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Abstract

Although deep learning has been widely used for dense crowd counting, it still faces two
challenges. Firstly, the popular network models are sensitive to scale variance of human
head, human occlusions, and complex background due to repeated utilization of vanilla
convolution kernels. Secondly, the vanilla feature fusion often depends on summation or
concatenation, which ignores the correlation of different features leading to information
redundancy and low robustness to background noise. To address these issues, a multi-
scale feature pyramid network (MFP-Net) for dense crowd counting is proposed in this
paper. The proposed MFP-Net makes two contributions. Firstly, the feature pyramid fusion
module is designed that adopts rich convolutions with different depths and scales, not
only to expand the receptive field, but also to improve the inference speed of models by
using parallel group convolution. Secondly, a feature attention-aware module is added in
the feature fusion stage. The module can achieve local and global information fusion by
capturing the importance of the spatial and channel domains to improve model robustness.
The proposed MFP-Net is evaluated on five publicly available datasets, and experiments
show that the MFP-Net not only provides better crowd counting results than comparative
models, but also requires fewer parameters.

1 INTRODUCTION

Dense crowd analysis is one of the most challenging tasks
in video surveillance, traffic guidance, public safety preven-
tion and control, and intelligent environment design. The task
[1] focuses on crowd counting [2–10,64], crowd image seg-
mentation [11–15], crowd detection and tracking [16–19], and
crowd behaviour recognition and localization [20, 21]. Among
them, crowd counting is a basic task in the field of crowd
analysis and can be also applied to vehicle detection [22, 23],
biometric counting [24–26] etc. Recently, a large number of
approaches used for crowd counting have been reported, and

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2021 The Authors. IET Image Processing published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

these approaches can be roughly grouped into three categories:
regression-based approaches, detection-based approaches, and
density-map-estimation-based approaches.

Traditional approaches for crowd counting mainly depend
on regression and detection technique. Detection-based meth-
ods are often used to calculate the number of people by
detecting the head or appearance of pedestrians by means of
dynamic frame detectors [27–31]. These methods are effec-
tive in sparse scenes, but they do not perform well in
scenes with heavy human occlusions and complex backgrounds.
Regression-based methods [32–36] are often used to construct
regression models for crowd counting by learning the mapping
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relationship between shallow features of images and the number
of crowds, such as Gaussian-mixture regression, linear regres-
sion etc. These regression-based methods can deal with dense
crowd counting in complex scenes, but they seriously rely on
the feature representation at shallow layers and ignore the spa-
tial features of images, resulting in poor model generalization
ability and accuracy.

With the rapid development of urbanization, crowd gathering
activities are becoming more and more frequent. However, the
early crowd counting models focus only on the overall repre-
sentation of the situation, which is unsuitable for crowd analysis
under some complex scenes. For the problem, the density map
estimation is better than crowd counting since it estimates
the number of people by integrating over the whole image
and refines the distribution of local locations. As a result, the
crowd counting task has evolved from simple crowd counting
to density map estimation that can represent crowd distribution
characteristic. Based on this idea, Lempitsky et al. [37] proposed
a method based on density map estimation by learning a linear
mapping between local features and density maps. However, the
method easily suffers from some difficulties because the rela-
tionship between features and density maps is usually nonlinear.
In order to reduce the difficulty of learning linear mapping
relationship, Pham et al. [38] proposed a nonlinear mapping
algorithm by utilizing spatial structure information, which
applies random forest regression for semi-automatic training of
the model. However, the algorithm provides a low accuracy for
crowd counting under scenes with high density distribution due
to the reliance on manually extracted low-level features.

Currently, deep learning is the most popular technique in
computer vision due to the achievement of hierarchical fea-
ture representation. Based on the deep learning technique, Fu
et al. [39] firstly applied general Convolutional Neural Network
(CNN) to crowd counting by evaluating crowd density map.
However, the general CNN suffers from the problem of loss
of image spatial information caused by the employment of fully
connected layer for image segmentation. To solve this problem,
Fully Convolutional Neural Network (FCN) [40] uses convo-
lution layer instead of fully connected layer to achieve end-to-
end pixel-level classification. Since FCN achieves better image
segmentation than traditional algorithm [41, 42], it becomes the
most popular backbone for image segmentation tasks [43]. Cur-
rently, many researchers have applied FCN and improved FCNs
to the field of dense crowd analysis, and these FCN-based meth-
ods are roughly classified into three categories in terms of model
architecture and tasks, that is, multi-branch network for single-
task, joined multi-branch networks for multi-task, cascade net-
work for single-task.

Multi-branch networks usually use convolutional kernels with
different sizes to capture multi-scale image information under
different receptive fields. Based on this idea, Zhang et al. [5]
designed a multi-column CNN(MCNN) consisting of three
encoders, where 3 × 3, 5 × 5 and 7 × 7 convolutional kernels are
used for these encoders, respectively. After that, multi-scale fea-
tures of human head from three encoders are directly concate-
nated and fused. Finally, the predicted density maps are obtained

by a decoder using 1 × 1 convolution. Although MCNN pro-
vides better feature representation than general CNNs due to
the utilization of multi-scale features, when the networks go
deeper, it will require more parameters and higher computa-
tional cost. To solve the problem, Zeng et al. [3] used the incep-
tion structure to extract multi-scale image features and used
1 × 1 convolution for dimensionality reduction, which to some
extent reduces the number of parameters and computational
cost of MCNN. Furthermore, Sam et al. [2] presented a switch-
ing CNN that includes three independent branching networks,
where the input data is fed into one of the branching networks
in terms of density rank of input data. More related works can
be seen in [22, 44].

Since multi-task learning is helpful for improving the gen-
eralization ability of networks on the estimation of crowd
density map, many researchers tried to design multi-branch
networks for crowd density map estimation. Sindagi et al. [6]
proposed a joining learning model used for two tasks, that
is, density classification and density map estimation. By using
high-level density prior knowledge, the proposed model can
accelerate learning and improves prediction accuracy. To fur-
ther improve prediction accuracy, Gao et al. [45] presented the
Perspective Crowd Counting Network (PCC-Net) that consists
of three parts: advanced density classification, density map
estimation, and image semantic segmentation. For multi-task
learning, semantic segmentation effectively distinguishes the
background and foreground, and thus improves density map
estimation and generalization ability of the network. Based
on the idea, some researchers designed multi-task learning
frameworks for pixel-level domain adaptation and density map
estimation [8, 10, 11, 46]. These frameworks employ generative
adversarial networks (GANs) to reduce the difference of scene
changes between synthetic and real data, which further reduces
the dependence of deep learning on real data. Wang et al. [11]
proposed Spatial Fully Convolutional Network (SFCN) that
uses dilated convolution and a spatial encoder to incorporate
global contextual information leading to higher accuracy for
crowd density map estimation. However, multi-task networks
depend on richer label data that are uneasily obtained.

Cascade networks can provide better feature representation
since deeper convolutional layers are often deployed in cascade
networks. Li et al. [47] presented a single-column deep net-
work structure (CSRNet) that extracts multi-scale contextual
information using dilated convolutional kernels of small-size.
The CSRNet greatly improves the density map estimation
and counting accuracy for crowd images. Jiang et al. [48]
designed hierarchical decoders for different encoding stages
and employed dense skip-connections to promote the fusion
of multi-scale features, thus improving the quality of predicted
density maps. Meanwhile, researchers developed relevant learn-
ing strategies based on CNNs to obtain prior knowledge before
training, allowing the model to learn incrementally from easy to
difficult [9, 49, 50]. In addition, for density map estimation, the
removal of background noise is important. Since the attention
mechanism allows the model to dynamically focus on the
important positions in an image, it can enhance the feature
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FIGURE 1 The first row is the samples from the NWPU-Crowd dataset [7] and the second row is the ground truth density maps

representation of networks. Based on the idea, researchers
[51–55] often incorporated an attention module into networks
to capture information of interesting regions while ignoring
irrelevant information. Although these networks show strong
robustness on background noise, they do not consider the
relationship between feature channels and feature spatial.
Compared with multi-branch networks mentioned above, the
cascade networks often provide higher accuracy for the crowd
density map estimation.

Although both cascade networks and multi-branch networks
are successful for crowd counting and density map estimation
under some simple scenes, they usually suffer from difficul-
ties caused by complex scenes such as viewing angle of far
distance, the scale variance, noise, human occlusions, complex
background etc. Figure 1 shows some complex scenes. Despite
cascading larger convolutional kernels for multiscale feature
extraction can improve the prediction effect, it still causes
some new problems, such as more parameters, higher compu-
tational cost, and more difficult training. Inspired by [56, 57],
we propose a multiscale feature pyramid network (MFP-Net)
for crowd counting and density map estimation. The main
contributions of this paper are given as follows:

(1) For network encoding, we present a feature pyramid fusion
module (FPFM). The FPFM employs multiple convolution
kernels with different depths and dilation rates to perform
group and parallel operations on the input feature maps,
which can effectively capture multi-scale contextual infor-
mation and obtain better feature representations.

(2) For feature fusion, we present a feature attention-aware
module (FAAM). The FAAM can reduce the effect of
background clutter, improves the robustness of the model
by dynamically paying attention to interesting regions in

images, and leans the visual correlation between spatial and
channels.

(3) The proposed MFP-Net shows fast training and inference
speed due to the utilization of parallel convolution, and pro-
vides better crowd counting and density map estimation due
to the utilization of adaptive multi-scale feature fusion.

The remainder of the paper is organized as follows. Section 2
describes in detail the structure and advantages of the MFP-
Net. Section 3 focuses on the ablation studies and the analysis
of comparative experimental results. In Section 4, summary and
discussion are presented.

2 METHOD

In this paper, we propose a multi-scale feature pyramid net-
work (MFP-Net) and apply it to the field of crowd counting
and density map estimation. Figure 2 shows the architecture
of MFP-Net that consists of feature extraction layer, feature
pyramid fusion layer and feature attention-aware layer. Firstly,
considering that VGG16 has a low training cost and high per-
formance, we choose the first 10 layers of VGG16 as the fea-
ture extraction layer of MFP-Net. Secondly, the feature maps
obtained by feature extraction layer are fed into the feature
pyramid fusion module that adopts pyramid group convolution
to efficiently perform multi-scale feature extraction and obtain
different levels of fine-grained information from input images.
Then, the obtained multi-scale feature maps are fed into the
feature attention-aware module that can capture more mean-
ingful features and achieve adaptive fusion of local and global
information, which is helpful for improving feature representa-
tion and the robustness of the network on the tasks of crowd
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FIGURE 2 The architecture of the proposed MFP-Net. First, we use VGG16 as the backbone. Secondly, the feature pyramid fusion module is used to extract
multi-scale information and then use the feature attention-aware module for feature fusion
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FIGURE 3 The architecture of the feature pyramid fusion module

counting and density map estimation. Finally, the feature maps
are restored to the original image size by using bilinear inter-
polation without parameters. In fact, both the feature pyramid
fusion module and the feature attention-aware module are used
for feature fusion. However, the former aims to extract multi-
scale information from crowed images, but the latter aims to
capture the key information and suppress the influence of back-
ground noise.

2.1 Feature pyramid fusion module

Dense crowd images often have a complex background and
a large variation in the scale of crowd object proximity and
distance. Thus, vanilla convolution has two drawbacks. One is
vanilla convolution has a fixed receptive field and cannot effi-
ciently extract multi-scale information in crowd images. The
other is the stacking of different scale vanilla convolutional ker-
nels causes the increase of the number of network parameters
and the reduction of network robustness. To solve these two
problems, we design the feature pyramid fusion module to cap-

ture the multi-scale information in crowd images. Roughly, we
first split the feature maps into multiple blocks, and then per-
form 3 × 3 group convolution with different dilation rates on
each block as shown in Figure 3. The feature pyramid fusion
module performs different levels of filtering operations on the
input feature maps by using group convolution, which captures
different multi-scale contextual information in parallel compu-
tation. Moreover, the group convolution can reduce the compu-
tational cost and thus improves the inference speed of networks.

In Figure 3, the feature pyramid fusion module includes
four pyramidal convolution layers. In each layer, the feature
maps are first divided into proportional blocks. And then each
block is performed group dilated-convolution. Specifically, the
channel number of the input feature map is M . In the first
layer, we divide feature maps into 4 blocks, and the channel
number of each block is C1, C2, C3, C4, respectively, where
C1 +C2 +C3 +C4 = M . All convolutional kernels are 3 × 3
with different dilation rates r (r=1,2,3,4), where the number
of groups G increases by 2n in pyramid-shape, for example,
G = (20, 21, 22, 23). For the second layer, we divide the feature
maps into three blocks. Similarly, the size of all convolutional
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FIGURE 4 Comparison of vanilla convolution and group convolution

kernel is 3 × 3, and the dilation rate r and the number of groups
G are incremented sequentially starting from 1. The third layer
is divided into two blocks. For the last layer, we adopt vanilla
convolution with G = 1. Here, we define the input feature maps
as x and the output feature maps as y, then

yi (x ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

PGconv(x,Ni ,Gi , ri ), i = 1

PGconv(y1(x ),Ni ,Gi , ri ), i = 2

⋮

PGconv(yL−1(x ),Ni ,Gi , ri ), i = L

, (1)

wherePGconv(x,Ni ,Gi , ri ) is the pyramid group dilated-
convolution,L is the number of layers,Ni is the number of
blocks, ri is the dilation rate, and Gi is the number of groups
in each convolution operation. Note that L,Ni , ri , and Gi are
hyperparameters that can be adjusted according to different
tasks. As shown in Figure 3, our presented feature fusion mod-
ule is pyramid-shaped, and the number of groups as well as
the dilation rate increases in a pyramidal pattern. In such a way
that different levels of fine-grained features can be extracted,
and multi-scale features can be clustered at the top of the
pyramid. Compared with the vanilla convolution, the proposed
pyramid group dilated-convolution can extract richer multi-
scale image features due to the utilization of dilated convo-
lution with different dilation rate. Compared with multi-scale
convolution, the proposed method requires fewer parameters
and lower computational cost due to the utilization of pyramid
grouping. Therefore, the feature pyramid fusion module both
extracts multi-scale information and simultaneously improves
the inference speed of the network. Figure 4 shows the com-
parison of vanilla convolution and group convolution, where
the number of groups is 2. Obviously, the computational cost
is greatly reduced when we use group convolution instead of

vanilla convolution. The computational cost of group convolu-
tion is denoted by F , and

F (G ,K ,Cin,Cout ) =
K 2 ×Cin ×Cout × H ×W

G
, (2)

where G is the number of groups, K is the size of the convo-
lution kernel, Cin and Cout are the number of input and output
feature maps, respectively, H and W are the height and width of
the feature maps. In fact, when performing group convolution,
a larger value of G corresponds to a lower computational cost
F (G ,K ,Cin,Cout ). For the feature pyramid fusion module, the
number of groups, blocks and dilation rates gradually decrease
in a pyramidal way as the network depth increases, which aims to
achieve a balance between feature representation and inference
speed. Although group convolution is able to improve inference
speed of networks, it leads to feature loss since feature maps
are grouped for convolution. Consequently, the pyramid group
dilated-convolution requires a low computational cost:

F (N ,G ,K ,Cin,Cout ) =
N∑

i=1

(
Ki ×C i

in ×C i
out × H ×W

Gi

)
, (3)

where N is the number of proportionally divided blocks. C i
in

and C i
out are the number of input and output feature maps in

the ith group, respectively, and C i
in ∈ Cin,C

i
out ∈ Cout . Gi is the

number of groups in the i-th block, Gi ∈ G . Obviously, it can
be concluded from (3) that the dilated convolution expands the
receptive field without losing the resolution of the feature maps.
Meanwhile the group parallel convolution can reduce computa-
tional cost.

In conclusion, our presented feature pyramid fusion module
not only provides better feature representation caused by multi-
scale feature extraction, but also achieves fast inference speed
and requires lower computational cost due to the employment
of pyramid group convolution.
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2.2 Feature attention-aware module

For the task of crowd density estimation, congested scenes have
disturbing factors such as scale, perspective, occlusion, bright-
ness etc. Previous works extract features as equally important
and fuse them indiscriminately, resulting in poor robustness.
However, the cluttered background is often identified as crowd
during the actual density map estimation that affects the accu-
racy of the model prediction. Therefore, it is a challenge to
effectively identify confusable features. The attention mech-
anism can enhance the robustness of feature representation
by focusing on important regions and key channels of feature
maps. Liu et al. [51] adopted attention mechanism to obtain
local location information in feature maps yet ignores the global
correlation between feature channels. Sindagi et al. [58] injected
foreground and background segmentation information into
the counting network through an attention mechanism but
did not consider the relationship between each location in the
image. For these problems, we present a feature attention-aware
module that integrates both position and channel attention
mechanism. The position attention-aware focuses on the spatial
correlation between each position in the image to capture
the global correlation of images, which is helpful for map-
ping the distribution pattern of crowd density. The channel
attention-aware focuses on the correlation between different
channels in feature maps and emphasizes the interdependence
between feature maps by assigning different weights. Due to the
semantic relevance of spatial and channels, we use both channel
and position attention and then adaptively fuse the obtained
feature maps.

Figure 5 illustrates the structure of feature attention-aware
module. The structure that contains two types of attention mod-
ules that explore local and global contextual information by
constructing associations between features to improve feature
representation for crowd counting and density estimation. On
the one hand, the position attention-aware module encodes a
wider range of contextual information than convolution oper-
ation, thus enhancing the representation of local features. On
the other hand, the channel attention-aware module reduces the
effect of useless feature maps caused by background noise. The
feature map G ∈ ℝC×H×W output from the feature pyramid
fusion module is fed into a convolution layer to obtain two fea-
ture maps (G1,G2) that are reshaped to ℝC×N , where C is the
number of channels of feature maps, H ×W denotes the spa-
tial dimension, N = H ×W denotes the number of image pixel
points. We then perform a matrix multiplication between the
transpose of G2 and G1, that is,(GC×N

2 )T × GC×N
1 . Finally, the

obtained results are fed into a softmax layer to obtain the spatial
correlation matrix W (s) ∈ ℝN×N :

w
i j
s =

exp(G j

2 ⋅ G i
1)∑N

i
exp(G j

2 ⋅ G i
1)
, (4)

where w
i j
s denotes the correlation measure between the

j th position and theith position in a feature map. we per-
form a matrix multiplication between G1 and W (s), that is,
G1 ×W (s) and then reshape the result to ℝC×H×W to obtain
the position attention-aware maps G (s). Next, we multiply the
obtained result by a spatial scale parameter 𝜇 and perform an
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element-wise summation with G to obtain the result
G ′

s ∈ ℝC×H×W :

G ′
s = 𝜇(GC×N

1 ×
(

(GC×N
2

)T
×G

C×N
1 )) + GC×H×W , (5)

where the spatial scale parameter 𝜇 is a parameter learned grad-
ually from 0.

In addition, each channel mapping of high-level features can
be viewed as a class-specific response with different semantic
interrelated. By exploiting the interdependencies between chan-
nel mappings, we can emphasize the interdependent feature
mappings and improve the semantic-specific feature represen-
tation. Therefore, we present a channel attention-aware mod-
ule to explicitly model the interdependencies between channels.
We first feed F ∈ ℝC×H×W that is the output of the feature
pyramid fusion module into a convolution layer to get two fea-
ture maps F1 and F2, {F1,F2}∈ ℝ

C×H×W . Secondly, we reshape
them to ℝC×N , where N = H ×W denotes the number of
pixels in an image. Further, we perform the multiplication of
the matrix F C×N

2 × (F C×N
1 )T . The global correlation matrix

W (c ) ∈ ℝC×C is then calculated via a softmax slayer, and it is
defined as:

w
i j
c =

exp(F j

2 ⋅ F i
1 )∑C

i
exp(F j

2 ⋅ F i
1 )
, (6)

where w
i j
c denotes the value of the weight of the j th channel

on the ith channel. Then we perform the matrix multiplication
W (c ) × F2 and reshape it to ℝC×H×W . As a result, the channel
attention feature map F (c ) is obtained. After that, we multiply
the obtained result by a channel scale parameter 𝜌 and per-
form an element-wise summation with F to obtain the result
F ′

c ∈ ℝC×H×W :

F ′
c = 𝜌((F C×N

2 ×
(
F C×N

1

)T
) × F C×N

2 ) + F C×H×W , (7)

where 𝜌 is the channel scale parameter learned gradually from 0.
In (7), we can see that a feature map is obtained from the sum-
mation of the original features and the attention features. Such
an approach preserves more fine-grained information and helps
models to enhance the feature representation between channels.

The final feature maps via the feature attention-aware module
are defined as:

B2C×H×W = F ′
c ⊕ G ′

s , (8)

where F ′
c denotes the finally obtained channel correlation fea-

ture maps and G ′
s denotes the spatial correlation feature maps,

{F ′
c ,G

′
s } ∈ ℝC×H×W , ⊕ denotes concatenate operation. Fur-

thermore, we perform dimensionality reduction using 1 × 1
convolution to achieve adaptive information fusion at differ-
ent scales.

In summary, position attention captures the contextual rela-
tionships of global position in space, while channel attention
models the global correlations between feature maps. The pre-

sented feature attention-aware module uses both channel and
position attention, and employs an adaptive fusion of feature
maps to reflect the semantic dependencies of channels and posi-
tions leading to the improvement of model robustness.

3 EXPERIMENT

To evaluate the effectiveness of the proposed MFP-Net, five
state-of-the-art network models MCNN [5], CSRNet [47],
SFCN [11] and SFCN+ [11] are considered as comparative
approaches in our experiments. Besides, all comparative net-
works and the proposed MFP-Net are performed on five popu-
lar datasets ShanghaiTech [5], NWPU-Crowd [7], UCF_CC_50
[59], UCF-QRNF [60] and GCC [8]. In this section, we illus-
trate the evaluation metrics and experimental details. Then
we perform the ablation studies on the ShanghaiTech dataset.
The experimental results of the proposed MFP-Net on other
datasets are reported at last.

3.1 Evaluation metrics

For crowd density estimation, two popular evaluation metrics
are mean absolute error (MAE) and mean squared error (MSE),
that is,

MAE =
1
N

N∑
i=1

||Yi − Ŷi
||, (9)

MSE =

√√√√ 1
N

N∑
i=1

|Yi − Ŷi |2, (10)

where N is the number of samples from the testing set, Yi

denotes the groundtruth crowd count, and Ŷi is the predicted
crowd count in the ith test image. The predicted count is
obtained by performing summation over the crowd density map
output from a model. For MAE and MSE, if the values of
MAE and MSE are smaller, then the test sample is closer to the
groundtruth. To further evaluate the quality of the estimated
density maps, the Peak Signal-to-Noise Ratio (PSNR) and the
Structural SIMilarity (SSIM) are also used in our experiments.

3.2 Experimental setup

To measure the error between the estimated density map and
the groundtruth, we adopt pixel-wise mean square error (MSE)
loss as the objective function. The optimization of the model
parameters 𝜃 is defined as follows:

Loss(𝜃) =
1

2B

B∑
i=1

||F GT
i − F̂ PRE

i ||2
2
, (11)

where B is the batch size, and F GT
i is the groundtruth density

map of the test image.
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LEI ET AL. 3529

FIGURE 6 An annotation map and the corresponding groundtruth density map. (a) shows the head position marked by red points. (b) shows the density map

We adopt the same strategy as previous work [7, 36 47, 52 54]
to generate groundtruth density maps. Specifically, each image
is associated with a series of 2D points that are the positions
of human heads in a crowd scene. We use Gaussian kernels to
blur each head annotation. In our experiments, considering the
spatial distribution of all images in each dataset, the density map
F GT

i generated by the Gaussian convolution with fixed size is
defined as:

F GT
i =

∑
xi∈P

𝛿(x − xi ) × G𝜎2 (x ), (12)

where x is the pixel position in the image, and xi denotes
the position of thei-th human head in the annotated map 𝛿.
G𝜎2 (x ) is the Gaussian kernel and 𝜎 represents the standard
deviation of Gaussian distribution. Respectively, we set the
Gaussian kernel size to 15 and 𝜎 to 4 for all datasets for fair
comparison. Figure 6 shows an annotation map and its density
map.

The proposed MFP-Net is an end-to-end training frame-
work. We fine-tune the first 10 layers of VGG16 using a pre-
trained model and initialize the other layers with a Gaussian
function with a standard deviation of 0.01. To increase the diver-
sity of the data, we take a 0.5 probability of level flipping for data
augmentation during the training. The MFP-Net is optimized
using the Adam algorithm with a learning rate lr = 1 × 10−5,
and it is implemented on an desktop with NVIDIA GTX2080
Ti GPU and the PyTorch 1.6.0 framework.

3.3 Ablation studies on the ShanghaiTech
dataset

The ShanghaiTech dataset [5] contains 1198 images where a
total of 330,165 human heads are marked. The dataset is divided
into two parts A and B. The Part A includes 482 crowded scene
images with different resolutions, where 300 and 182 images
are used for training and testing, respectively. For training con-
veniently, we randomly crop these images to some small-sized
images of size 200 × 200. The Part B includes 716 sparse scene
images, where 400 and 316 images are used for training and test-
ing, respectively. All the image size is 1024 × 768 in the Part B.

TABLE 1 Ablation studies on ShanghaiTech dataset, the best values are
bolded

Part A Part B

Method MAE MSE MAE MSE

MFP-Net(A) 90.2 160.0 30.4 50.4

MFP-Net(B) 75.6 125.4 12.2 17.6

MFP-Net(C) 70.5 118.8 11.0 15.1

MFP-Net 65.5 112.5 8.7 13.8

In this paper, two contributions are highlighted, one is that
the feature pyramid fusion module (FPFM) is used for fea-
ture integration after the feature extraction layer; The other is
that the feature attention-aware module (FAAM) is integrated
into the proposed MFP-Net to perform feature selection and
avoid the influence of background noise. To demonstrate the
effectiveness of the two contributions, we conducted compre-
hensive experiments on ShanghaiTech dataset. In Table 1, MFP-
Net(A) means that vanilla convolution with a convolutional
kernel of size 3 × 3 is used in FPFM, MFP-Net(B) means
that dilated convolution with fixed dilation rate r=2 is used in
FPFM, MFP-Net(C) means that the FAAM module is removed.
MFP-Net is our proposed method where the dilation rate r =

(1, 2, 3, 4) in FPFM.
As shown in Table 1, The result of MFP-Net is MAE of

65.5 and MSE of 112.5, which is 24.7-point and 47.5-point
improvement over the MFP-Net(A) on ShanghaiTech part A,
respectively. On Part B, MFP-Net also achieves the best results:
MAE of 8.7 and MSE of 13.8, which is 2.3-point and 1.3-point
improvement over MFP-Net(C), respectively. The experimen-
tal results of MFP-Net outperformed MFP-Net(A) and MFP-
Net(B), which demonstrates the effectiveness of the FPFM
module. The experimental results of MFP-Net are better than
that of MFP-Net(C), which demonstrates the effectiveness of
the FAAM module. As can be seen that FPFM utilizes pyra-
mid group convolution with variable dilation rate for multi-scale
feature extraction, which shows better adaptability for crowd
images. And FAAM effectively fuses local and global contextual
information to enhance the feature representation of our model
and thus improve the prediction accuracy. We compare the
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3530 LEI ET AL.

TABLE 2 Comparison of MFP-Net with other methods on ShanghaiTech
dataset, ”None” means no pre-training, the best values are bolded

Part A Part B

Method Pre-training MAE MSE MAE MSE

MCNN None 110.9 170.4 26.3 41.6

CSRNet ImgNt 70.0 116.1 10.8 16.8

SFCN ImgNt 70.5 117.0 11.4 17.2

SFCN+ ImgNt 68.1 113.3 9.1 15.4

MFP-Net ImgNt 65.5 112.5 8.7 13.8

proposed MFP-Net with other state-of-the-art methods includ-
ing MCNN [5], CSRNet [47] and SFCN [11] on ShanghaiTech
dataset. SFCN uses VGG [61] as the backbone and SFCN+
uses ResNet101 [62] as the backbone. Note that we use a pre-
trained model based on ImageNet Database [63] for parameter
initialization. The experimental data are shown in Table 2.

In Table 2, the proposed MFP-Net achieves a 2.6-point
improvement in MAE and a 0.8-point improvement in MSE
over SFCN+ [11] on Part A. MFP-Net also provides better
results for MSE of 8.7 and MAE of 13.8 for sparser scenes in
Part B. It can be seen that our model has a better generalization
ability to scenes of different scales, because FPFM with dilated
convolution of variable dilation rate and FAAM with atten-
tion of two channels are able to extract and sense the features
extracted from different receptive fields adaptively to achieve
better results.

3.4 Main comparisons

We compare our method with state-of-the-art methods on
NWPU-Crowd dataset comprehensively. The NWPU-Crowd
dataset [7] is the largest crowd counting and localization dataset
available, with a total of 5109 images and 2,133,238 labeled
instances, with the number of people in each image ranging
from 0 to 20,033. For practical application to improve the
generalization ability of the model, this dataset introduces 351
negative samples (namely nobody scenes), each of which has
similar texture features as the crowded scenes. Secondly, due
to the large variation of lighting and scene, the appearance of
human head in each image varies greatly. In the data preprocess-
ing stage, we first resize the high-resolution images to 2048-px
scale with the original aspect ratio. We randomly cropped all
images to smaller images of size 576 × 768 and flipped them
horizontally to perform data augmentation during the training.
To evaluate the quality of our method to generate density maps,
we use two criteria PSNR and SSIM, and the results of our
experiments on the validation set are shown in Table 3.

Table 3 shows that the value of MAE for MFP-Net is 90.3,
with an improvement of 4.7-point over SFCN+. The value of
MSE provided by MFP-Net is not the best because the crowd
density and distribution varied significantly, and the nobody
scenes are easy to confuse in the NWPU-Crowd dataset. Our

TABLE 3 Experimental results of different methods on NWPU-Crowd
validation set, the best values are bolded

NWPU-Crowd

Method Pre-training MAE MSE PSNR SSIM

MCNN None 217.1 698.6 28.61 0.876

CSRNet ImgNt 103.0 433.8 29.89 0.891

SFCN ImgNt 106.2 615.1 29.95 0.929

SFCN+ ImgNt 95.0 587.4 30.57 0.950

MFP-Net ImgNt 90.3 458.0 30.61 0.955

proposed MFP-Net has the best PSNR of 30.61 and SSIM of
0.955, because its FAAM uses attention mechanism to reduce
the effect of background noise by fully integrating the multi-
scale contextual information in the crowd image. It is clear that
SFCN+ provides higher values of PSNR and SSIM than both
CSRNet and MCNN. The main reason is that SFCN+ employs
a spatial encoder structure to enrich feature maps, but CSRNet
and MCNN don’t discriminate features in fusion stage.

To demonstrate the effectiveness of our method for den-
sity map estimation, we select five representative samples (e.g.
scenes with nobody, severe occlusion, high density, and poor
lighting conditions) and visualize the prediction results.

Figure 7 shows the comparative results of estimated density
maps on the NWPU-Crowd dataset using different methods.
The first column is a negative sample whose texture informa-
tion is similar to that of the dense crowd. Since CSRNet directly
fuses the extracted features without differentiation, resulting in
poor prediction result as shown in the image at the third row
and the first column. SFCN+ uses a spatial encoder structure
to encoder the context information, which is effective for noise
suppression leading to better result than CSRNet. The pro-
posed MFP-Net uses FAAM to be aware of contextual multi-
scale information, which can suppress background noise and
improves the generalization ability of the model. It thus pro-
vides better result than SFCN+. In the second column, since
CSRNet, SFCN and SFCN+ ignore some heavily occluded
locations in images, they obtain poor prediction results. In con-
trast, MFP-Net sufficiently exploits the contextual relationships
in crowd images, it thus achieves better prediction than CSR-
Net and SFCN+. In the case of extremely poor lighting condi-
tions, our model still achieves fine prediction results as shown
in the third and fifth columns of Figure 7, which shows that our
model has strong robustness. The fourth column is a highly con-
gested scene and the proposed MFP-Net has a better accuracy
of crowd counting than SFCN+.

It is clear that the proposed MFP-Net can provide good pre-
diction results for various complex scenarios, since FPFM uses
pyramid group dilated-convolution to capture multi-scale fea-
tures and FAAM uses attention mechanism to fully integrate
local and global information to improve feature representation.

In order to show the superiority of MFP-Net, Table 4 shows
the comparison of the number of parameters and computational
cost for different networks. In this experiment, the input data is
an image of size 3 × 576 × 768. According to the experiments,
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LEI ET AL. 3531

FIGURE 7 Five groups of visualization results on the NWPU-Crowd validation set. The first row is the original images, and the second row indicates the
groundtruth density maps. The last four rows show the density maps and counts predicted by CSRNet, SFCN, SFCN+, and our method MFP-Net, respectively.
“GT count” indicates the real counts in the image

TABLE 4 Comparison of the efficiency of different networks, the best
values are bolded

Model

operations

(GFLOPs)

parameters

(M)

storage

usage (MB)

CSRNet 182.82 16.26 62.05

SFCN 183.83 16.33 62.34

SFCN+ 273.42 38.59 147.75

MFP-Net 128.55 8.41 32.10

the computational cost of our model is 128.55 GFLOPs, and the
number of parameters is 8.41M, which is lower than CSRNet,
SFCN and SFCN+ since our model adopts group convolution
that is faster than the vanilla convolution. Note that MCNN is
missed in Table 4 since the network does not use a backbone.

3.5 Comparison in other datasets

To further validate the generalization ability of our model, we
further conducted experiments on three popular datasets in
this section.

The UCF_CC_50 dataset [59] has a limited sample of 50
images, which is extremely congested crowd counting dataset.
To make a fair comparison, we follow the 5-fold cross-validation
method in [59]. The images are randomly divided into 5 groups
and each of them includes 10 images. In the experiment, four
groups are used for training and one group is used for testing,
so that there are 5 ways of training and testing, and we show
their average values.

The UCF-QRNF dataset [60] has a large span of crowd den-
sity, where 1,201 and 334 images are used for training and test-
ing, respectively. During the training, we randomly crop the
images into 224 × 224 patches and take a horizontal flip with
0.5 probability for data augmentation.

The GTA5 Crowd Counting Dataset (GCC) [8] is a large-
scale synthetic dataset (Synthetic Data) with different scenes
and variable environmental conditions, which consists of 15,212
images with a resolution of 1080 × 1920. We randomly divided
this dataset into two groups, the training set (75%), and the test
set (25%).

Table 5 shows the experimental results for the three datasets.
In Table 5, MFP-Net obtains MAE/MSE of 112.2/190.7
on the UCF-QRNF dataset containing a variety of scenes,
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3532 LEI ET AL.

TABLE 5 Experimental results of different methods on several
mainstream datasets, the best values are bolded

Method UCF_CC_50 UCF-QRNF GCC (RS)

MAE MSE MAE MSE MAE MSE

MCNN 376.6 508.0 276.5 441.2 101.0 216.5

CSRNet 265.5 394.2 121.3 208.0 38.5 86.6

SFCN 266.4 396.7 135.1 239.8 36.1 81.0

SFCN+ 245.3 375.8 114.5 193.6 28.8 71.2

MFP-Net 240.8 384.4 112.0 190.7 28.2 70.1

and MAE/MSE of 28.2/70.1 on the largest dataset GCC.
However, the prediction results on UCF_CC_50 dataset are
not optimal due to imbalanced samples and small number of
images in the dataset. The experiments show that our method
MFP-Net performs well on most of crowd scenes, but it does
not perform well for some datasets due to a small number of
training samples.

4 SUMMARY AND DISCUSSION

In this paper, we have proposed a multi-scale feature pyramid
network (MFP-Net) and applied it to the task of crowd density
estimation. MFP-Net is different from current models due to
the introduction of a feature pyramid fusion module and a
feature attention-aware module. The feature pyramid fusion
module can effectively extract different levels of fine-grained
information in images by using dilated convolution with vari-
able dilation rate while ensuring that the resolution of the
feature map is not degraded, and the training efficiency is
further improved due to the employment of parallel group
convolution. The feature attention-aware module can improve
the robustness of MFP-Net by adaptively extracting local and
global contextual information and focusing on important spa-
tial locations and channels. According to the experiment results,
MFP-Net has clear advantages for crowd density estimation and
crowd counting in highly congested and noisy environments.
In future work, we will investigate how to adaptively adjust
the dilation rate and the number of groups according to the
complexity of the data to reduce the computational cost and
improve the prediction accuracy of the model.
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