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Abstract—Multimodal signals, including text, audio, image and
video, can be integrated into Semantic Communication (SC) for
providing an immersive experience with low latency and high
quality at the semantic level. However, the multimodal SC has
several challenges, including data heterogeneity, semantic ambi-
guity, and signal fading. Recent advancements in large AI models,
particularly in Multimodal Language Model (MLM) and Large
Language Model (LLM), offer potential solutions for these issues.
To this end, we propose a Large AI Model-based Multimodal SC
(LAM-MSC) framework, in which we first present the MLM-
based Multimodal Alignment (MMA) that utilizes the MLM to
enable the transformation between multimodal and unimodal
data while preserving semantic consistency. Then, a personalized
LLM-based Knowledge Base (LKB) is proposed, which allows
users to perform personalized semantic extraction or recovery
through the LLM. This effectively addresses the semantic ambi-
guity. Finally, we apply the Conditional Generative adversarial
networks-based channel Estimation (CGE) to obtain Channel
State Information (CSI). This approach effectively mitigates the
impact of fading channels in SC. Finally, we conduct simulations
that demonstrate the superior performance of the LAM-MSC
framework.

Index Terms—Semantic communication; multimodality; LLM;
MLM; knowledge base.

I. INTRODUCTION

In Weaver and Shannon’s pioneering works, communication
systems can be categorized into three levels of complexity,
ranging from low to high [1]:

1) Technical level: This aspect relates to the efficiency and
accuracy of the communication system. It involves the
sender transmitting information (such as a message or
signal) to the receiver, overcoming any noise or interfer-
ence that may lead to errors or loss of information.
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2) Semantic level: This level of communication refers to
the meaning of the message being transmitted. It ensures
that the sender and receiver understand and interpret the
message in the same way, which is crucial for effective
communication.

3) Effectiveness level (Pragmatic): This level observes the
impact of the communication on the receiver. Effective
communication should accomplish its intended goal or
purpose, making a difference in the receiver’s thoughts,
behaviour, or emotions.

The rapid integration of Artificial Intelligence (AI) and
the Internet of Things (IoT) has led to the emergence of
intelligent applications, such as holographic communication,
and the Internet of Everything (IoE). These trends are driving
the evolution of communication systems toward Semantic
Communication (SC) [2], which integrates communication
with semantic information, concentrating on the “meaning”
behind transmitted bits to enable more intelligent and adap-
tive communication services. Consequently, SC is capable
of operating at higher levels (i.e., semantic or effectiveness
levels) within Weaver’s communication framework. Typically,
the SC system comprises five components, including the
semantic encoder, channel encoder, channel decoder, semantic
decoder, and the Knowledge Base (KB). These components
can be implemented by applying neural networks which have
favourable feature extraction capabilities, which can be trained
to maximize system capacity and minimize semantic errors
during transmission [3].

Currently, the data to be transmitted is typically multimodal
for advanced applications, such as metaverse and mixed reality.
As a result, the multimodal SC system is highly required
to facilitate SC across multiple modes, including text, voice,
images, videos, and more. In conventional SC systems, a single
SC model is designed to handle only one type of unimodal
data. That is, transmitting multimodal data requires using
multiple separate unimodal SC systems, with each catering to
a specific type of multimodal data, as shown in Fig. 1(a). This
implies that each device must deploy multiple SC systems,
potentially leading to significant overheads and inefficiencies.
Therefore, we aim to design a multimodal SC system that is
capable of processing various modal data by using a single,
unified multimodal SC model, as depicted in Fig. 1(b).

A. Challenges of Multimodal SC
To better achieve multimodal SC, we identify and sum-

marize several challenges currently faced by multimodal SC
systems:
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Fig. 1: Traditional unimodal SC system versus multimodal SC system.

1) Data heterogeneity: A multimodal SC should be capable
of handling the simultaneous transmission of heteroge-
neous data, including text, images, videos, and even
specialized or rare file formats in various forms. Then,
the target tasks associated with this data can be quite
complex, involving machine translation, image recog-
nition, and video analysis, among others. Additionally,
consideration should be given to semantic alignment
when extracting semantic features from multimodal data,
ensuring a uniform understanding across different multi-
modal data.

2) Semantic ambiguity: On one hand, multimodal SC sys-
tems may encounter issues such as semantic errors or
misunderstandings when transmitting multimodal data
from one modality to another, resulting in semantic am-
biguity. On the other hand, each party in communication
has distinct knowledge backgrounds and may focus on
different semantic information. As a result, it may cause
an inconsistent understanding of the semantic information
of the same data between different parties, contributing
to semantic ambiguity.

3) Signal fading: Fading channels exhibit variations in signal
strength over time, influenced by factors like environmen-
tal conditions, distance, and interference. This fluctuation
adds a layer of complexity to the accurate and meaningful
exchange of information between senders and receivers.
In SC, fading channels may give rise to distortions
or errors in message transmissions [3]. Consequently,
these disturbances can result in the loss of critical in-
formation or the alteration of intended semantics, further
complicating the process of retrieving and reestablishing
personalized semantics.

B. Advantages of Large AI Model in Multimodal SC

Recent advancements in Deep Learning (DL) have enabled
the development of large AI models for multimodal data and
Natural Language Processing (NLP), resulting in models with
enhanced capabilities in these domains, such as Multimodal
Language Model (MLM), e.g., Composable Diffusion (CoDi)
[4], and Large Language Model (LLM), e.g., GPT-4 [5]. These

large AI models have the following common advantages for
SC:

• Accurate Semantic Extraction: With billions of parame-
ters, large AI models can learn intricate representations,
providing high-quality semantic extraction of input data.

• Rich Prior/Background Knowledge: Pre-trained on vast
datasets like ImageNet, Audioset, and Wikipedia, large
AI models gain extensive domain knowledge, exhibiting
excellent world model capabilities.

• Robust Semantic Interpretation: With their robust genera-
tion capabilities, large AI models can effectively interpret
diverse semantic information, even when faced with se-
mantic noise.

Furthermore, the continuous enhancement of computational
power and the growth in data volume have allowed these
sophisticated AI models to be successfully implemented across
various industries, providing potential solutions for achieving
multimodal SC.

C. Our Contributions

In this paper, we propose a Large AI Models-based Multi-
modal SC (LAM-MSC) framework to address the previously
mentioned challenges. Our contributions can be summarized
as follows:

1) We introduce the MLM-based Multimodal Alignment
(MMA). Specifically, we utilize the CoDi model to pro-
cess multimodal data and convert them into text modality
data, which is more easily understood and requires less
transmitted data with higher information density. MMA
facilitates the synchronized generation of interwoven
modalities by constructing a shared multimodal space
during the diffusion process. As a result, heterogeneous
multimodal data can be transformed into unimodal data
while maintaining semantic alignment.

2) We propose a personalized LLM-based Knowledge Base
(LKB). Concretely, we regard the GPT-4 model as a
global shared KB capable of providing robust text anal-
ysis and semantic extraction. Then, users can create
their own personalized prompt bases and utilize them to
fine-tune the global GPT-4 model, thereby obtaining a
personalized local KB. This personalized KB can extract
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the most relevant semantics from the text modality data
for each sender and reconstruct the text data according to
specific requirements. Consequently, the accuracy of se-
mantic extraction and conveyance is enhanced, effectively
reducing semantic ambiguity.

3) We apply a Conditional Generative adversarial networks-
based channel Estimation (CGE) technique to obtain
Channel State Information (CSI). In particular, we
employ Conditional Generative Adversarial Networks
(CGAN) to predict the CSI of fading channels, utilizing
pilot sequence as the conditional information fed into the
CGAN. With the acquirement of the CSI, the channel
effect on transmitted signals is transformed from multi-
plicative noise to additive noise, which can be readily ac-
commodated by neural network-based channel decoders.
This approach effectively mitigates the impact of fading
channels in SC.

The remainder of this paper is structured as follows: First,
we introduce the CoDi for multimodal data and GPT-4 for
personalized KB. Next, we present the LAM-MSC framework
and its key components, including MMA, LKB, and CGE
methods. Subsequently, we provide simulations to evaluate
the performance of the LAM-MSC framework. Finally, we
conclude the paper.

II. CODI FOR MULTIMODAL DATA AND GPT-4 FOR
PERSONALIZED KB

A. CoDi for Multimodal Data
CoDi is an innovative MLM introduced by Microsoft,

capable of generating output modalities (text, image, video,
audio) from any combination of input modalities. The key
components of CoDi include [4]:

1) Latent Diffusion Model: Diffusion models capture data
distributions by emulating the diffusion of information over
time. The latent diffusion model reduces computational costs
by learning the distribution of latent variables related to data.

2) Composable Multimodal Conditioning: To achieve se-
mantic alignment across multiple modalities, CoDi calibrates
encoders to project inputs from any modality into a unified
space using “bridging alignment”. Text is used as the “bridg-
ing” modality for effective semantic alignment.

3) Composable Diffusion: CoDi is designed to be com-
posable and integrative, allowing the construction of distinct
modality-specific diffusion models that can be integrated.
Image, video, audio, and text diffusion models are trained
independently and combined via a novel latent space alignment
mechanism.

4) Joint Multimodal Generation by Latent Alignment: To
achieve cross-modal attention between diffusion flows during
joint generation, “potential alignment” is used. CoDi trains
cross-attention weights and context encoders using paired
text-image, text-audio, and audio-video data, allowing for
the simultaneous generation of various modal combinations
unseen during training.

B. GPT-4 for Personalized KB
1) GPT-4-Based Global KB: GPT-4, introduced by OpenAI

in 2023 [5], is among the most advanced LLMs, succeeding

GPT-3 and GPT-3.5 as the latest evolution in the GPT series.
This model adopts the transformer architecture and boasts
approximately 100 billion parameters. Trained on vast text
corpora containing trillions of words, GPT-4 excels at learning
intricate language representations. The model’s capabilities
in multi-modal knowledge synthesis, semantic summarization,
continuous learning, and scalability make it highly suitable for
automatically populating and expanding KBs from unstruc-
tured data. As a result, GPT-4 is utilized as the global KB.
While GPT-4-based global KBs are built on general textual
data, fine-tuning enables them to adapt to more specialized
domains, such as medicine, finance, or communication.

2) Fine-Tuning-Based Personalized KB: Large AI models
can be updated with few samples, allowing adaptation to
specific tasks such as personalized applications. There are four
primary fine-tuning methods to transform the GPT-4-based
global KB into a personalized KB for individuals:

• Adapter Tuning [6] trains a few parameters in small
networks called adapter modules, inserted after each
layer in the original LLM. By fixing pre-trained model
parameters and training only adapter module parameters,
computational costs are reduced while preserving pre-
training knowledge.

• Prefix Tuning [6] is a parameter-efficient method that
trains a small set of parameters called the “prefix” to
modify the input for the pre-trained model. The prefix op-
timizes task-specific input, requiring less computational
resources than full model fine-tuning.

• Prompt Tuning [7] allows users to guide the behavior of
LLMs and align their responses by prompt for specific
requirements or objectives. By carefully designing and
refining prompts, it is possible to improve the quality,
relevance, and accuracy of the generated outputs.

• Layer-wise Relevance Analysis (LoRA) [8] aims for trans-
parent and interpretable fine-tuning by adding a low-rank
matrix to each pre-trained model layer and fine-tuning
it for target tasks while keeping the original pre-trained
weights fixed.

III. IMPLEMENTATION OF MULTIMODAL SC

We propose the LAM-MSC framework, leveraging the
power of large AI models to solve the previously mentioned
challenges (i.e., data heterogeneity, semantic ambiguity, and
signal fading). The key to the LAM-MSC framework is that
we introduce CoDi model to facilitate the transformation
of heterogeneous multimodal data into a singular unimodal
format. We choose text data as the unimodal format due to its
various benefits, including human readability, high informa-
tion density, limited redundancy, and lower storage demands
compared to video or audio formats [9]. Moreover, using text
data as the unimodal format enables us to apply GPT-4 as the
KB, enhancing the accuracy of semantic extraction and the
interpretability of data recovery.

A. LAM-MSC Framework

For implementing the SC of multimodal data, we consider
the LAM-MSC framework that combines the large AI models
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Fig. 2: The illustration of the proposed LAM-MSC framework.

Fig. 3: A data flow example within the proposed LAM-MSC framework can be demonstrated through an image transmission
scenario. Here, the sender, Mike, attempts to convey the semantics of “He and Jane in a playful pose”.

as a solution. As shown in Fig. 2, the workflow of the LAM-
MSC framework is summarized as follows:

1) Modal Transformation Based on MMA: For the input
multimodal data, which includes image, audio, and video data,
MMA is utilized to convert these data into text data while
maintaining semantic alignment. The corresponding text data
can effectively capture the original modal data’s content. For
example, as illustrated in Fig. 3, the raw sent data consists of
a photograph featuring the sender (presumed to be Mike) and
the receiver (presumed to be Jane) playing in a garden. The
raw image is then converted into a text description: “A boy
and a girl in a playful pose. The boy has blond hair and is
wearing a white shirt and a blue tie. The girl has brown hair
and is wearing a white shirt and a red bow tie. The background
is a colorful garden”. Thus, by applying MMA, we manage to
transform multimodal data into unimodal data while ensuring
semantic alignment.

2) Semantic Extraction Based on LKB: For the text data
obtained through modal transformation, senders typically aim
to transmit only the key information that expresses their

intended message or the parts they find most important while
omitting redundant information they deem irrelevant for the
receiver. This personalized key information can be referred
to as semantics. Hence, LKB is used to personalize the text
and thus obtain personalized semantics. As depicted in Fig.
3, initially, the raw text does not encompass personalized
information. However, by integrating the sender’s intention,
user information, and interests, the LKB extracts personalized
semantics “Jane and me in a playful pose”. This description
represents the identities of the sender and receiver and indi-
cates that the sender’s focus is primarily on the “two people”
in the photograph rather than the background or dressing up.

3) Data Transmission Based on CGE Assisted-SC: SC
starts with a semantic encoder that extracts meaningful el-
ements or attributes from raw data, aiming to transmit this
semantic information as accurately as possible to the receiver.
Then, the channel encoder modulates the semantically encoded
data into complex-valued input symbols suitable for wireless
communication. To mitigate the effects of the fading channel,
the CGE is employed to acquire the CSI, which in turn
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transforms the multiplicative noise into additive noise. This
conversion reduces the complexity involved in the channel
decoder’s recovery of transmitted signals. Next, the channel
decoder is utilized to perform signal demodulation while
overcoming the additive noise. Finally, the semantic decoder
performs semantic decoding to retrieve recovered semantics
(e.g., “Jane and I playfully posing”). Although the phys-
ical channel impairments cause slight differences between
recovered semantics and original content, overall meaning
consistency is maintained.

4) Semantic Recovery Based on LKB: The receiver may
not understand the recovered semantics directly since the
personalization of received messages is specific to the sender
rather than the receiver, which can lead to semantic ambiguity
issues. Hence, similarly, the LKB is adopted to change the
decoded semantics into the personalized semantics for the
receiver according to the personalized prompt base of the
receiver. As shown in Fig. 3, the LKB adjusts the recovered
semantics according to the receiver’s user information (e.g.,
identify). As a result, the recovered semantics is transformed
into personalized semantics for the receiver, Jane, resulting in
the text “Mike and I playfully posing”.

5) Modal Recovery Based on MMA: Similar to modal
transformation, MMA is utilized to achieve modal recovery,
meaning it converts text data back into the original modal data.
However, it is important to note that we only evaluate the
consistency between the recovered and original modal data in
terms of semantics rather than data components level details.
As illustrated in Fig. 3, the raw image shows “Mike and
Jane playing in a garden”. However, the recovered image only
displays “Mike and Jane are playing at a certain place”. This
is because the sender’s primary intention is on the semantic
aspect – “Mike and Jane play together” – rather than specific
details regarding the background or clothing.

B. MMA

In the proposed LAM-MSC framework, MMA performs the
multimodal transformation. Referring to Fig. 2, the workflow
of MMA can be summarized as follows:

1) Modal Transformation: In the sender, the MMA trans-
forms multimodal data, including image, audio, and video
data, into unimodal data-text data. Specifically, first, each type
of multimodal data is encoded by its respective encoder. Then,
the encoding results of the multimodal data are fed into the
condition encoder, which processes them according to the
target modality being transitioned to, in this instance, the text
modality. Finally, the processed results from the condition
encoder are input into the text diffusion model to generate
corresponding text data that maintains semantic consistency
with the original multimodal data.

2) Modal Recovery: From the receiver’s perspective, the
MMA facilitates the transformation of personalized semantics
(text modality data) back into the original multimodal data.
Specifically, the process is as follows: First, the personalized
semantics are fed into the text encoder to obtain the text
encoding. Next, the text encoding is input into the conditional
encoder, which processes the data based on the target modality

being recovered, such as image, audio, and video data. Finally,
the processed result from the conditional encoder is input into
the diffusion model of the target modality, which encompasses
image, audio, and video diffusion models. This generates
corresponding modality data that ensures semantic consistency
with the input personalized semantics.

C. LKB

LKB primarily consists of two components: The global
GPT-4 model and the personalized prompt base. The descrip-
tions of these components are summarized below:

1) Global GPT-4 KB: The GPT-4 model boasts outstanding
capabilities in NLP, allowing it to perform precise semantic
extraction and restoration from textual data according to
specific requirements. With numerous parameters and multi-
head attention mechanisms, GPT-4 excels at accurate knowl-
edge representation, allowing it to comprehend semantics and
knowledge structures with precision. Additionally, GPT-4 has
been pre-trained using extensive datasets, which has enabled it
to store rich prior/background knowledge and achieve strong
generalization abilities across different domains. Hence, the
GPT-4 model is used as the shared global KB for all users,
serving as a “global” model consistently utilized across a
diverse array of applications.

2) Personalized Prompt Base: As discussed in Section II-B,
there are four primary methods for achieving personalization
in GPT-4 models. However, methods such as adapter tuning,
prefix tuning, and LoRA involve adjusting the GPT-4 model’s
structure. These modifications necessitate users to possess
specific professional knowledge and require their devices to
be equipped with substantial resource support. Clearly, this is
an unrealistic demand for the majority of common users.

Therefore, we adopt prompt tuning as the preferred method
for users to personalize their GPT-4 models. This approach
only requires users to construct a personalized prompt base
containing their unique information, such as nation, language,
identity, interests, and so on. Consequently, users only need
to input this prompt base along with the text data into the
global GPT-4 model, after which the personalized semantics
are generated.

D. CGE

One of the primary methods for mitigating the effects of
fading channels in wireless communication is to leverage
a link’s known channel properties, specifically the CSI. As
illustrated in Fig. 2, we utilize the CGE to acquire CSI. This
information greatly enhances the accuracy of semantic trans-
mission in the wireless channel. Notably, the pilot sequence,
received signal, and CSI are treated as dual-channel images,
representing the real and imaginary components of a complex
matrix. Consequently, the task of channel estimation can be
reframed as an image-to-image translation problem [10].

Traditional GAN is built upon the idea of training a gen-
erator and a discriminator network in an adversarial manner.
Although the generator learns a mapping from random noises
to actual data, this method exhibits instability and randomness,
thereby rendering it unsuitable for channel estimation. To
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address this issue, we propose to extend GAN by employing
CGAN which can map a conditional input to its corresponding
real data. In CGE, we use CGAN to learn the mapping
relationship between the received signal, the pilot sequence,
and the CSI. Following the same structure as a typical GAN,
the CGAN also features two neural networks that serve as
a generator and a discriminator during offline training, as
detailed in Section V-E. Upon completion of the training, the
trained generator can be utilized to estimate CSI from the
conditional input (i.e., the received signal and pilot sequence),
as depicted in Fig. 2.

Therefore, by obtaining CSI, the channel effect on trans-
mitted signals transitions from multiplicative noise to additive
noise. This change can be easily handled by neural network-
based channel decoders [11]. Overall, this approach effectively
mitigates the influence of fading channels in the SC model.

E. Training for the LAM-MSC Framework
In the proposed LAM-MSC framework, several models are

employed, including CoDi, GPT-4, the CGAN, and the SC
model (including semantic and channel models). Among these,
CoDi and GPT-4 are the models with well-established pre-
trained weights, which negate the need for additional training.
As a result, our primary focus lies in providing comprehensive
details about the training schemes for the CGAN and the SC
model.

1) Training for the CGAN: In a CGAN, the generator and
the discriminator are trained in an adversarial manner, as
described below:

a. Data preprocessing: Collect the training dataset, which
includes the pilot sequence, the received signal, and
the CSI. As previously mentioned, the pilot sequence,
the received signal, and the CSI are processed as dual-
channel images for training. The pilot sequence and the
received signal serve as input data, while the CSI is used
as label data.

b. Discriminator training: Begin by training the discrimina-
tor in the CGAN. Supply it with both real CSI samples
and generated CSI samples produced by the genera-
tor. Calculate the discriminator’s loss using a chosen
loss function (e.g., binary cross-entropy) and update its
weights to minimize this loss. Thus, the discriminator
can recognize whether the input CSI samples are real or
generated.

c. Generator training: Once the discriminator is trained,
proceed to train the generator. Generate synthetic CSI
samples using the pilot sequence and the received signal
as inputs for the generator. Pass these generated samples
through the discriminator and compute the generator’s
loss. Update the generator’s weights to maximize this
loss, with the goal of deceiving the discriminator.

d. Alternating training: The discriminator and generator are
alternatively trained until the system converges. During
each training iteration, update the discriminator’s weights
to better differentiate between real and generated CSI
samples, and improve the generator’s weights to create
more realistic CSI samples that can deceive the discrim-
inator.

2) Training for the SC Model: Notably, in the SC model,
the semantic model comprises the semantic encoder and
decoder, while the channel model consists of the channel
encoder and decoder. The training process can be summarized
as follows:

a. To jointly train the channel encoder and decoder, mu-
tual information is used as the objective function. This
approach helps counter noise or fading effects during
transmission, thereby preventing signal distortion [3].

b. The BLEU metric is utilized as the optimization function
for the semantic encoder and decoder in order to achieve
effective learning. This optimization function is informed
by the difference between the original and recovered
semantics, guiding the model’s learning process to mini-
mize discrepancies and preserve semantic integrity.

c. A crossed-training strategy is implemented, alternating
between the channel encoder/decoder and semantic en-
coder/decoder models. Specifically, the channel model
is initially trained, followed by freezing its parameters.
Subsequently, the semantic model is trained. Next, the
semantic model’s parameters are frozen, and the channel
model training is resumed. This process can be repeated
until the entire SC and channel models converge [3].

IV. SIMULATION RESULTS

A. Problem Formulation

We focus on an end-to-end data communication scenario
that encompasses the transmission of various data types,
including images, audios, and videos. These multimodal data
are transformed into unimodal data (i.e., text data) by MMA.
Moreover, we incorporate a BERT and cosine similarity-based
semantic evaluation method [12]. Specifically, we first utilize
the MMA+LKB to obtain the personalized semantics from
the raw and recovered multimodal data. Then, BERT is used
for text encoding on the text data. Next, we calculate the
cosine similarity between the text encodings of the original and
recovered multimodal data. Finally, a predetermined cosine
similarity threshold is used to assess the accuracy of SC.

B. Simulation Settings

First, we present the evaluation datasets for the multimodal
SC as follows:

• VOC2012 (image dataset) [13]: This dataset comprises
17,125 RGB images across 20 categories.

• LibriSpeech (audio dataset) [14]: This corpus contains
approximately 1,000 hours of 16 kHz English speech
readings.

• UCF101 (video dataset) [15]: This action recognition
dataset consists of realistic action videos from YouTube,
spanning 101 action categories.

Second, the SC model is designed for text modal data.
Thus, we apply the transformer as the network architecture.
The channel model, which encompasses channel encoding and
decoding along with wireless channel configuration, adopts
settings similar to those presented in [3]. For the CGAN,
the architectures of the generator and the discriminator adopt
similar designs presented in [10]
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Finally, the threshold for cosine similarity is set at 0.6. This
indicates that the transmitted semantics is considered accurate
only when the cosine similarity between the text encodings
exceeds 0.6. The transmission accuracy is defined as the ratio
of semantically correct transmitted samples to the total number
of transmitted samples.

C. Evaluation Results

The evaluation results are illustrated in Fig. 4 and Fig.
5. In Fig. 4, we observe that the transmission accuracy of
multimodal SC increases as the SNR improves. Additionally,
the audio modal data has the highest, while the video modal
data has the lowest accuracy, which can be attributed to their
inherent complexity. Fig. 5 clearly indicates that the trans-
mission accuracy declines with an increasing cosine similarity
threshold. Furthermore, the transmission accuracy at an SNR
of 25 dB is notably higher than that at an SNR of 10 dB.

Fig. 4: Transmission accuracy of multimodal SC under
different SNRs.

In conclusion, the evaluation results validate the effective-
ness of the proposed LAM-MSC framework in achieving
multimodal SC based solely on a uniform SC model (depicted
in Fig. 2), while maintaining the semantic consistency between
the raw and recovered multimodal data. In addition, in our
simulations, we observe that when using the conventional
transmission method, a video requires 3,114,800 bits, an image
needs 597,792 bits, and audio necessitates 1,472,224 bits.
However, utilizing LAM-MSC, only the uniform semantic
coding is transmitted, which remarkably reduces the consump-
tion to only 32,768 bits.

V. CONCLUSION

In this paper, we first introduced the challenges faced by
multimodal SC. Then, as a solution, we presented a LAM-
MSC framework that incorporates MMA, enabling transforma-
tions between multimodal and unimodal data while preserving
semantic consistency. Next, a personalized LKB was proposed
in LAM-MSC, allowing users to undertake individualized

Fig. 5: Transmission accuracy versus cosine similarity
threshold.

semantic extraction or recovery, effectively tackling semantic
ambiguity issues in transmitted data. In addition, we applied
CGE to obtain the CSI and thus reduce the impact of fading
channels in SC. Finally, simulations effectively demonstrated
the superior performance of the proposed LAM-MSC frame-
work in processing multimodal data communication.
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