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Abstract—Semantic communication (SC) is an emerging in-
telligent paradigm, offering solutions for various future ap-
plications like metaverse, mixed-reality, and the Internet of
everything. However, in current SC systems, the construction
of the knowledge base (KB) faces several issues, including
limited knowledge representation, frequent knowledge updates,
and insecure knowledge sharing. Fortunately, the development
of the large AI model provides new solutions to overcome
above issues. Here, we propose a large AI model-based SC
framework (LAM-SC) specifically designed for image data, where
we first design the segment anything model (SAM)-based KB
(SKB) that can split the original image into different semantic
segments by universal semantic knowledge. Then, we present an
attention-based semantic integration (ASI) to weigh the semantic
segments generated by SKB without human participation and
integrate them as the semantic-aware image. Additionally, we
propose an adaptive semantic compression (ASC) encoding to
remove redundant information in semantic features, thereby
reducing communication overhead. Finally, through simulations,
we demonstrate the effectiveness of the LAM-SC framework and
the significance of the large AI model-based KB development in
future SC paradigms.

Index Terms—Semantic communication; large AI models;
knowledge base.

I. INTRODUCTION

Semantic communication (SC), as a new intelligent
paradigm, has recently received much attention. It is expected
to contribute to various applications such as metaverse, mixed
reality (MR), and the Internet of Everything (IoE) [1]. Unlike
traditional communication methods, which focused on ensur-
ing the accuracy of transmitted bits or symbols, SC prioritizes
delivering the intended meaning with minimal data. Typically,
the SC system comprises the following components:

• Semantic encoder: The semantic encoder extracts seman-
tic information from the original data and encodes the
these features into semantic features, thus understanding
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the meanings of data and reducing the scale of the
transmitted information from the semantic level.

• Channel encoder: To ensure data transmitted on the
physical channel, the semantic features should be encoded
and modulated by the channel encoder to combat channel
impairments and improve the robustness.

• Channel decoder: The channel decoder is used to de-
modulate and decode the received signal and obtain the
transmitted semantic features before the original data are
recovered.

• Semantic decoder: The semantic decoder aims to un-
derstand the received semantic features, and infer the
semantic information and recover the original data from
the semantic level.

• Knowledge base: SC is a knowledge based system and
the knowledge base (KB) is a universal knowledge model
which can help the semantic encoder and decoder to
understand and infer the semantic information more ef-
fectively.

The above components can be implemented by applying
deep neural networks (DNNs) which have superior self-
learning and feature extraction capabilities. These DNNs can
be trained jointly in tandem to maximize expected faithful-
ness in semantic representation and minimize communications
overhead during transmission, and the whole SC system can
achieve the global optimality.

Recently, most AI-powered SC system models, including
TOSCN [2], DeepSC-ST [3], and DeepJSCC-V [4], centered
around designing an efficient communication model. These
models heavily rely on the encoder and decoder of SC to ex-
tract and interpret semantics. The primary model architectures
that facilitate this process includes encoder-decoder (ED) [5],
information bottleneck (IB) [6], knowledge graph (KG) [7],
and so on. Although these methods are capable of extracting
semantic information from unstructured data sources, they may
not fully exploit the potential benefits of utilizing KB in their
approach.

A. Composition of an Universal KB in SC Systems

In fact, KB is essential for SC to distinguish itself from
conventional communication systems by its capacity to under-
stand and infer semantic information. We can build a universal
KB by learning a large amount of world knowledge, which
forms the core of the SC system. The universal KB consists
of prior and background knowledge that can be understood
and recognized by users.

1) Prior knowledge: SC defines the structure of semantic
representation and the relationships between entities
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through prior knowledge. For instance, semantic infor-
mation can be represented in triplet form for the image
understanding. This means that it is made up of three
parts, namely, the objective, attribute, and relationship.
The entity typically refers to the nouns in the figure,
such as housecat and mouse in Fig. 2. The attribute, on
the other hand, is based on the adjectives that describe
the entities, for example, “domestic housecat” or “clever
mouse”. Lastly, the relationship refers to the connec-
tions between the entities, like “a housecat catching
a mouse” instead of the reverse. In essence, through
prior knowledge, machines can effectively communicate
with humans through SC based on the same or similar
ontology, epistemology and logic. This ensures that the
semantic information extracted by the system is fully
understood by humans.

2) Background knowledge: Semantic information is not just
about explicit information, but also involve contexts,
implicit meaning and common facts. For example, in
Fig. 2, the explicit information is a housecat and a
mouse, and the background knowledge is “Tom and
Jerry”. Similarly, SC involves the exchange of back-
ground knowledge between the sender and receiver such
as user identity, interest preferences, and user environ-
ments. This facilitates the semantic encoder in extracting
the most relevant information that is of interest to both
parties and allows the semantic decoder to accurately
recover the intended meaning. Essentially, background
knowledge acts as a key enabler for the semantic com-
munication model, facilitating accurate semantic extrac-
tion, eliminating redundancy, and ensuring a successful
semantic alignment between the sender and receiver.

B. Issues about Current KB Schemes in SC Systems

The current KB schemes in SC are based on the mature
deep learning technology, which is a date-driven learning pro-
cess. However, the complicated and time-consuming learning
process will result in various issues.

1) Limited knowledge representation: Traditional SC sys-
tems, normally using DNNs or KGs as the KB, should
learn from the environment by supervised learning.
However, the layers and parameters of the KB are lim-
ited and the labeled data collected from the environment
has high cost. These KBs with restricted parameters
and data prevent them from learning abundant semantic
knowledge in large data sets and impair their knowledge
representation, as well as hinder their ability to com-
prehensively capture the underlying meaning of human
knowledge. For instance, the word “apple” in “Apple
Inc” and “apple soda” will be represented as the same
features in traditional word embedding model.

2) Frequent knowledge updates: Current KB schemes
should continuously update their knowledge through
training and sharing when the knowledge domain is
changed in the environment. In real-world scenarios
where there is a massive circulation of data, hence fre-
quent updates are required to maintain the performance

of the SC system and these updates normally incur huge
energy and resource costs, further reducing the efficiency
of the KB.

3) Insecure knowledge sharing: In SC systems, current KBs
at the source and destination are different because the
environments they perceived are different, which should
cause semantic errors. Hence, it is essential to share
the KBs between users, and ensure that the sender and
receiver are semantically aligned, which in turn neces-
sitates the frequent transmission of knowledge models
between different users. These knowledge models may
include some highly sensitive human-related informa-
tion, which introduces potential privacy and security
risks.

C. Our Contributions

Recently, there has been significant progress in large AI
models, which refer to a type of advanced transformer model
with billions of parameters. With the continuous improvement
of computing power and the increase in data volume, large AI
models have made significant progress recently in the fields
of natural language processing, image recognition, and speech
recognition, etc. It has many advantages, including accurate
knowledge representation, rich prior/background knowledge,
and low-cost knowledge update, and thus presents a new op-
portunity to address the aforementioned issues and enhance the
SC system. In this paper, we present a large AI model based-
SC (LAM-SC) framework specifically designed for image
data. Our contributions can be summarized as follows:

1) We apply a large semantic segmentation model-based
KB (SKB), focusing on the SC for image data as
an example. SKB leverages the accurate knowledge
representation to split a raw or unstructured image into
different semantic segments or objectives, each of which
can be individually selected and encoded by the sender.
This allows the sender to focus on specific semantic
objectives that are relevant to their communication re-
quirements.

2) We develop an attention-based semantic integration
(ASI) mechanism in the SC encoder, which can accu-
rately weight the semantic importance of the segments
generated by the SKB. Then, we integrate the most im-
portant segments as a new semantic-aware source data.
Therefore, the ASI can realize more precise semantic
awareness and thus preserve the most critical semantic
segments without human intervention.

3) We propose a novel adaptive semantic compression
(ASC) encoding in semantic encoder. The ASC can
mask a part of transmitted semantic features, and the
mask ratio can adjust adaptively according to the content
of the transmitted features. Thus, we can ensure that re-
dundant semantic features are further eliminated, leading
to a significant reduction in communication overhead.

The remainder of this paper is organized as follows: We
begin by presenting various approaches for implementing large
AI model-based KBs in SC systems. Following that, we
introduce the proposed LAM-SC framework, detailing its key
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components, such as the SKB, ASI, and ASC methods. We
then conduct simulations to demonstrate the advantages of
the LAM-SC framework. Finally, we discuss open issues and
conclude this paper.

II. LARGE AI MODELS-BASED KBS IN SC SYSTEMS

A. Advantages of Large AI Models-Based KBs

The large AI model refers to the transformer model that
has complicated structure with multi-head attention, enabling
it to handle complex AI tasks and generate high-quality
outputs. The large AI model can be pretrained on extensive
datasets by self-supervised learning with unlabeled date and
then the pretrained model can be applied to various tasks by
prompt learning or fine tuning. To unlock the potential of
large AI models in constructing a more universal KB and
thus promoting the development of SC, we summarize the
advantages of introducing large AI models in KBs as follows:

• Accurate knowledge representation: Current large AI
models, like GPT-4.0, CLIP, and T5 [8], have billions
of parameters, allowing them to learn complex knowl-
edge representations from the transformer model with
multi-head attention mechanism. The multi-head attention
mechanism develops a strong understanding of semantics
and knowledge structures, hence large AI models can give
high-quality semantic representation of input data. For
instance, the word “apple” in “Apple Inc” and “apple
soda” will be represented as different features in large
AI models.

• Rich prior/background knowledge: Large AI models are
pre-trained on extensive datasets such as ImageNet,
UCF101, Audioset, and Wikipedia [9], enabling them
to learn from vast amount of information across various
domains, and they store rich prior/background knowledge
and show remarkable generalization abilities. They can
achieve high performance on various tasks, even beyond
their pre-trained knowledge domains, eliminating the
need for frequent updates of KBs.

• Low-cost knowledge update: Large AI models typically
come with pre-trained weights and can be prompted using
just a few examples or fine-tuned with a small amount
of labeled data. Techniques like P-Tuning, LoRA, and
prompt-tuning enable low-cost updates [10], mitigating
concerns of frequent knowledge updates and insecure
knowledge sharing.

B. Design Suggestions of Large AI Models in SC Systems

In this subsection, we suggest several design schemes cater-
ing for different types of SC systems (i.e. text, image, audio,
etc.), allowing for streamlined integration of large AI models
into KB creation, as shown in Fig. 1,

1) GPT-Based KBs: Towards the text-based SC system, the
KB should be capable of comprehending the text’s content and
identifying various subjects, their attributes, and relationships.
Recently, large language models have emerged, such as Chat-
GPT [11], which can serve as a semantic knowledge base for
text data. ChatGPT is an AI assistant developed by OpenAI

based on the GPT-3.5 model, which can accurately understand
the content of the text and provide correct responses to a wide
range of questions. By using ChatGPT as the KB for text
data, it can extract the key content from the input text based
on the user’s requirements. In the receiver, the received text
data recovered by the SC decoder can be fed to ChatGPT to
eliminate semantic noise. Additionally, the received text can
be reorganized according to the receiving user’s preference,
such as applying different languages.

2) SAM-Based KBs: For the image-based SC system, the
KB should be capable of segmenting various objectives in an
image and recognizing their respective categories and interre-
lationships. One promising AI model that can be applied here
is the Segment Anything Model (SAM) which is introduced
by Meta AI [12]. SAM is a groundbreaking segmentation
system that can generalize zero-shot to unfamiliar images and
objectives without any additional training. Therefore, SAM
can be considered as the perfect KB for images. For real
systems, the sender can use SAM to segment the input image
and select the most important and meaningful segments to the
SC encoder. On the receiver side, the SC decoder outputs the
recovered image data, which then removes any semantic noise
or interference by SAM. The segments of interest can then be
identified and extracted effectively.

3) WavLM-Based KBs: To enable the SC system for au-
dio, the KB should be capable of performing a variety of
audio tasks, including automatic speech recognition, speaker
identification, and speech separation. This ensures that the
raw audio data can be analyzed and semantic information
can be extracted effectively. WavLM [13], as a large-scale
audio model proposed by MSRA, can be one potential solution
to this application. Trained on 94,000 hours of unsupervised
English data, WavLM is highly effective across a range of
speech recognition tasks and non-content recognition speech
tasks. By using WavLM as the KB, the sender can first
separate and recognize the audio data from different speakers,
discarding unimportant information such as background noise.
The remaining audio data is then integrated and encoded by
the SC encoder. In the receiver side, the SC decoder can be
used to recover the audio, followed by speech denoising and
recognition by WavLM according to the user’s requirements.

Among the three major SC systems based on large models,
the WavLM-based SC system is well-suited for real-time
interactions and instant communication, enabling quick and
efficient information exchange. In contrast, the GPT-based SC
system excels at conveying thoughts and ideas clearly through
textual summaries, making it easy to store, retrieve, and ana-
lyze text information. The SAM-based SC system focuses on
transmitting visual information via images, capturing intricate
details, spatial organization, and colour, as well as accurately
representing expressions, emotions, and non-verbal cues for
a more intuitive communication experience. At present, there
is relatively little research on image-based SC systems, hence
we conduct further research on SAM-based SC systems.

III. ARCHITECTURE OF LAM-SC FRAMEWORK

Introducing the large AI models into SC systems is a
promising solution to realize more precise semantic awareness
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Fig. 1: Implementation of large AI models-based KBs in different SC models.

Fig. 2: The illustration of the proposed LAM-SC framework.

and universal KB in the image-based SC. In this section, we
present the LAM-SC framework based on image data that
incorporates the SAM model in SC systems, the workflow
of the LAM-SC framework is shown in Fig. 2.

A. Introduction to LAM-SC Framework

1) KB Construction and Semantic Segmentation: To
achieve semantic segmentation for any original image without
KB training, the SKB can be designed to facilitate the recogni-
tion and segmentation of every semantic objective in an input
image. This process involves analyzing the visual information
conveyed by the image to identify each individual objective.
As a result, multiple segments are generated, each containing
only one semantic objective.

2) Attention-Based Semantic Integration: The ASI can be
used to simulate the human perception to select the semantic
segments that are most worthy of concern by channel attention
and spatial attention. Additionally, we also give a human
prompt way to select the interested semantic segments directly.
As a result, the selected segments can then be merged as a new
semantic-aware image.

3) Semantic Adaptive Encoding and Channel Encoding:
The semantic-aware image is encoded into semantic features

by the semantic encoder. Here, the semantic encoder is built
based on convolutional neural networks (CNNs) that have
excellent extraction capabilities of image features. Moreover,
the ASC can be applied to adaptively mask the unimportant
features of the semantic information according to its content.
Then, the channel encoder that builds based on the multilayer
perceptron (MLP) can be used to perform signal encoding and
modulation for the physical channel.

4) Channel Decoding and Semantic Decoding: In these
modules, when the transmitted signals reach the receiver
through the physical channel, the channel decoder performs
signal demodulation and decoding, then the semantic features
can be obtained. Here, the channel decoder adopts the MLP
architecture. Next, the semantic decoder that consists of decon-
volution layers decodes the semantic features and thus recovers
the image data. Then, the SKB can be employed again on
the recovered source image to identify and segment objectives
accurately, aiming to evaluate and confirm the integrity of the
interested semantics.

B. SKB

To achieve precise image semantic segmentation for any
input images without specific training, we employ SAM as
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the KB in our proposed LAM-SC framework, namely SKB,
as depicted in Fig. 2, which handles the image semantic
segmentation process. SAM is a revolutionary segmentation
system that is trained on the largest and most comprehensive
dataset, Segment Anything 1-Billion (SA-1B), which contains
over 1 billion masks across 11 million licensed and privacy-
conscious images [12]. This breakthrough system can success-
fully generalize zero-shot segmentation for previously unseen
images or objectives without requiring additional knowledge
and training.

SKB utilizes an efficient transformer-based architecture, de-
signed for both natural language processing and image recog-
nition tasks [12]. The system comprises a visual transformer-
based image encoder for feature extraction, prompt encoder for
user engagement, and a mask decoder for segmentation and
confidence score generation. In this research, we leverage SKB
to automatically achieve objective separation, producing mul-
tiple semantic segments for further analysis and processing.
In summary, the SKB possesses sufficient prior/background
knowledge and powerful semantic representation to accurately
perform semantic segmentation on original image data, which
ensures the universality of the KB in SC systems.

C. ASI

The attention mechanism mimics human vision, focusing
on crucial details while ignoring irrelevant content. The ASI
introduces attention mechanism to identify and weight signif-
icant objectives in images, which consists of two parts:

1) Channel Attention Network: Using the channel attention
network, we can extract low-level semantics from semantic
segments. Each segment is treated as a channel, and global
and mean pooling operations are performed. The results are
then input into an MLP network for assessing the channel
significance. The MLP outputs are combined to determine
semantic importance, which is then multiplied by the semantic
segments to obtain low-level semantics.

2) Spatial Attention Network: Each low-level semantic
represents a single segment, inadequately capturing the whole
image semantics. To address this, we use the spatial attention
network to merge low-level semantics for a high-level seman-
tic representation. Specifically, we separately perform global
and mean pooling on low-level semantics and concatenate
results along the channel dimension, then we apply a CNN
to integrate all low-level semantics into a high-level semantic-
aware image.

In summary, the ASI is capable of intuitively recognizing
and retaining essential objectives in original image that are
typically of greater interest to humans, even without any
human involvement.

D. ASC

We propose the ASC method, which adaptively masks the
transmitted semantic features from semantic level, effectively
reducing redundant data and significantly decreasing com-
munication overhead. As illustrated in Fig. 2, we utilize a
learnable mask network to generate the mask matrix, thereby

eliminating unimportant data from the encoded semantic fea-
tures. During transmission, the encoded semantic features are
fed into the mask network, which outputs a corresponding
mask matrix with values of either 0 or 1. The semantic features
are then multiplied by the mask matrix, causing a portion of
the unimportant features to be set to 0 and then obtaining the
masked semantic features.

To sum up, by applying the ASC to the semantic transmis-
sion process, essential semantic features can be maintained
while superfluous semantic features are excluded, leading to a
substantial reduction in communication overhead.

IV. TRAINING OF LAM-SC FRAMEWORK

In this section, we show how to train the proposed LAM-
SC framework, as illustrated in Fig. 3. Remarkably, SAM in
SKB is a pretrained large AI model, and it does not require
training.

1) ASI Training Based on Human Experience: As men-
tioned before, the aim of the proposed ASI is to mimic hu-
man perception in identifying interested objectives in original
images, and then producing semantic-aware images that corre-
spond with human preferences. To accomplish this, we record
human interested semantics as experiences, which forms the
foundational training for the attention networks, encompassing
both channel and spatial attention networks. In this experience
base, semantic segments can be served as input samples for
attention networks, while the semantic-aware images created
through human prompt can be seen as associated labels.
By supervised learning on the experience database, attention
networks can effectively adapt to human behavior and make
decisions that closely resemble human perception.

2) Crossover-Based SC Encoder and Decoder Training:
The SC encoder consists of semantic and channel encoders,
while the SC decoder comprises channel and semantic de-
coders. Firstly, to jointly train the channel encoder and de-
coder, we can use the mutual information as the objective
function, which eliminates noise or fading effects during
transmission and prevents signal distortion [14]. Then, for
training semantic encoder and decoder, we can apply semantic
alignment, which introduces the difference between the origi-
nal and recovered images as the optimization function to guide
the learning. We then implement a crossed training strategy
involving both the channel encoder/decoder and semantic
encoder/decoder models. To be more specific, we first train
the channel model, then freeze its parameters, and next train
the semantic model. Next, we freeze the semantic model
parameters and train the channel model again. This process can
be repeated until the entire SC model achieves convergence
[14].

3) ASC Training: For generating a mask array that accu-
rately reflects the importance of semantic features, we propose
a joint training approach for the mask network and the SC
model (i.e., channel/semantic encoder/decoder), where the
parameters of the SC model and the attention networks are
frozen. The training process includes the following steps: ini-
tially, both raw and masked semantic features are transmitted.
Then, the two sets of semantics are decoded independently.
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Fig. 3: The training process of the proposed LAM-SC framework.

Next, the difference between the recovered images using raw
and masked semantics is employed as the loss function for the
mask network, enabling it to learn how to produce an optimal
mask array that can minimize this difference.

V. SIMULATION RESULTS

To showcase the effectiveness of the proposed framework,
we conduct the case study comparing the LAM-SC and
traditional SC approaches, using the VOC2012 dataset that
consists of 17,125 RGB images [15]. It is essential to note
that the SKB is not trained on the VOC2012 dataset during
our simulations. Regarding the LAM-SC model architecture,
the following components are included:

1) Attention network: The channel network components
comprise a max pooling layer, a mean pooling layer,
and an MLP layer. The spatial network components
include a mean pooling layer, a max pooling layer, and
a convolutional layer.

2) Semantic encoder: It comprises two blocks, each with a
convolutional layer and a pooling layer.

3) Mask network: It consists of two convolutional layers,
with each layer being followed by a Rectified Linear
Unit (ReLU) activation function.

4) Channel model: The design of the channel model, en-
compassing channel encoding and decoding as well as
wireless channel configuration, adopts similar settings to
those presented in [14].

5) Semantic decoder: It is made up of two blocks, each
with a deconvolution layer and an upsampling layer.

The conventional SC model is used as the benchmark, which
only comprises the semantic encoder and decoder, and the
channel encoder and decoder. Furthermore, the traditional SC
model does not utilize the SKB for segmenting raw images
prior to transmission. We evaluate performance using three
key metrics: loss value, peak signal-to-noise ratio (PSNR), and
structural similarity (SSIM).

The simulation outcomes are presented in Fig. 4, where Fig.
4(a) illustrates the decline in the loss value as the number of
epochs increases, indicating superior convergence results for
the LAM-SC compared to the traditional SC scheme under
the same SNR conditions. Fig. 4(b) reveals that images trans-
mitted using LAM-SC attain higher PSNR values, implying
that LAM-SC effectively minimizes image distortion during
transmission. Likewise, Fig. 4(c) demonstrates that LAM-SC
maintains the structural consistency of transmitted images,
thus achieving higher SSIM values.

In short, compared with traditional communication methods
that require transmitting precise original images, SC focuses
on transmitting only the extracted semantic features from
the images, resulting in a notable reduction of data size.
Building upon classical SC, LAM-SC leverages the SKB
and ASI to select key semantic objectives of the original
image to encapsulate the image’s semantics, which can further
decrease the communication overhead without compromising
the accuracy of the semantic representation. In our simulations,
the original image in Fig. 2 needs 49,152 bits for transmitting,
the semantic features transmitted in the traditional SC are
21,632 bits, and the semantic features transmitted in LAM-
SC only require 8,960 bits.
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Fig. 4: The simulation results of the proposed LAM-SC framework. (a) Loss versus epoch. (b) PSNR versus SNR. (c) SSIM
versus SNR.

VI. OPEN ISSUES

Currently, there is little research on the large AI model-
empowered SC, and there are several open issues and chal-
lenges to be dealt with in the near future, which are summa-
rized as follows.

A. High Latency in Real-Time Applications
Large AI models with millions or billions of parameters

require substantial runtime, resulting in significant latency
during training, updating, and decision-making processes.
Furthermore, bandwidth limitations in communication sys-
tems can lead to bottlenecks when transferring considerable
amounts of data from large AI models in SC systems. Re-
ducing latency is crucial for real-time applications such as
metaverse and XR, where immediate responses are essential.
Prospective solutions may include the collaborative design
of SC encoders/decoders and the knowledge base from an
efficient perspective.

B. High Energy Consumption for Edge Devices
The implementation of large AI models in SC systems

requires a significantly higher level of energy compared to
traditional methods. This increased energy consumption raises
environmental concerns and presents accessibility challenges
for mobile and IoT devices. Consequently, striking a balance
between computational demands and energy constraints is
of critical importance. To tackle these issues, research and
development initiatives should prioritize model optimization,
resource scheduling, data compression, and lightweight learn-
ing methods.

C. Explainability and Transparency
Interpreting the decisions of semantic encoder made by

large AI models during SC can be difficult. The large AI
models often lack interpretability, making it challenging to
understand the semantic analysis process. This can pose diffi-
culties in identifying potential biases or errors in SC systems.
It is essential to develop methods to provide explanations
and increase transparency so that users can understand the
reasoning behind semantic model’s responses.

D. Privacy and Security

Large AI models can capture sensitive information during
training or infer sensitive details from the data they process.
Integrating these models into communication systems raises
concerns about privacy and security. Ethical considerations
regarding issues like consent and responsible use become even
more critical. Proper safeguards and mechanisms need to be
implemented to protect user data and prevent unauthorized
access to the models or the information they handle.

VII. CONCLUSION

In this paper, we introduce the importance and composi-
tion of KBs, and then we discuss the issues about current
KB schemes in SC systems. To address these issues, we
recommend introducing large AI models building KBs, and
we explore several large AI model-based schemes to realize
KBs in different SC systems. Then, we propose a LAM-SC
framework focused on image data, in which the large AI
model SAM is applied to the KB for high-quality semantic
segmentation, and ASI is presented to integrate segment se-
mantics as a new semantic-aware source. Additionally, ASC
is proposed to reduce communication overhead in semantics
transmission. Finally, we conduct simulations to demonstrate
the effectiveness of the proposed LAM-SC framework.
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