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Abstract— The effective and efficient quality, security and 

provenance assurance of microelectronics and electronic 

products is a persisting challenge for the industry. The impetus 

towards finding automatic solutions that create high 

confidence about the quality and origin of components 

assembled on Printed Circuit Boards (PCBs) is high. A novel 

approach is proposed for microelectronic component detection 

and classification with high accuracy and confidence. A 

dedicated multi-source data acquisition, fusion and 

interpretation, are suggested to reduce uncertainty regarding 

concurrency, reliability, availability, and physical/logical 

resolution. Increasing the quality of data and subsequently 

generating the infrastructure for knowledge creation is the 

main output of this research. A central feature of the proposed 

solution is the integration and fusion of images from surface 

and penetrating imaging systems, set specifically to generate 

the necessary raw data. Experiments reported here 

demonstrate the merits of the accomplished classification, 

learning and identification of constituent components through 

the proposed fusion algorithm1. The accuracy of the analytics 

from the fusion of optical and X-ray algorithms has improved 

by 5.3%, compared to optics only. All other sensitivities were 

also significantly improved; for example, the Chip sensitivity in 

optical and X-ray images was 89.4% and 85.8%, respectively. 

With FOXi the metric increased to 94%. 

Keywords—Bill of materials (BoM), Image fusion, 

Classification, Convolutional neural network (CNN), PCB 

boards, Components.  

I. INTRODUCTION 

A bill of materials (BoM) is the comprehensive list of 
raw materials, components, and instructions necessary for the 
manufacture, repair, or construction of a product. Typically, 
BOMs are structured in a hierarchical format so that the 
completed product appears on top and the individual 
materials and components follow [1, 2]. 

1 Patent: Entropic Greyscale Imaging (Object Identification System and 

Method)/JE/N36998-GB 

BoM of a PCB (Printed Circuit Board) can be a list of 
components such as resistors, capacitors, Integrated Circuits 
(I.C.s), ports, connectors etc. BoMs are used for a wide range 
of applications, including electronic board inspection and 
quality assurance, security and technical auditing. 

Previous research has described various automatic PCB 
inspection methods that use optical/visual cameras, X-ray 
sources, thermal cameras, etc. The authors have also 
witnessed industrial solutions that have not been publicly 
reported but show effective industrial capabilities. A variety 
of image processing, computer vision, and machine learning 
techniques are employed in these studies and industrial 
applications. Many existing methods focus on defect 
inspection and detection, solder inspection, pose detection, 
quality inspection and PCB classification [3-7]. From our 
studies and reviews of publicly accessible articles, it appears 
that the approach to solving the problem is restricted to the 
monomodal imaging technique for obtaining data from the 
boards, and no significant work is done to classify the 
electronic components on the boards. 

This paper aims to find novel approaches for ensuring the 
minimum information necessary to control and minimize 
uncertainty during the registration and fusion of data in 
contrast with a systematic methodological inquiry to improve 
the performance of component classification.  

We, therefore, suggest the utilization and management of 
multiple data sources to reduce uncertainty in terms of 
concurrency, reliability, availability, and physical/logical 
resolution. Our research focuses on building a foundation 
framework for quality assurance and developing a systematic 
knowledge infrastructure. This is a computational framework 
that evaluates the efficacy, value, and application of 
observable-available information into the state of a given 
physical system. 

There are several potential threats to sensitive systems, 
including tampering, hidden components, and broken 
provenance. As part of this study, we examine the suitability 
of data acquisition (X-ray and optical surface imaging 
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technologies) and image processing to further improve the 
capability for detecting components and systems in 
electronic systems. In the following sections, we describe the 
proposed methodology. 

II. PROPOSED APPROACH

A. Image acquisition

An optical camera and X-ray imaging system are used to 

acquire the necessary images/data in this study. One 

hundred circuit boards in this study span a range of sizes 

from 70𝑚𝑚 × 50𝑚𝑚 to 350𝑚𝑚 × 250𝑚𝑚 (e.g., Fig. 1). 

A high-resolution professional camera is used for the 

surface acquisition system, which is equipped with two 

lenses with focal lengths of 35 mm and 12 mm. The 

resolution of all images is 5496 (𝐻) × 3672 (𝑉) pixels. A 

physical barrier controls outside light so that the optical 

system can provide constant illumination.  

X-ray machines are the most effective method for

inspecting inside electronic components due to their 

penetrating abilities. A specialized and tweaked X-ray 

scanner is used to provide the images with a resolution of 

3840 (𝐻) × 3072 (𝑉) pixels. 

The images from multiple sensors need to be registered 

to achieve multi-sensor fusion. A useful feature that helps 

distinguish devices from backgrounds is device boundaries, 

which are used in this research to match images between 

optical and X-rays. This paper assumes that the images to be 

fused are correctly registered. 

(a) (b) 
Fig. 1. An example of an optical image (a) and X-ray image (b) which are 

taken from a Raspberry Pi board. 

B. Image preparation

In order to train the neural network and to classify 

components in this research, we require components images 

of 128 × 128 pixels. These images are acquired by resizing 

the source image (Optical, X-ray and fused images) regions 

where components are located. Thus, optical images of 

devices are labelled accordingly. The labelling process is 

time-consuming if performed by humans. Therefore, we 

suggested and developed a component image extraction 

algorithm based on common image processing functions and 

special hue analysis. 

1. Pre-processing

To remove noise and reduce image sharpness median

blur function is applied to optical images. The kernel for the 

function is square with a side of 25 pixels for an image size 

of 5496 × 3672  pixels. 

2. Colour space conversion

Due to the conditions of capturing images, the

background's hue is always different to the hue/hues of most 

of the device area. Although, in most cases, the hues of 

components differ from those of a circuit board surface, they 

are sometimes similar. In case of similarity, another method 

for component detection is used where intensity is analyzed. 

Detection on the optical image is not feasible (even by 

humans) if some components have the same colour as the 

circuit board surface. 

To improve the detection of hues in both background 

and target objects, RGB colour space is converted into a 

custom colour space. This conversion allows mitigating 

shadows and other intensity changes (or red, green, and blue 

components) across the background. New components are 

shown using Algorithm (1). 

These equations consider R, G, and B values in a range 

of 0 … 255. If the range is 0 … 1, 0.5 should be used instead 

of 127 and 128 [8]. 

I = (R + G + B) / 3 // similar to intensity or brightness 
RI = if (I = 0) then 127 else 127 + max(-127, min(128, ln(R / I) * 127)) 

GI = if (I = 0) then 127 else 127 + max(-127, min(128, ln(G / I) * 127)) 

BI = if (I = 0) then 127 else 127 + max(-127, min(128, ln(B / I) * 127)) 

Algorithm (1) 

3. Distributions for background/circuit board surface colour

and max detection

At this stage, I, RI, G.I., and B.I. distributions for 

background or circuit board are calculated. Since the device 

is located in the centre of the image, it is possible to use an 

area in the form of a wide frame along the borders of the 

image to calculate the distribution of I, RI, G.I., and B.I. for 

background. We used a frame with 100 pixels in width. 

Component locations are unknown, and almost the whole 

device area is used to calculate distributions for circuit 

board surface colour. Components are considered to have a 

smaller surface area than circuit boards.  

The result of the calculation is four arrays of length 256. 

These arrays are used to detect thresholds for background or 

circuit board surface segmentation. A median filter with a 

kernel of 13 is applied to each distribution. This filter helps 

to suppress maximums related to sets of one-coloured 

components and emphasizes the maximum of the target 

area. This maximum could be stretched in raw distribution 

due to shadows and lighting conditions. Then, maximums 

are calculated for each distribution: MI, MRI, MGI, and 

MBI [9]. 

4. Threshold segmentation

For each pixel of the image area of interest, a decision is

made whether the pixel belongs to the target area 

(background or circuit board surface) or not (device or 

component). The decision is based on thresholds (minTI, 

maxTI, minTRI, maxTRI, minTGI, maxTGI, minTBI, 

maxTBI) and other comparisons based on pixel I, RI, G.I., 
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B.I. values, and maximums of distributions acquired in the

previous step. The threshold condition is "if pixel I, RI, G.I.,

B.I. are within ranges minTN... maxTN, the pixel belongs to

background or circuit board surface". The threshold

condition is used in conjunction or disjunction with other

custom conditions.

4.1 Threshold segmentation for revealing background and 

device mask 

For background, the thresholds are evaluated using 

Algorithm (2). All fixed parameters in these algorithms are 

achieved based on dataset conditions and experiments. 

minD = 16 

maxD = 64 
minDR = if MRI < 127 then min(maxD, minD + 127 - MRI) else minD 

minDG = if MGI < 127 then min(maxD, minD + 127 - MGI) else minD 

minDB = if MBI < 127 then min(maxD, minD + 127 - MBI) else minD 
maxDR = if MRI > 127 then min(maxD, minD - 127 + MRI) else minD 

maxDG = if MGI > 127 then min (maxD, minD - 127 + MGI) else 

minD 
maxDB = if MBI > 127 then min (maxD, minD - 127 + MBI) else 

minD 

minTI = 0 
maxTI = MI + 32 

minTRI = MRI - minDR 

maxTRI = MRI + maxDR 
minTGI = MGI - minDG 

maxTGI = MGI + maxDG 

minTBI = MBI - minDB 
maxTBI = MBI + maxDB 

Algorithm (2) 

These deltas (minDR, maxDR etc.) extend value ranges 

in a direction equal to the difference between 127 and 

distribution maximums. 

If the background pixel does not pass the thresholds, 

Algorithm (3) is applied. 

MRG = MRI - MGI 
MGB = MGI - MBI 

MRB = MRI - MBI 
if (MRG > 16 and MRB > 16) // red background 

    if (MGB >= 0) // green is between blue and red for background 

 if (RI - GI >= MRG / 2 and GI - BI >= MGB / 2) 
     pixel is background 

    else // blue is between green and red for background 

 if (RI - BI >= MRB / 2 and BI - GI >= -MGB / 2) 
 pixel is background 

if (-MRG > 16 and MGB > 16) // green background 
    if (MRB >= 0) // red is between blue and green for background 

  if (GI - RI >= -MRG / 2 and RI - BI >= MRB / 2) 

 pixel is background 
    else // blue is between red and green for background 

  if (GI - BI >= MGB / 2 and BI - RI >= -MRB / 2) 

     pixel is background 
if (-MGB > 16 and -MRB > 16) // blue background 

    if (-MRG >= 0) // green is between red and blue for background 

  if (BI - GI >= -MGB / 2 and GI - RI >= -MRG / 2) 
     pixel is background 

    else // red is between green and blue for background 
  if (BI - RI >= -MRB / 2 and RI - GI >= MRG / 2) 

 pixel is background 

Algorithm (3) 

The idea of applying these conditions is that if 

differences between pixel components are similar to 

differences between distribution maximums, the pixel 

belongs to the background. 

4.2 Threshold segmentation for revealing circuit board 

surface 

For background, the thresholds are evaluated using the 

following equations: 

minTI = 0      (1) 

maxTI = 192 

minTRI = MRI - 48 
maxTRI = MRI + 48 

minTGI = MGI - 48 

maxTGI = MGI + 48 
minTBI = MBI - 48 

maxTBI = MBI + 48 

If the pixel passes the thresholds for the circuit board 

surface, the conditions in Algorithm (4) are applied. 

HRG = MRI - MGI > 32 // red >> green 
HRB = MRI - MBI > 32 // red >> blue 

HGR = MGI - MRI > 32 // green >> red 

HGB = MGI - MBI > 32 // green >> blue 
HBG = MBI - MGI > 32 // blue >> green 

HBR = MBI - MRI > 32 // blue >> red 

if ((RI < GI and HRG) and (RI < BI v HRB) and (GI < RI and HGR 

> 32) and (GI < BI and HGB > 32) and (BI < GI and HBG > 32) 

and (BI < RI and HBR > 32))

    pixel is not circuit board surface 

Algorithm (4) 

Fig. 2. Block diagram of Hilbert-IHS fusion method 
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The idea of applying this condition is that if differences 

between pixel components are opposite to considerable 

differences between distribution maximums, the pixel does 

not belong to the circuit board surface. 

5. Background threshold segmentation post-processing

The post-processing depends on the colour of the 

background. If (|MRI - 127| + |MGI - 127| + |MBI - 127|) > 

48 background colour saturation is high, and it is low 

otherwise. If the saturation is high, the biggest connected 

component on the binary mask is considered as a device, 

and then a morphological operation is executed to remove 

noise [10]. If the saturation is low, all small holes are 

removed on the connected component before filtering the 

biggest connected component (these holes are usually 

greyscale components of a device), and closing is not 

executed. 

6. Customization of threshold segmentation for revealing

circuit board surface

A specified area of the device binary mask (area of 

interest) is segmented, not the entire image. The following 

regions of the mask are excluded from the calculation of 

distributions: high intensity (white components, light 

reflection) regions and low saturation regions (excluding 

random false maximums). 

7. Circuit board surface segmentation post-processing

By subtracting the circuit board surface binary mask

from the device binary mask, the component binary mask is 

obtained. However, close components are usually 

connected, and the mask contains many minor artefacts. To 

separate components, morphological opening and closing 

are executed. To remove artefacts, all small particles and 

holes with a size of fewer than 400 pixels are removed. 

Then, morphological erosion is applied again to separate the 

remaining connected components on the mask. This post-

processing fails to separate components if there is no space 

(circuit board surface) between the components on the 

image. To fix this problem, gradient and texture analysis is 

required for more precise post-processing. 

The final stage is a component binary mask. This mask 

is used to extract component images from source optical or 

X-ray images and classify the component.

C. Image Fusion

Fusion is the process of merging two or more images into
one. In image fusion, all relevant, significant, and related 
information is preserved from each input image. 

In general, multi-modal image fusion involves combining 
information from various input sources taken from specific 
objects into a single image; the result is known as the fused 
image. Fused images provide breadth and depth data [11].   

Optical (RGB image) and X-ray (Monochrome) images 
extracted from boards are fused using two-dimensional 
Hilbert transform (2-D H.T.) and intensity-hue-saturation 
(IHS). By applying the Hilbert transform, we can derive the 
minimum-phase response from a spectral analysis. The 
Hilbert transform of f(t) is the convolution of f(t) with the 

function  ℎ(𝑡) =  
1

𝜋𝑡
 . Therefore, the Hilbert transform of a 

signal  f(t) is given by: 

𝐻(𝑓)(𝑡) =
−1

𝜋
lim
𝜀→0

∫
𝑓(𝑡+𝜏)−𝑓(𝑡−𝜏)

𝜏

∞

𝜀
𝑑𝜏  (2) 

The Hilbert Transform is widely used in one-dimensional 
versions for various applications; in the case of 2D images, 
several approaches have been developed. The method 
presented in this paper takes its inspiration from [12]. 

There are six steps in the image fusion process: 

Step 1. Converting the colour optical image from RGB 
space to IHS space.  

Step 2. Separating the intensity component (I) of optical 
image in the IHS domain (The hue (H) and saturation (S) 
remain unchanged during the fusion process.) 

Step 3. Applying two-dimensional Hilbert transform (2-D 
H.T.) to the X-ray and the intensity component (I) of optical
images.

Step 4. Employing the maximum fusion rules to combine 
the two-dimensional Hilbert transform (2-D H.T.) 
coefficients of input images.  

Step 5. Achieving the new intensity component by 
applying the inverse Hilbert transform. 

Step 6. Illustrating the fused image in RGB space 
utilizing an IHS to RGB algorithm.   

Fig. 2 illustrates the fusion process in block diagram 

form. The results of the integration of two images are shown 

in Fig. 3. Fig. 4 depicts a zoomed version of a chip on the 

input images and the resulting image.  

Fig. 3. Fused image archived by integration of images shown in Fig. 1. 

(a) (b) 
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(c) 

Fig. 4. A chip image cropped from the board, optical image (a), X-ray 
image (b), and fused image (c). 

D. Convolutional Neural Networks (CNN) classifier

CNNs are a type of deep neural network commonly used
in computer vision and image classification. The CNN uses 
multiple building blocks, such as convolutional layers, pools 
of features, and fully connected layers, to automatically learn 
the spatial hierarchy of features through backpropagation. 

There are three layers in CNNs: an input layer, an output 
layer, and a hidden layer. In general, hidden layers are made 
up of convolutional, ReLU, pooling, fully connected layers, 
and activation layer functions [13, 14]. 

• Input is convolutionally processed by convolutional
layers. Information is passed from this layer to the next.

• In the next layer, pooling is used to combine the outputs
of multiple neurons into a single neuron.

• Every neuron in one layer is connected to every neuron in
the next layer, forming fully connected layers.

CNNs extract features from images. As a result, manual
feature extraction is no longer necessary, and while the 
network is training on images, these are learned. Therefore, 
for computer vision tasks, deep learning models are highly 
reliable. With tens or hundreds of hidden layers, CNNs are 
trained to detect features. Learning features become more 
complex with each layer. 

Fig. 5 demonstrates the CNN architecture used in this 
paper. Input images size is 128 × 128 pixels, and kernel size 
is 3. The number of output classes is five. 

 A summary of the 2D-CNN with two convolutional 
layers and three fully connected layers is shown in Fig. 6.  

III. RESULTS

In this section, we evaluate the performance of the CNN 
classifier to classify components in three groups of data: 
optical images, X-ray images and fused images.  

In each group of data, there are five balanced classes: 
chips, connectors, others, ports, and two-solders. Each 
component image in the dataset has a dimension of 128 by 
128 pixels. The total data used for each group is 24,000 
components which are divided into 20,000 training data, 
4,000 validation data, and 4,000 test data. Using these data 
groups  

Fig. 6. Summary of the 2D-CNN and parameters 

allow us to explore the influence of image fusion on CNN 
classifier and classification performance. 

Throughout this study, accuracy, recall (Sensitivity), 

Fig. 5. Proposed CNN architecture 
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precision, and F1-score metrics are employed to evaluate the 
performance of these methods. The accuracy calculates how 
many images will be correctly classified. Using the 
precision, we can estimate the exact efficiency of our 
Algorithm for predicting positive samples. True positives are 
measured by the recall, and the F1 score calculates the mean 
harmonic of recall and precision. Using the confusion matrix, 
it is possible to calculate the four performance 
measurements: true positive (T.P.), true negative (T.N.), false 
negative (F.N.) and false positive (F.P.).  

On the basis of equations (2) to (5), accuracy, precision, 
recall, and F1 score are determined.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
 (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (5) 

Tables I to III show the test data performances result for 
all three groups.  

Based on these results, the proposed approach and fusion 
of optical and X-ray data improve classifier results. It can be 
observed that the fusion strategy has the best accuracy 
(91%), which improves optical data accuracy by 5.3%. 
Comparing the other metrics in the tables, we find that these 
improvements are observed in all individual classes as well. 
For example, Chips' sensitivity in optical and X-ray images 
is 89.4% and 85.8%, respectively. As a result of combining 
the data, this metric increases to 94%. 

It can be reasonably assumed that surface and colour 
information from optical images combined with penetrating 
information from X-ray images has contributed to these 
results.  

TABLE I. ACCURACY, SENSITIVITY, PRECISION, AND F1-SCORE METRICS FOR 

OPTICAL DATA 

TABLE II: ACCURACY, SENSITIVITY, PRECISION, AND F1-SCORE METRICS 

FOR X-RAY DATA 

TABLE III: ACCURACY, SENSITIVITY, PRECISION, AND F1-
SCORE METRICS FOR FUSED DATA 
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