 0.9780+1.46e-02(-)  0.9698+1.93e-02(-)  0.8829+2.99¢-02(+) 0.9376+2.63e-02
DF5 10,5 0.9597+4.00e-04(+) 0.9532+1.11e-02(+) 0.9757+2.73e-02(+) 0.8979+5.87e-02(+) 0.9855+5.27e-02
10, 10 0.9498+2.00e-04(+) 0.9589+2.91e-02(+) 0.9874+2.53e-02(-) 0.8569+2.36e-02(+) 0.9755+1.89e-02
5, 10 1.0000+0(-) 0.8362+4.16e-02(+)  0.9408+1.50e-01(+) 1.0000+0(-) 0.9874+1.17e-01
DF6 10, 5 1.0000+0(=) 0.6297+7.99e-02(+) 1.0000+0(=) 1.0000+0(=) 1.0000+0
10, 10 1.0000+0(=) 0.6787+6.20e-02(+) 1.0000+0(=) 1.0000+0(=) 1.0000+0
5,10  0.8192+2.36e-02(+) 1.0000+£0(=) 0.9484+3.40e-03(+) 1.0000+0(=) 1.0000+0
DF7 10,5 0.7976£4.21e-02(+) 0.6620+1.04e-01(+) 0.9981+2.70e-03(+) 1.0000+0(=) 1.0000+0
10, 10 0.6072+6.96e-02(+) 0.6268+6.04e-02(+) 0.9867+1.04e-02(+) 1.0000+0(=) 1.0000+0
5,10 0.4146+£2.98e-02(+) 0.4975+£8.56e-02(+) 0.4574+1.31e-02(+) 0.2317+1.45e-02(+) 0.5732+6.40e-02
DF8 10,5  0.4279+£1.93e-02(+) 0.6591£4.20e-02(+) 0.6340+9.82¢-02(+) 0.2839+2.67¢-02(+) 0.7492+3.88e-02
10, 10 0.4394+3.35e-02(+) 0.6284+3.86e-02(+) 0.5652+1.50e-01(+) 0.2426+2.11e-02(+) 0.8324+2.03e-02
5,10  0.7297£2.93e-02(+) 0.8035+£1.90e-02(+) 0.7776+£7.90e-02(+) 0.6311+£5.30e-02(+) 0.7889+1.28e-02
DF9 10,5 0.722945.34e-02(+) 0.7864+3.69¢-02(+) 0.7684+1.21e-01(+) 0.7025+3.25¢-02(+) 0.8541+1.14e-02
10, 10 0.7252+6.62e-02(+) 0.6347+5.55e-02(+) 0.6716+1.14e-01(+) 0.6438+3.40e-02(+) 0.7706+2.22¢-02
5,10  0.9997+6.00e-04(-) 0.9192+6.90e-02(+) 0.9306+4.75e-02(+) 0.8604+1.96e-02(+) 0.9599+8.03e-03
DF10 10,5  0.9158+8.90e-03(+) 0.9683+1.03e-03(=) 0.9618+7.69¢-02(=) 0.8683+1.36e-02(+) 0.9655+1.36e-02
10, 10 0.8175+£2.96e-02(+) 0.8795£1.97e-02(+) 0.8325+1.50e-01(+) 0.8535+1.01e-02(+) 0.9441+1.64e-02
5,10  0.9514+2.50e-02(+) 0.9734+1.94e-03(=) 0.8898+2.12e-02(+) 0.9629+5.30e-03(+) 0.9784+1.33e-02
DF11 10,5 0.6956+2.78e-02(+) 0.9725+1.97e-03(-) 0.9091+3.48e-02(+) 0.9307£1.19e-02(-) 0.9161+1.45¢-02
10, 10 0.6886+2.35e-02(+) 0.9932+1.35e-03(-)  0.7853£2.09e-02(+)  0.9550+1.03e-02(-)  0.9431+1.73e-03
5,10  0.6428+4.51e-02(+) 0.0152+1.19¢-03(+) 0.6695+7.89¢e-02(+) 0.6990+9.00e-03(+) 0.8158+2.15e-02
DF12 10,5 0.6761£1.27e-02(+) 0.0975+1.11e-03(+) 0.7272+6.67e-02(+) 0.6950+1.50e-02(+)  0.8443+2.15e-02
10, 10 0.6808+2.11e-02(+) 0.0034+3.46e-04(+) 0.6007+£5.08e-02(+) 0.6841+2.56e-02(+) 0.7842+1.62e-02
5,10  0.9090+1.10e-03(+) 0.9295+3.07e-02(=) 0.9038+4.92e-02(+) 0.8358+1.94e-02(+) 0.9368+1.93e-02
DF13 10, 5  0.8993+3.00e-04(+) 0.9001+2.12e-02(+) 0.9535+3.36e-02(-)  0.8342+7.30e-03(+) 0.9728+3.83e-02
10, 10 0.8996+2.00e-04(+) 0.9284+£1.19e-02(+) 0.9201+4.32e-02(+) 0.8395+9.90e-03(+) 0.9536+1.17e-02
5, 10 1.0000+0(=) 0.9737+1.85e-03(+) 0.8085+1.08e-01(+) 0.9371+8.10e-03(+) 1.0000+0
DF14 10, 5 1.0000+0(=) 0.9208+1.00e-03(+)  0.9183+9.80e-03(+) 0.9365+2.80e-03(+) 1.0000+0
10, 10 1.0000+£0(=) 0.9497+1.35e-03(+) 0.9062+1.09¢-02(+)  0.9203+6.50e-03(+) 1.0000+0
+/-1/= \ 30/9/3 30/9/3 32/8/2 31/6/5 \

D. Comparisons with Other Advanced DMOAs

In this subsection, on five bi-objective benchmark functions
DFI1-DF5, the proposed MSAS-DMOA is compared with
other three advanced DMOAs. In particular, a novel multi-
directional prediction approach and an extended autoencoding
evolutionary search strategy have been proposed in [38] and
[8], respectively, and their implementations on the multi-

9

objective particle swarm optimizer are adopted for compar-
isons, which are denoted as MDP-MOPSO and AE-MOPSO.

In[

], the knowledge guided Bayesian classification has been

applied to solve DMOPs, and this recently proposed algorithm
is used for comparison as well, which is denoted as KGB-
DMOA. According to the experimental settings described in
[8], the dynamic parameters are fixed at n; = 1 and 7 = 10,
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TABLE IV
COMPARISONS WITH OTHER ADVANCED DMOAS ON BI-OBJECTIVE FUNCTIONS DF1-DF5 IN TERMS OF MIGD
Problems MSAS-DMOA AE-MOPSO MDP-MOPSO KGB-DMOA

DF1 2.8208e-01+£3.15¢-02  1.8842e+01£6.34e-01  2.0982e+01£7.11e-01  4.5977e-01£4.16e-01

DF2 2.0327e-01+3.21e-02  2.3671e-01£1.63e-01  2.1988e-0146.72e-02  5.2668e-01+3.62e-01

DF3 4.0147¢-01£1.71e-02  4.7168e-01£4.80e-02  5.5480e-01£9.80e-02  9.8680e-01£5.81e-01

DF4 9.5072e-011+6.20e-02  1.1727e+00£1.07e-01  1.3074e+00+1.34e-01  2.4960e+00=+2.71e+00

DF5 1.7729e+00+£4.69¢-02  1.7240e-01£2.77e-02  1.6015e-01+3.28e-02  5.0357e-0142.79e-01

TABLE V

COMPARISONS WITH OTHER ADVANCED DMOAS ON TRI-OBJECTIVE FUNCTIONS DF10-DF14 IN TERMS OF MIGD

Problems n;, 7 MSAS-DMOA SVR-DMOA [4] MMTL-DMOA [ MSTL-DMOA [49]
DF10 (5,10)  0.1914+1.07e-02  0.226541.90e-02 0.2200+2.02e-02 0.2336+2.90e-02
(10,10)  0.1813+1.44e-02 0.2460£2.31e-02 0.2197+3.00e-02 0.2197+1.46e-02

DF11 (5,10)  0.12624+8.10e-03  0.1156+3.35e-03 0.118245.14e-03 0.1171+4.16e-03
(10,10)  0.1290+1.19e-02  0.1167+£3.48e-03 0.1151+3.60e-03 0.1168+3.42e-03

DF12 (5,10) 0.4741£1.47e-02  0.1883+1.54e-02 0.3236+6.85e-02 0.1729+3.17e-02
(10,10) 0.4166+1.32e-02  0.1765+8.24e-03 0.2556+2.37e-02 0.1384+8.06e-03

DF13 (5,10)  0.2578+7.70e-03  0.2586+1.59e-02 0.2599+1.01e-02 0.2616+1.15e-02
(10,10)  0.2456+9.20e-03  0.2472+1.02e-02 0.2644+1.34e-02 0.2604+1.51e-02

DF14 (5,10)  0.0782+3.40e-03  0.0805+2.10e-03 0.0932+42.94e-02 0.0853+3.80e-03
(10,10)  0.0785+3.20e-03  0.0794+2.36e-03 0.0817+2.81e-03 0.0846+£5.06e-03

the number of environmental changes is 20, and the population
size is set to 100. The comparison results in terms of the MIGD
are displayed in Table IV, where data of the MDP-MOPSO
and AE-MOPSO are cited from [8].

As can be seen from Table IV, even in case of large change
severity (ny = 1), the proposed MSAS-DMOA outperforms
the other three advanced algorithms on four problems, which
shows the effectiveness and competitiveness of our method
in handling the dynamic behaviors. Notice that on the DF1
problem, the geometric shape of Pareto front changes back
and forth from concave to convex, while the result obtained by
the proposed MSAS-DMOA reaches 10~! level, which owes
to the rich information contained in the source domain, and it
can be concluded that the diverse training samples do promote
the transfer of useful knowledge. As compared with the KGB-
DMOA that also obtains result in 10! level, the proposed
MSAS-DMOA presents more stable performance with smaller
standard variance, which demonstrates the reliability of our
method as a competent DMOP solver.

In addition, to further validate the superiority of the applied
non-inductive TL-based response method, on five tri-objective
benchmark functions, the proposed MSAS-DMOA is com-
pared with some other advanced DMOAs, denoted as SVR-
DMOA [4], MMTL-DMOA [17] and MSTL-DMOA [49],
where in [4], the support vector regression predictor has been
adopted to assist evolution; the manifold and multi-source TL
paradigms have been applied in [17] and [49], respectively.
The comparison results are presented in Table V, where data
of the three comparison algorithms are cited from [49], and
corresponding experimental settings are maintained the same
for a fair comparison.

As is reported in Table V, on 3 out of 5 problems, the
proposed MSAS-DMOA obtains both the best results with

two dynamic parameter settings, and the other three advanced
DMOAS rank the first on 1, 1, and 2 cases, respectively, which
demonstrates that the proposed MSAS-DMOA is competent
in handling various dynamic behaviors in complex situations.
It is noticeable that in the MSTL-DMOA, multiple source
domains are selected as candidates where the most similar one
to the target domain is finally used for training, which has been
proven effective to realize the knowledge transfer. Hence, it
also motivates us to store the previously constructed Dy, due
to the carefully selected samples in the historical environments
may also be valuable in a new situation, which benefits further
enriching the potential helpful information in source domain.

It should be pointed out that although the proposed MSAS-
DMOA has obtained satisfactory results, there are still spaces
for further improvements. Firstly, the dynamic behaviors exist
commonly in many situations, thus an in-depth comprehension
and analysis of the dynamics can no doubt facilitate designing
methods to solve other dynamic optimization problems [23],
[37], [43], [54]. Secondly, the quantification of environmental
changes in this study is based on the fitness re-evaluation,
and it is promising to employ other alternatives such as the
surrogate-based methods [41], [42]. Thirdly, in a dramatically
changing environment, how to escape from the local optima
deserves further attention. Moreover, some DMOPs may even
present the multi-modal property, where several PS,,; (i =
1,2,---) will be mapped to the same PFj, that is, different
Pareto solutions share the same phenotype in objective space,
which makes it quite challenging and tough to obtain all of the
global optimal solutions. To handle this issue, some advanced
heuristic algorithms that pay attention to the balance between
global exploration and local exploitation can be employed
[19], [31], [50]. Lastly, some applied strategies in the proposed
MSAS-DMOA can be integrated into play-and-plug modules,
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which can improve the generalization ability of the proposed
methodology to assist other research such as the modeling of
complex dynamic systems [10], [20].

E. Analysis of Negative Transfer

While solving DMOPs via TL methods, it is an important
issue to effectively alleviate the negative transfer phenomenon,
which significantly influences the quality of the predicted
initial population in the new environment and may lead to
poor convergence. In this subsection, to validate whether the
proposed MSAS-DMOA is competent for handling above
issue, experiments are performed in terms of D, construction
and D; determination, respectively, of which the obtained
results are displayed in Tables VI-VII and Fig. 5.

1) Influences of Source Domain: In the proposed MSAS-
DMOA, the source domain is composed of solutions from
various optional groups, which is expected to provide rich
historical information. Accordingly, two variants are designed
for comparisons to validate the effectiveness of the adap-
tive D, construction manner. To be specific, by leaving out
the scoring system in Eq. (8), MS-DMOA directly carries
out the multiple strategies without in-depth analysis, which
picks out individuals from all optional groups with the same
proportion to form Dg; another variant SS-DMOA adopts

11

high reference values can have a relatively dense distribution,
which makes the predicted population easy to be trapped into
a local optimum.

In addition, compared with SS-DMOA, solutions from mul-
tiple optional sources can provide complementary knowledge
in Dg, which enriches the training samples to train a robust
predictor. Therefore, based on above discussions, one can
conclude that the proposed multi-strategy adaptive selection
mechanism for D, construction can effectively alleviate the
negative transfer phenomenon.

2) Influences of Target Domain: In the proposed MSAS-
DMOA, D; contains a group of guide solutions determined
based on the Q-value (see Section III-C). To verify the
effectiveness of those guide solutions, another variant MSAS-
DMOA¥* is designed for comparison, where the fine-tuned
Pareto set in the previous environment is adopted as D;. It
should be pointed out that for a fair comparison, samples
in D; have not directly participated in the model training
in both algorithms, which are only adopted to estimate the
reference values of historical solutions via KMM method.
Above comparison results in terms of MIGD are presented
in Table VII.

single strategy, which only employs the G,, as D,. Two TABLE VII
groups Of environmental dynamics are selected, including PERFORMANCE COMPARISON OF [;/fllg(]})DIFFERENT TARGET DOMAINS ON
(ng,7¢) = (10,5) and (n¢,7) = (10,10), whereas other
experimental settings remain unchanged. Comparison results Problems | ng, 7 MSAS-DMOA* MSAS-DMOA
on eight problems (DF7-DF14) of above three algorithms are DF7 10,5 3.2947+9.56e-01(-)  3.4137£1.80e-01
reported in Table VI. 10, 10 1.5624+2.72¢-01(-)  1.9993+8.64e-01
DFS 10, 5 1.15544+4.06e-02(+)  0.8575+4.61e-02
TABLE VI 10, 10 1.0418+1.43e-02(+) 0.6378+4.20e-02
PERFORMANCE COMPARISON AMONG ALGORITHMS WITH DIFFERENT 10’ 5 1.3842i3.43e—01(+) 1.0047+2.04¢-01
SOURCE DOMAINS ON MIGD DE9 110,10 1286443.740-01(+)  1.137822.49e-01
Problems | n;, 7 MS-DMOA SS-DMOA MSAS-DMOA DF10 10, 5 0.7815%2.13e-02(+) 0.254343.00e-02
DE7 10,5  3.5837+3.23e-01(+) 4.1346+7.49¢-01(+) 3.4137+1.80e-01 10, 10 0.6549+1.28e-02(+)  0.2369+2.53e-02
10, 10 1.896426.39¢-01(-)  2.3954+8.95¢-01(+)  1.99938.64¢-01 DFIL 10,5  0.1957+5.71e-02(-)  0.224122.53e-02
DFS 10,5 1.458042.64e-02(+) 0.9875+3.98¢-02(+) 0.8575+4.61e-02 10, 10 0.1700+4.62¢-02(=)  0.1726+1.33e-02
10, 10 1.0865+1.59e-02(+) 0.583621.56e-02(-)  0.637824.20e-02 10,5 0.8639+1.58¢.02(+) 0.4246:3.05¢-02
DRo | 105 32804255e-01(+) 3221421.14e-01(+)  1.0047+2.04e-01 DF12 10,10 0.857443.41e-02(+)  0.4132:3.59-03
10, 10 2.6093+4.53e-01(+) 3.5229+1.57e-01(+) 1.1378+2.49¢-01
DEl0 | 10-5  05996:5.00e02(+) 0.7354£1.04e-02(+) 0.2543+3.00¢-02 DF13 11(:)’ 150 8'2252?5'?22828 g;z:i;;(l)zgz
10, 10 0.483449.41e-02(+) 0.398842.69e-02(+) 0.2369+2.53¢-02 ) -2090%2. -2411E2,
DEIL 10,5 0.2074+2.17e-02(-)  0.290623.25¢-02(+)  0.2241+2.53¢-02 DF14 10,5 0.2451£1.30e-02(+)  0.1840+2.59¢-02
10, 10 0.201842.89e-02(+) 0.2189+1.98e-02(+) 0.172621.33¢-02 10, 10 0.4963+3.04¢-02(+))  0.1603+3.95¢-02
DFI2 1,5 04781+5.44e-02(+) 0.4485+6.11e-02(+) 0.4246+3.05¢-02 v/ /= \ 12/3/1 \
1,10 0.5725+4.44e-02(+) 0.5854+4.35e-02(+) 0.4132+3.59¢-03
DRz | 105 04869:271e-02(+) 0.5083+275¢-02(+) 0.3917£1.11e-02
10, 10 0.1642+8.36e-02(-)  0.3111+1.83e-02(+) 0.24112.30¢-02 . . .
DFia | 10-5  02404:1.89e02(+) 024514234e-02(+) 0.184042.59€-02 ) It is obvious from Table VII that in 12 out of 16 te§t-
10,10 0.2305+1.03e-02(+) 02349+131e-02(+) 0.16033.95¢02  Ing cases, the proposed MSAS-DMOA has outperformed its
i/ /= \ 13/3/0 15/1/0 \ variant MSAS-DMOA*, which demonstrates that the screened

As can be seen, the original MSAS-DMOA performs sig-
nificantly better than the variants MS-DMOA and SS-DMOA
in 11 and 12 cases, respectively. Without an adaptive selection
process to form Dy, it is prone to assign large weight to
individuals in a certain source where the data distribution is
similar to that of D;. Hence, an over-fitting phenomenon may
occur in model training due to those solutions deemed with

guide solutions do play an important role in guiding the knowl-
edge transfer direction. More importantly, it also indicates
that re-weighting samples in source domain to match data
distribution can lead to comparable results to the conventional
methods that label samples in D;. As a result, the proposed
method brings a feasible idea to replace the labeling procedure,
which is of vital significance especially in cases where the
labeled samples in target domain are quite insufficient.
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Fig. 5. Ablation study results of four MSAS-DMOA variants with (n¢, 7¢) =

F. Case Study of Vehicle Speed Control Task

In this subsection, a case study of vehicle speed control task
[18] is carried out for performance validation of the proposed
method, which is realized by a proportional integral derivative
(PID) controller with time-varying system function. Therefore,
the proposed MSAS-DMOA is responsible for timely adjusting
the key parameters in the PID system (including the K, K,
and K ;) so as to meet the requirement of real-time control,
and the schematic diagram of this case study is illustrated in
Fig. 6.

MSAS-DMOA
ﬁ Parameter Optimization

Ideal e PID Comrollerl—-| Vehicle System
speed h Real
speed

Fig. 6. Determination of the key parameters in a PID system for vehicle
speed control.

With the control parameters provided by MSAS-DMOA,
the output of PID system in response to a unit step input is
adopted as the performance evaluation metric, which contains
following two defined objectives:

to
minleO.lx/ e(t)|dt + 10 x O,,
[ ke o0

min Jo =5 x T,

where |e(t)| is the absolute error between the real output (in
steady state) and the ideal value, O,, stands for the maximum
overshoot, and T, is the rise-time for the response curve to
first reach 90% of the defined ideal value. It is noticeable that
the objective J; reflects whether the PID system can realize
accurate speed control, and the .J, focuses on the speed of

10 15 20 10 15 20
The number of change The number of change

—*—- MSAS-DMOA* --+- MS-DMOA

(10, 10) in terms of IGD values.

reaching a steady state, which requires the proposed MSAS-
DMOA to properly adjust the key parameters so as to yield
both accurate and fast performance. In addition, as previously
mentioned, the system function of the PID controller is time-
varying, which makes the speed control task more tough, and
the expression of system function is given as:

1.5
5083 + ag(t)s? +a(t)s + 1
where o (t) = 3 4 30sin(%) and ao(t) = 43 + 30sin(%).
Remark 4: In this case study, the ideal speed is denoted as

1, thus other output values are correspondingly transformed in
proportion and presented.

G(s,t) 2D

Firstly, at time ¢t = 0, the unit step response curves with
different parameters (i.e., the Pareto solutions) obtained by
the proposed algorithm are displayed in Fig. 7(a), where the
interest conflicts between the two objectives can be reflected.
When the proportion coefficient K, is enlarged, the maximum
overshoot will significantly increased, meanwhile the rise-time
is decreased. Similarly, the collaborative effects of K; and
K, influence the convergence of the step response curves.
According to Fig. 7(a), it is proven that the proposed method
is capable of providing several feasible solutions in the vehicle
speed control task. A noticeable issue is that in the real-world
problems, it is extremely tough to obtain sufficient Pareto
solutions due to the complex coupling relationships between
objective functions. Hence, above results show the reliability
of our MSAS-DMOA in real-world applications.

Then, the comparison between the proposed MSAS-DMOA
and classic DNSGA-II-B is presented in Fig. 7(b) and Ta-
ble VIII, respectively. As is shown, although using the
DNSGA-II-B for PID parameters determination realizes faster
rise-time, the maximum overshoot is as three times much
as that obtained by applying the proposed MSAS-DMOA.
Moreover, the reported indicator T in Table VIII is the settling
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(a) Different PID parameters obtained by MSAS-DMOA in the first
environment.
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(b) Comparison between MSAS-DMOA and DNSGA-II-B.

Fig. 7. Illustrations of the unit step response curves.

TABLE VIII
COMPARISONS BETWEEN THE PROPOSED MSAS-DMOA AND CLASSIC
DNSGA-II-B ALGORITHM

Methods T, Om T,
DNSGA-II-B 345 54.5% 60.79
MSAS-DMOA 448 17.6% 28.30

time, which refers to the required time for the output to be
steady within a pre-defined tolerance band, and according to
the results, the proposed MSAS-DMOA takes only half time
to reach the steady state in comparison to the DNSGA-II-B,
which exhibits the advantages of our algorithm in optimizing
parameters of the PID controller.

Finally, according to the presented scatter plots of the
obtained PF in Fig. 8, in each environment (markers with the
same color), most of the Pareto solutions obtained by DNSGA-
II-B can be dominated by those obtained by our method, which
indicates that the proposed MSAS-DMOA can well adapt to
the changing environments and obtain solutions with higher
quality. Hence, it can be concluded that as compared with the
re-initialization strategy used in the classic DNSGA-II-B, the

13
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Fig. 8. Pareto fronts obtained by the proposed MSAS-DMOA and the
classic DNSGA-II-B (denoted by the stars and circles, respectively) in two
environments (shown in different colors).

proposed non-inductive TL-based response method can handle
the dynamic behaviors better, thereby exhibiting the compet-
itiveness and superiority in terms of accurately searching for
the time-varying Pareto solutions. In our future work, we are
prone to apply the proposed MSAS-DMOA to solve more real-
world problems so as to validate its engineering practicality
in optimizing the complex dynamic systems.

V. CONCLUSION

In this paper, a novel multi-strategy adaptive selection-
based DMOA has been proposed, and as an ETO method, the
non-inductive transfer learning paradigm has been adopted.
Rich knowledge from different optional groups is contained
in the formed source domain, and the importance of historical
experience has been estimated via the KMM method, which
replaces the conventional labeling procedure of target domain,
and samples in D; are only used to guide the direction of
evolution to alleviate negative transfer.

Benchmark evaluations have been carried out on 14
DMOPs, and the results have demonstrated the superiority
of the proposed MSAS-DMOA, which outperforms other 4
popular DMOAs in terms of both convergence and diversity
in a statistic sense. According to the results of ablation study,
the effectiveness of the applied strategies in our method has
also been validated. In future, how to make the proposed
algorithm adapt to extremely changing situations deserves
further investigation, and it is also promising to apply the
MSAS-DMOA in more real-world optimization scenes.
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