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Transfer learning (TL), a crucial subfield of machine learning, aims to accomplish a task in the
target domain with the acquired knowledge of the source domain. Specifically, effective domain
adaptation (DA) facilitates the delivery of the TL task where all the data samples of the two
domains are distributed in the same feature space. In this paper, two quantum implementations of
the DA classifier are presented with quantum speedup compared with the classical DA classifier. One
implementation, the quantum basic linear algebra subroutines (QBLAS)-based classifier, can predict
the labels of the target domain data with logarithmic resources in the number and dimension of the
given data. The other implementation efficiently accomplishes the DA task through a variational
hybrid quantum-classical procedure.

I. INTRODUCTION

Transfer learning (TL), a significant subfield of ma-
chine learning, attempts to accomplish tasks in an un-
known domain with the learnt knowledge of a different,
but related domain [1]. As a crucial sub-realm of the TL,
domain adaptation (DA) aims to predict the labels of an
unlabelled target domain with a given labelled source do-
main data where all the given data are distributed in the
same feature space. DA is significantly applicable in deal-
ing with the unprocessed data and has been widely used
in various fields such as computer vision [2–4], natural
language processing [5], and reinforcement learning [6].
Quantum computing is a type of pattern computing

which is typically based on quantum mechanics [7–11].
In recent years, quantum computing techniques have
been applied to the field of machine learning to accom-
plish tasks with the promotion of the algorithm perfor-
mance [12–14]. For instance, quantum computation tech-
niques can achieve supervised learning tasks such as clas-
sification [15–17], data fitting [18, 19], and unsupervised
learning such as clustering [20], dimensionality reduc-
tion [21, 22] with quantum speedup. In the field of deep
learning, quantum Boltzmann machine [23, 24], quantum
generative adversarial learning [25–30], quantum auto-
encoder [31–33], and quantum neural networks [34, 35]
have been proposed to deal efficiently with deep learning
tasks on quantum devices. For the TL, Ref. [36] system-
atically analyzes the framework of the quantum transfer
learning in different scenarios. Ref. [37, 38] utilize linear
transformation to align the source domain to the target
domain to accomplish the procedure of DA. However, the
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procedure of the DA and the labels prediction are specif-
ically separated in the existing quantum DA algorithms
resulting in an increase of the computational complexity.
In this paper, two quantum implementations of the

DA classifier are presented. One implementation uti-
lizes the quantum basic linear algebra subroutines to
achieve exponential speedup on the universal quantum
computer compared to the classical DA classification
algorithm. The other implementation, the variational
quantum DA classifier, accomplishes the procedure of DA
on the near-term quantum devices through a variational
hybrid quantum-classical procedure.
The remainder of this paper is arranged as follows.

Firstly, the classical DA classifier is briefly overviewed
in section II. Subsequently, the QBLAS-based and the
variational quantum DA classifiers are presented respec-
tively. Finally, some open problems and future work are
discussed.

II. CLASSICAL DOMAIN ADAPTATION

CLASSIFIER

Assume that we are given a source domain dataset

Ds = {x(s)i }ns

i=1 ∈ R
D with labels {y(s)i }ns

i=1 ∈
{0, 1} and an unlabelled target domain dataset Dt =

{x(t)j }nt

j=1 ∈ R
D. The source domain data matrix Xs =

(x
(s)
1 , · · · , x(s)ns

) ∈ R
D×ns and the target domain data ma-

trix Xt = (x
(t)
1 , · · · , x(t)nt

) ∈ R
D×nt . The feature and the

label space of Dt are exactly the same as Ds. However,
the data of the source and target domain specifically obey
different data distributions. The goal of the classifier for
domain adaptation is to predict the labels of an unknown
target domain with the help of the labelled source do-

main data [39]. Let µ
(s)
c (µ

(t)
c ), Σs (Σt) be the cth class
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mean and the covariance of the source (target) domain
for c ≥ 2. In this paper, the discussion is specifically re-
stricted to the task of binary classification, namely c = 2.
The binary domain adaptation classifier can be easily ex-
tended to the circumstance of multi-class.
The DA classifier achieves the procedure of the transfer

learning with a modified classifier inspired from the linear
discriminant analysis (LDA) [40]. The scoring function
of the classifier is defined as

y(x) = wTx (1)

to determine the label of the specified data point.
In the spirit of the LDA, the source domain data
Ds are generated from the distribution p(x(s), y(s)) =
p(x(s)|y(s))p(y(s)) where p(y(s)) is the prior of the la-

bels; p(x(s)|y(s)) = N (x(s);µ
(s)
c ,Σs) represents the class-

conditional distributions. The weight vector of the clas-

sifier is w(s) = Σ
−1/2
s (µ

(s)
1 − µ

(s)
0 ). Equivalently, the

classifier can be obtained by projecting the decorrelated

source domain data x̂ = Σ
−1/2
s x(s) to the difference be-

tween the decorrelated means ŵ = (µ̂1
(s) − µ̂0

(s)) =

Σ
−1/2
s (µ

(s)
1 − µ

(s)
0 ) where û

(s)
c = Σ

−1/2
s µc for c = 0, 1.

However, this classifier cannot be directly applied to
the target domain directly due to the domain shift be-
tween the source and target domain. The DA classi-
fier adaptively apply the decorrelated target domain data

x̂(t) = Σ
−1/2
t x(t) to the decorrelated mean difference ŵ

resulting in the scoring function

ŷ(x(t)) = ŵT x̂t

= (Σ−1/2
s (µ

(s)
1 − µ

(s)
0 ))T (Σ

−1/2
t x(t)).

(2)

The DA classifier utilizes the DA techniques to modify
the traditional model for classification to effectively ac-
complish the machine learning tasks in different domains.
Compared with other DA models, the DA classifier effec-
tively combines the procedure of TL with the label pre-
diction resulting in a concise DA model. The schematic
diagram of the DA classifier is presented as 1.

III. STATE PREPARATION

Given the source domain data Xs and the target do-
main data Xt, the quantum states corresponding to the
Xs and Xt are

|ψXs
〉 =

ns
∑

i=1

D
∑

m=1

x
(s)
mi|i〉|m〉 =

ns
∑

i=1

|i〉|x(s)i 〉, (3)

|ψXt
〉 =

nt
∑

j=1

D
∑

m=1

x
(t)
mi|j〉|m〉 =

nt
∑

j=1

|j〉|x(t)j 〉, (4)

respectively in amplitude encoding where
∑

m,i |x
(s)
mi|2 =

∑

mj |x
(t)
mj |2 = 1 [41]. Hence, the states which represent

FIG. 1: The schematic diagram of the DA classifier.
The covariance matrix Σs is applied to the mean of the
data feature without background class resulting in the

weight of the DA classifier. Combined with the
decorrelated target domain data, the DA classifier can

be constructed.

the covariance matrices of the source and target domain
data are

ρs = tri{|ψXs
〉〈ψXs

|} =

D
∑

m,m′=1

ns
∑

i=1

x
(s)
mix

(s)∗
m′ i

|m〉〈m′ |,

(5)

ρt = trj{|ψXt
〉〈ψXt

|} =

D
∑

m,m′=1

nt
∑

j=1

x
(t)
mjx

(t)∗
m′ j

|m〉〈m′ |,

(6)
respectively where tri is the trace over the i register.

The quantum states |µ(s)
c 〉 (c = 0, 1) representing the

source domain mean value for the two classes can be ob-
tained by the quantum adder proposed in Ref. [42–44].

The quantum states |µ(s)
1 − µ

(s)
0 〉 can be computed by

the quantum subtractor presented in Ref. [22]. In addi-

tion, the data matrices Xs, Xt can be extended to X̃s =

|0〉〈1|⊗Xs+|1〉〈0|⊗X†
s and X̃t = |0〉〈1|⊗Xt+|1〉〈0|⊗X†

t

respectively.

IV. QBLAS-BASED DA CLASSIFIER

For the QBLAS-based DA classifier, we assume that
the elements of Xs and Xt are accessible by the
quantum random access memory (qRAM) [45] in time
O(poly(log(Dñ))) with O(poly(Dñ)) resources where
ñ = max(ns, nt). The corresponding quantum circuit
of the QBLAS-based DA classifier is depicted as 2.
The whole procedure of the QBLAS-based DA classi-

fier is presented as follows.
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FIG. 2: The quantum circuits of the QBLAS-based DA
classifier.

(1) Apply the quantum phase estimation algorithm
(QPE) [46, 47]

UPE(X̃t) = (QFT†⊗I)

(

T−1
∑

τ=0

|τ〉〈τ | ⊗ eiX̃tτt/T

)

(H⊗n⊗I)

(7)
on the input state |0〉|ψXt

〉|0〉⊗log(D+nt) prepared by the
specified registers resulting in the quantum state

|ψ1〉 =
nt
∑

j=1

|j〉
D
∑

m=1

β
(t)
mj |σ(t)

m 〉 1√
2
(|w(t)+

m 〉 − |w(t)−
m 〉)

= |1〉
nt
∑

j=1

|j〉
D
∑

m=1

β
(t)
mj |σ(t)

m 〉|v(t)m 〉, (8)

where QFT† represents the inverse quantum Fourier

transform [48], β
(t)
mi = 〈u(t)m |x(t)j 〉, |w(t)±

m 〉 = 1√
2
(|0〉|u(t)m 〉±

|1〉|v(t)m 〉) are the eigenvectors of X̃t corresponding to the

singular values σ
(t)
m .

(2) Perform the controlled Ry(2 arccos(γt/|σ(t)
m |)) op-

eration on the first register to obtain the state

|ψ2〉 = |ψ(t)
a 〉

nt
∑

j=1

|j〉
D
∑

m=1

β
(t)
mj|σ(t)

m 〉|v(t)m 〉, (9)

where

|ψ(t)
a 〉 =

√

1− γ2t

|σ(t)
m |2

|0〉+ γt

σ
(t)
m

|1〉, (10)

γs is a constant.

(3) Uncompute the |σ(t)
m 〉 register, remove the ancilla

register, and measure the |ψ(t)
a 〉 to be |1〉. The state

|ψX̃t
〉 =

nt
∑

j=1

|j〉
√

1
∑D

m=1 |γtβt
mj |2/|σ

(t)
m |2

D
∑

m=1

β
(s)
mjγt

|σ(t)
m |

|v(t)m 〉

=

nt
∑

j=1

|j〉
Σ−1

t |x(t)j 〉
√

〈x(t)j |Σ−1†
(t) Σ−1

(t) |x
(t)
j 〉

=

nt
∑

j=1

|j〉|x̂(t)j 〉 (11)

can be obtained. Thus, the quantum state |x̂(t)j 〉 propor-
tional to Σ

− 1

2

t x
(t)
j for j = 1, 2, · · · , nt can be computed in

time O(‖Xt‖2max log
2(D + ns)/ǫ

3) where ‖Xt‖max is the
largest absolute element of Xt and ǫ is the error param-
eter.

The whole procedure above can be represented as the
following unitary operation

UM (X, θ) = (I⊗U
†
PE(X))(UR1

(θ)⊗ I)(I ⊗UPE(X))
(12)

where |ψX̃t
〉 can be achieved by the operation

UM (X̃t, 2 arcsin(γt/|σ(t)
m |)). Similarly, the quantum

state |ψµ〉 proportional to the vector Σ
−1/2
s (µ

(s)
1 − µ

(s)
0 )

by applying UM (X̃s, 2 arcsin(γs/|σ(s)
m |)) on the input

quantum state |0〉R|0〉C |ψµ〉B(|0〉⊗log(D+nt))S in time

O(‖Xs‖2max log
2(D + ns)/ǫ

3) [49] where ‖Xs‖max is the
largest absolute element of Xs.

(4) The scoring function of the QBLAS-based DA clas-
sifier can be ultimately obtained as

ŷq(x
(t)) = 〈ŵq |x̂(t)〉 (13)

by performing the swap test [50] on |ŵ〉, |x̂t〉.
The pseudo-code of the QBLAS-based DA classifier is

presented in 1.

Algorithm 1 Quantum fast domain adaptation

Input: Source domain data Xs with labels Ys, target
domain data Xt.
Output: Target domain labels Yt.
Step 1: Perform UPE(X̃t) on |0〉|0〉|ψXt

〉|0〉⊗log(D+nt) to
obtain |ψ1〉.

Step 2: Perform the controlled Ry(2 arcsin(γt/|σ
(t)
m |)) ro-

tation operation on |ψ1〉 to compute |ψ2〉.

Step 3: Uncompute the |σ
(t)
m 〉 register, remove the ancilla

register, and measure the |ψ
(t)
a 〉 to be |1〉 to achieve |ψX̃t

〉.
Step 4: Perform the swap test on the weight |ŵq〉 and

decorrelated target domain data |x̂(t)〉 to predict the tar-
get domain labels ŷq.

V. VARIATIONAL QUANTUM DOMAIN

ADAPTATION CLASSIFIER

In addition to the design based on quantum basic lin-
ear algebra subroutines, the DA classifier can be alterna-
tively implemented on noisy intermediate-scale quantum
devices (NISQ) through a variational hybrid quantum-
classical procedure. The variational quantum domain
adaptation classifier (VQDAC) can be performed on the
near-term quantum devices without high-depth quan-
tum circuits and fully coherent evolution required by the
QBLAS-based DA classifier. The pseudo-code of the VQ-
DAC is presented in 2.
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Algorithm 2 VQDAC

Input: Source domain data Xs with labels Ys, target do-
main data Xt.
Output: Target domain labels Yt.
Step 1: Prepare the quantum states ρs, ρt by the low-
depth quantum circuits.

Step 2: Diagonalize ρs, ρt to construct Σ
1

2
s , Σ

1

2

t respec-
tively.
Step 3: Invoke the variational quantum linear solver to
compute the decorrelated target domain data |x̂(t)〉 and the
weight coefficient |w〉.

Step 4: Perform swap test on |w〉 and |x̂(t)〉 to predict the

target labels y(t).

For classical data points, the quantum states required
can be generated by a quantum circuit of O(n2 + 2n

k+n )

depth with k ancilla qubits [51]. Based on the time-space
tradeoff, the quantum states corresponding to the given
data can be obtained by low-depth quantum circuits with
sufficient quantum qubits. If we are given quantum data
initially, the VQDAC can be invoked directly as follows.
The VQDAC firstly diagonalizes the quantum states ρs

and ρt to obtain the states |ψs〉 and |ψt〉 to represent the
matrix Σs and Σt respectively. In the spirit of Ref. [52],

design ρ̃s = U(θs)ρsU
†(θs) with the unitary operation

U(θs) constructed by a parameterized quantum circuit
where {θs} is a set of parameters. The cost function is
defined as

C = Tr(ρ̃sHs), (14)

where Hs is a specified D-qubit Hamiltonian with D
non-negative and non-degenerate eigenvalues. By min-
imizing the cost function C with a classical optimization
algorithm, the optimal parameters {θ∗s} can be obtained.

ρs’s eigenvalues {λ(s)i }Di=1 can be estimated by measur-

ing ρ̃s. Thus, the source domain covariance matrix Σ
1

2

s =
∑D

i=1 λ
(s) 1

2

i |i〉〈i| can be finally computed, along with the

target domain covariance matrix Σ
1

2

t =
∑D

j=1 λ
(t) 1

2

j |j〉〈j|.
The quantum circuit of the state diagonalization of the
source and target data is presented in 3.

FIG. 3: The circuits of the diagonalization of a given
state ρ through a variational hybrid quantum-classical

procedure.

Subsequently, the quantum states |w〉 and |x̂(t)〉 are
computed to represent the weight vector ŵ and the tar-

get domain whiten data X̂(t) = Σ
− 1

2

t Xt respectively.

Inspired from Ref. [53], design the quantum ansatz
|x̂(t)(θ(t))〉 with a set of parameters {θ(t)}. The cost func-
tion

L = 1− 1

nt

nt
∑

j=1

∣

∣

∣

∣

∣

∣

〈x(t)j |Σ
1

2

t |x̂(t)〉
√

〈x̂(t)(θ(t))|Σ
1

2
†

t Σ
1

2

t |x̂(t)(θ(t))〉

∣

∣

∣

∣

∣

∣

(15)

is defined to be minimized by the classical optimization
algorithm such as stochastic gradient descent to obtain

the optimal coefficients {θ(t)∗ } and the decorrelated target

domain data |x̂(t)j (θ
(t)
∗ )〉 for j = 1, · · · , nt in time O(κt/ǫ),

where κt is the condition number of Σt and ǫ is the er-
ror coefficient. Similarly, the quantum state |w〉 which

represents the weight of the DAC w = Σ
−1/2
s (µ

(s)
1 −µ(s)

0 )
can be computed in the runtime O(κs/ǫ) where κs is the
condition number of the source domain covariance matrix
Σs.
Ultimately, the label of the target domain data point

x(t) can be obtained according to the success probability
of performing the swap test on the two states |w〉 and
|x̂(t)〉. The whole procedure of the VQDAC is depicted
in 4.

FIG. 4: The quantum circuits of the VQDAC.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, two quantum implementations of the
DAC are presented. The QBLAS-based DAC can be im-
plemented on a universal quantum computer with loga-
rithmic resources in the dimension and number of given
data. The VQDAC can be performed on the near-term
quantum devices through a variational hybrid quantum-
classical procedure.
However, some open questions of the two quantum

algorithms need further study. At first, the QBLAS-
based DAC requires high-depth quantum circuits and
fully coherent evolution in practice. Although it can be
proved that the QBLAS-based DAC can achieve quan-
tum speedup, the implementation requirement in prac-
tice is relatively hard at present. In addition, the optimal
performance of the VQDAC still needs exploration. The
specific design of the parameterized quantum circuits is
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vital to the accuracy of the variational algorithm. How
to find the optimal circuit structure is another crucial
open question. In spite of the open questions above, it is
demonstrated that quantum techniques can be applied to
the field of domain adaptation resulting in performance
promotion.
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