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Abstract—Multimodal signals, including text, audio, image,
and video, can be integrated into Semantic Communication (SC)
systems to provide an immersive experience with low latency
and high quality at the semantic level. However, the multi-
modal SC has several challenges, including data heterogeneity,
semantic ambiguity, and signal distortion during transmission.
Recent advancements in large AI models, particularly in the
Multimodal Language Model (MLM) and Large Language Model
(LLM), offer potential solutions for addressing these issues. To
this end, we propose a Large AI Model-based Multimodal SC
(LAM-MSC) framework, where we first present the MLM-based
Multimodal Alignment (MMA) that utilizes the MLM to enable
the transformation between multimodal and unimodal data while
preserving semantic consistency. Then, a personalized LLM-
based Knowledge Base (LKB) is proposed, which allows users
to perform personalized semantic extraction or recovery through
the LLM. This effectively addresses the semantic ambiguity. Fi-
nally, we apply the Conditional Generative adversarial networks-
based channel Estimation (CGE) for estimating the wireless
channel state information. This approach effectively mitigates the
impact of fading channels in SC. Finally, we conduct simulations
that demonstrate the superior performance of the LAM-MSC
framework.

I. INTRODUCTION

In Weaver and Shannon’s pioneering works, the communi-
cation systems can be categorized into three levels [1]:

1) Technical Level: This level emphasizes the efficiency and
accuracy of the communication system, with the sender
transmitting information (such as a message or signal) to
the receiver. The goal is to mitigate noise or interference
that could result in errors or loss of information.

2) Semantic level: This level focuses on the meaning of
the message being transmitted. The objective is to ensure
that the sender and receiver understand and interpret the
message in the same way.

3) Effectiveness level: This level focuses on the impact of
the communication on the receiver. The objective of the
sender is to accomplish its intended goal or purpose,
trying to make an impact on the receiver’s thoughts,
behavior, or emotions.

The rapid integration of Artificial Intelligence (AI) and
wireless communications has led to the emergence of intel-
ligent applications, such as holographic communication, and
the Internet of Everything (IoE). These trends are driving the
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evolution of communication systems toward Semantic Com-
munication (SC) [2], which integrates communication with
semantic information, concentrating on the “meaning” behind
transmitted bits to enable more intelligent and adaptive com-
munication services. Typically, the SC system comprises five
components, including the semantic encoder, channel encoder,
channel decoder, semantic decoder, and the Knowledge Base
(KB). The KB is a structured and memory-capable knowledge
network model that can provide relevant semantic knowledge
descriptions for raw data. It can adopt different construction
methods according to different information sources, channels,
and task requirements [3].

Large AI models can fully leverage their immense knowl-
edge to assist in semantic analysis and extraction, representing
a cutting-edge research direction in SC. In [4], the authors
aimed at the integration of Foundation Models (FMs) at the
effectiveness, semantic, and physical levels, which utilized
universal knowledge as a powerful tool to radically innovate
system design. G. Liu et al. [5] introduced a comprehensive
conceptual model for harmonizing AI Generated Content
(AIGC) and SC, which described how AIGC and SC synergize
to create content that is both meaningful and effective. In
[6], the authors focused on image transmission and applied
the Segment Anything Model (SAM), a large vision model,
to drive improvements in SC. However, these studies did
not consider the impact of personalized knowledge bases on
semantic communication, and they primarily focused on the
issues of semantic communication within a single modality.

Currently, the data to be transmitted is typically multimodal
for advanced applications, such as metaverse and mixed reality.
As a result, the multimodal SC system is highly required
to facilitate SC across multiple modes, including text, voice,
images, videos, and more. However, as illustrated in Fig.
1, (a) demonstrates that traditional SC systems are typically
designed to handle only one type of unimodal data. Conse-
quently, transmitting multimodal data requires the utilization
of multiple unimodal SC systems, potentially resulting in
significant overheads and inefficiencies [7]. On the other hand,
(b) represents a multimodal SC system capable of processing
various modalities by employing a unified multimodal SC
model.

A. Challenges of Multimodal SC
To better achieve multimodal SC, we summarize several

challenges currently faced by multimodal SC systems:
1) Data heterogeneity: A multimodal SC should be capable

of handling the simultaneous transmission of heteroge-
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Fig. 1: Traditional unimodal SC system versus multimodal SC system.

neous data, including text, images, videos, and even
specialized or rare file formats in various forms. Then, the
target tasks associated with the data can be quite com-
plex, involving machine translation, image recognition,
and video analysis, among others. Additionally, semantic
alignment should be considered when extracting seman-
tic features from multimodal data, ensuring a uniform
understanding across different multimodal data.

2) Semantic ambiguity: On one hand, multimodal SC sys-
tems may encounter issues such as semantic errors or
misunderstandings when transmitting multimodal data
from one modality to another, resulting in the semantic
ambiguity. On the other hand, each party in communica-
tion has distinct knowledge backgrounds and may focus
on different semantic information. This may cause an
inconsistent understanding of the semantic information
between different parties, contributing to semantic ambi-
guity.

3) Signal distortion: The signal transmission may be im-
pacted by fading/noisy channels over time, influenced
by factors like environmental conditions. This fluctuation
adds a layer of complexity to the accurate and meaningful
exchange of information between senders and receivers.
In other words, wireless channels may incur transmitting
signal disturbances [2] causing the loss of critical infor-
mation or the alteration of intended semantics, further
complicating the process of re-establishing personalized
semantics.

B. Advantages of Large AI Model in Multimodal SC

Recent advancements in Deep Learning (DL) have enabled
the development of large AI models for multimodal data and
Natural Language Processing (NLP), resulting in models with
enhanced capabilities in these domains, such as Multimodal
Language Model (MLM), e.g., Composable Diffusion (CoDi)
[8] and Gemini, and Large Language Model (LLM), e.g., GPT-
4 [9]. These large AI models have the following advantages
for SC:

• Accurate Semantic Extraction: With billions of parame-
ters, large AI models can learn intricate representations,
providing high-quality semantic extraction of input data.

• Rich Prior/Background Knowledge: Pre-trained on vast
datasets like ImageNet, Audioset, and Wikipedia, large
AI models gain extensive domain knowledge, exhibiting
excellent world model capabilities.

• Robust Semantic Interpretation: With their robust genera-
tion capabilities, large AI models can effectively interpret
diverse semantic information, even when faced with se-
mantic noise.

C. Our Contributions

We propose a Large AI Models-based Multimodal SC
(LAM-MSC) framework to address the above-mentioned chal-
lenges. Our contributions can be summarized as follows:

1) Unified Semantic Representation: We introduce an MLM-
based Multimodal Alignment (MMA) by employing
CoDi for modality transformation. MMA facilitates the
synchronized generation of interwoven modalities by
constructing a shared multimodal space. Since the same
semantics are represented in different forms in different
modal data, we unify the multimodal data into the text
modality because it can represent the semantics accu-
rately using the minimum data volume. This approach
aims to enhance the efficiency of multimodal SC systems
while ensuring semantic consistency.

2) Personalized Semantic Understanding: We propose an
LLM-based Knowledge Base (LKB) utilizing the GPT-
4 model to understand personal information. Specifically,
we design a personalized prompt base, which includes
various personalized information such as individual pro-
files. Prompt learning is employed to finetune the global
GPT-4 model using the personalized prompt base, thereby
creating a personalized local KB. The personalized KB
can extract and analyze more relevant semantic informa-
tion and eliminate semantic ambiguities.

3) Generative Channel Estimation: We train and em-
ploy Conditional Generative Adversarial Networks-based
Channel Estimation (CGE) to estimate channel gains of
fading channels, utilizing pilot sequence as the condi-
tional information fed into the network. Considering the
characteristics of channel gains, we design a dedicated
generator network based on convolution and deconvolu-
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tion structures. We also employ a leakyReLU activation
function to capture the nonlinear properties and generate
high-quality channel gains.

The rest part is structured as follows: First, we introduce
the CoDi for multimodal data and GPT-4 for personalized
KB. Next, we present the LAM-MSC framework and its key
components, including MMA, LKB, and CGE methods. Sub-
sequently, we provide simulations to evaluate the performance
of the LAM-MSC framework. Finally, we conclude the paper.

II. PRELIMINARIES

A. CoDi for Multimodal Data

CoDi is an innovative MLM introduced by Microsoft,
capable of generating output modalities (text, image, video,
audio) from any combination of input modalities. The key
components of CoDi include [8]:

1) Latent Diffusion Process: Unlike traditional diffusion
models that operate directly in the data space, latent diffusion
begins by encoding data into a compact and latent representa-
tion. This latent representation is then guided by the learned
diffusion model to reconstruct high-quality output in the latent
space before decoding it back into the data space.

2) Unimodal Module Design: Different modalities or con-
ditions of the generation task are encapsulated in separate
modules. These modules can encapsulate a variety of informa-
tion or constraints, such as textual descriptions, image features,
or specific attributes that the generated content should adhere
to.

3) Composable Multimodal Condition: During the genera-
tion process, CoDi adeptly combines modalities or conditions
from its various modules to guide the denoising process in the
latent space. This composition enables the flexible integration
of multiple, potentially diverse, modalities or conditions into
a single generative process.

4) Reverse Multimodal Generation: Leveraging the latent
diffusion denoising, CoDi generates content through a pro-
cess that incrementally removes noise while integrating the
composited conditions, optimizing the reconstructed latent
representation to ensure the model generates content that
aligns with semantic representations of different modalities or
conditions.

B. GPT-4 for Personalized KB

1) GPT-4-Based Global KB: GPT-4, introduced by OpenAI
in 2023 [9], is among the most advanced LLMs, succeeding
GPT-3 and GPT-3.5 as the latest evolution in the GPT series.
This model adopts the transformer architecture and boasts
approximately 100 billion parameters. Trained on vast text
corpora containing trillions of words, GPT-4 excels at learning
intricate language representations. The model’s capabilities
in multi-modal knowledge synthesis, semantic summarization,
continuous learning, and scalability make it highly suitable for
automatically populating and expanding KBs from unstruc-
tured data. As a result, GPT-4 is utilized as the global KB.
While GPT-4-based global KBs are built on general textual
data, fine-tuning enables them to adapt to more specialized
domains, such as medicine, finance, or communication.

2) Fine-Tuning-Based Personalized KB: Large AI models
can be updated with few samples, allowing adaptation to
specific tasks such as personalized applications. There are four
primary fine-tuning methods to transform the GPT-4-based
global KB into a personalized KB for individuals [10]:

• Adapter Tuning trains a few parameters in small networks
called adapter modules, inserted after each layer in the
original LLM. By fixing pre-trained model parameters
and training only adapter module parameters, compu-
tational costs are reduced while preserving pre-training
knowledge.

• Prefix Tuning is a parameter-efficient method that trains
a small set of parameters called the “prefix” to modify
the input for the pre-trained model. The prefix optimizes
task-specific input, requiring less computational resources
than full model fine-tuning.

• Prompt Tuning allows users to guide the behavior of
LLMs and align their responses by prompt for specific
requirements or objectives. By carefully designing and
refining prompts, it is possible to improve the quality,
relevance, and accuracy of the generated outputs.

• Low-Rank Adaptation (LoRA) aims for transparent and
interpretable fine-tuning by adding a low-rank matrix to
each pre-trained model layer, and fine-tuning it for target
tasks while keeping the original pre-trained weights fixed.

C. CGAN for Channel Estimation

Channel estimation is a crucial task in wireless commu-
nication systems, involving the prediction of vital channel
characteristics such as channel gains based on received data
[11]. Accurate channel estimation is essential for the receiver
to effectively reconstruct the transmitted signal, leading to
improved communication efficiency and quality.

It is worth noting that the pilot sequence, received signal and
channel gains can be treated as dual-channel images, where
each image represents the real and imaginary components
of a complex matrix. Hence, the task of channel estimation
can be reframed as an image-to-image translation problem
[11]. Consequently, Conditional Generative Adversarial Net-
works (CGAN) can be leveraged for channel estimation. In
this approach, the generator is trained to learn the mapping
relationship between the received signal, pilot sequence, and
channel gains. Simultaneously, the discriminator plays a role
in distinguishing the generated channel gains, thereby aiding
in the improvement of the generator’s performance.

III. IMPLEMENTATION OF MULTIMODAL SC

The key to the LAM-MSC framework is that we introduce
the CoDi model to facilitate the transformation of heteroge-
neous multimodal data into a singular unimodal format. We
choose text data as the unimodal format due to its various
benefits, including human readability, high information den-
sity, limited redundancy, and lower storage demands compared
to video or audio formats. Information density represents the
amount of semantic information contained per unit of data,
which is the ratio of the amount of semantic information to
the amount of raw data in an unimodal space [12]. Moreover,
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Fig. 2: The workflow of the proposed LAM-MSC framework.

Fig. 3: A dataflow example of the proposed LAM-MSC framework: Sender Mike dispatches an image to receiver Jane with
the intention of conveying the semantic content of the image as “Mike and Jane are playing in a garden.”

using text data as the unimodal format enables us to apply
GPT-4 as the KB, enhancing the accuracy of semantic extrac-
tion and the interpretability of data recovery.

A. LAM-MSC Framework

To implement the multimodal SC, we adopt the LAM-MSC
framework, which integrates large AI models as a solution. In
this framework, MMA utilizes the CoDi model to facilitate the
conversion between multimodal data and textual data. Then,
LKB leverages a personalized prompt base and GPT-4 to
enhance the understanding and disambiguation of personal in-
formation. Additionally, CGE is employed to estimate channel
gains in wireless channels. As shown in Fig. 2, the workflow
of the LAM-MSC framework is summarized as follows:

1) Modal Transformation Based on MMA: For the input
multimodal data, which may include image, audio, and video
data, MMA is utilized to convert these data into text data while
maintaining semantic alignment. The corresponding text data
can effectively capture the original modal data’s content. For
example, as illustrated in Fig. 3, the raw data consists of a

photograph featuring the sender (assumed to be Mike) and
the receiver (assumed to be Jane) playing in a garden. The
raw image is then converted into a text description: “A boy
and a girl in a playful pose. The boy has golden hair and is
wearing a brown suit with a red tie. The girl has black hair and
is wearing a white dress with a black bow. The background is
a garden”. Thus, by applying MMA, we manage to transform
multimodal data into unimodal data while ensuring semantic
alignment.

2) Semantic Extraction Based on LKB: For the text data
obtained through modal transformation, senders typically aim
to transmit only the key information that expresses their
intended message or the parts they find most important while
omitting redundant information they deem irrelevant for the
receiver. This personalized key information can be referred
to as semantics. Hence, LKB is used to personalize the
text and thus obtain personalized semantics. As illustrated in
Fig. 3, the raw text initially lacks personalized information.
However, through the integration of the sender’s intention,
user information, and interests, the LKB extracts personalized
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semantics “Jane and me in a playful pose. The background
is a garden.” This description encompasses the identities of
the sender and receiver and indicates that the sender’s focus
primarily involves the “two people” and the “place” depicted
in the image, rather than other details like attire or clothes.

3) Data Transmission Based on CGE Assisted-SC: SC
starts with a semantic encoder that extracts meaningful el-
ements or attributes from raw data, aiming to transmit this
semantic information as accurately as possible to the receiver.
Then, the channel encoder modulates the semantically encoded
data into complex-valued input symbols suitable for wireless
transmission. To mitigate the effects of the fading channel,
the CGE is employed to acquire the channel gains, which
can reduce the complexity involved in the channel decoder’s
recovery of transmitted signals. Next, the channel decoder
is utilized to perform signal demodulation while overcoming
the additive noise. Finally, the semantic decoder performs
semantic decoding to retrieve recovered semantics (e.g., “Jane
and I are playfully posing. The background is a garden”).

4) Semantic Recovery Based on LKB: The receiver may
not understand the recovered semantics directly since the
personalization of received messages is specific to the sender
rather than the receiver, which can lead to semantic ambiguous
issues. Hence, similarly, the LKB is adopted to change the
decoded semantics into the personalized semantics for the
receiver according to the personalized prompt base of the
receiver. As shown in Fig. 3, the LKB adapts the recovered se-
mantics based on the receiver’s user information, such as their
identity. As a result, the recovered semantics are customized
and transformed into personalized semantics for the receiver,
Jane, resulting in the text “Mike and I are playfully posing.
The background is a garden”.

5) Modal Recovery Based on MMA: Similar to modal
transformation, MMA is utilized to achieve modal recovery,
meaning it converts text data back into the original modal
data. However, it is important to note that we only evaluate
the consistency between the recovered and original modal data
in terms of semantics rather than bits at the data level. As
illustrated in Fig. 3, the recovered image displays the scene as
“Mike and Jane are playing in a garden.” This is a result of
the sender’s primary intention, which focuses on the semantic
aspect of the characters and background, rather than providing
specific details about clothing or other elements.

B. MMA

In the proposed LAM-MSC framework, MMA performs the
multimodal transformation. As shown in Fig. 2, the workflow
of MMA can be summarized below:

1) Modal Transformation: On the sender side, the MMA
transforms multimodal data, including image, audio, and video
data, into unimodal textual data. Specifically, each type of
multimodal data is first encoded by its respective encoder.
Then, the encoding results of the multimodal data are fed
into the condition encoder, which processes them according
to the target modality being transitioned to, in this case, the
text modality. Finally, the processed results from the condition
encoder are input into the text diffusion model to generate

corresponding textual data that maintains semantic consistency
with the original multimodal data.

2) Modal Recovery: On the receiver side, the MMA facili-
tates the transformation of personalized semantics (e.g., textual
data) back into the original multimodal data. Specifically, the
personalized semantics are first fed into the text encoder to
obtain the text features. Then, the text features are input into
the conditional encoder, which processes the data based on
the target modality being recovered, such as image, audio, and
video data. Finally, the processed result from the conditional
encoder is input into the diffusion model of the target modality,
which encompasses image, audio, and video diffusion mod-
els. This generates corresponding modality data that ensures
semantic consistency with the input personalized semantics.

C. LKB

LKB primarily consists of two components: The global
GPT-4 model and the personalized prompt base. The descrip-
tions of these components are summarized below:

1) Global GPT-4 KB: The GPT-4 model boasts outstanding
capabilities in NLP, allowing it to perform precise semantic
extraction and restoration from textual data according to
specific requirements. With numerous parameters and multi-
head attention mechanisms, GPT-4 excels at accurate knowl-
edge representation, allowing it to comprehend semantics and
knowledge structures with precision. Additionally, GPT-4 has
been pre-trained using extensive datasets, which makes it
store rich prior/background knowledge and achieve strong
generalization abilities across different domains. Hence, the
GPT-4 model is used as the shared global KB for all users,
serving as a “global” model consistently utilized across a
diverse array of applications.

2) Personalized Prompt Base: As discussed in Section II-B,
there are four primary methods for achieving personalization
in GPT-4 models. However, methods such as adapter tuning,
prefix tuning, and LoRA involve adjusting the GPT-4 model’s
structure. These modifications necessitate users to possess
specific professional knowledge and require their devices to
be equipped with substantial resource support. Clearly, this is
an unrealistic demand for the majority of normal users.

Therefore, we utilize prompt tuning in combination with
a personalized prompt base to fine-tune the GPT-4 model.
The personalized prompt base includes character profiles,
such as names, ages, identities, genders, interests, and other
information, which can be easily organized in a tabular format
(as illustrated in Fig. 2). As a result, users only need to input
this prompt base along with the text data into the global GPT-4
model, after which the personalized semantics are generated.

D. CGE

As illustrated in Fig. 2, we utilize the CGE to estimate
wireless channel gains. This information greatly enhances
the accuracy of semantic transmission in wireless channels.
Specifically, we propose using CGAN to estimate channel
gains according to received signals and pilot sequences. The
CGAN consists of a generator and a discriminator during the
training phase. The generator includes three downsampling
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blocks with convolutional layers, two upsampling blocks with
deconvolutional layers, and an output layer. The convolutional
and deconvolutional layers are applied to capture the local
features of the channel gains. We also introduce a novel
LeakyReLU activation function to model the nonlinear char-
acteristics of the channel gains. The discriminator consists of
four convolutional layers with ReLU activation functions.

Upon completion of the adversarial training, the trained
generator can be utilized to estimate wireless channel informa-
tion, i.e., gains from the conditional inputs (i.e., the received
signals and pilot sequences), mitigating the influence of fading
channels in the SC system.

IV. SIMULATION RESULTS

A. Problem Formulation

We focus on an end-to-end data communication scenario
that encompasses the transmission of various data types, in-
cluding images, audio, and videos. These multimodal data are
transformed into unimodal data (i.e., textual data) by MMA.
Moreover, we employ BERT and cosine similarity to evaluate
the performance of the multimodal SC system [13]. BERT is a
pre-trained foundational model proposed by Google for high-
quality semantic encoding of textual data. Cosine similarity is
a mathematical method used to measure the similarity between
two semantic vectors produced by BERT. Its range is from -1
to 1, where -1 means complete opposites, and 1 means the
same [13]. Then, a predetermined cosine similarity threshold
is used to assess the accuracy of SC.

B. Simulation Settings

First, we present the evaluation datasets for the multimodal
SC as follows:

• VOC2012 (image dataset): This dataset comprises 17,125
RGB images across 20 categories.

• LibriSpeech (audio dataset): This corpus contains approx-
imately 1,000 hours of 16 kHz English speech readings.

• UCF101 (video dataset): This action recognition dataset
consists of realistic action videos from YouTube, span-
ning 101 action categories.

Second, the SC model is designed for textual modal data.
Thus, we apply the transformer as the network architecture.
The channel model, which encompasses channel encoding and
decoding along with wireless channel configuration, adopts
settings similar to those presented in [2].

Finally, the threshold for cosine similarity is set at 0.6. This
indicates that the transmitted semantics are considered to be
accurate only when the cosine similarity between the textual
features exceeds 0.6. The transmission accuracy is defined as
the ratio of semantically correct samples to the total number
of transmitted samples (i.e., the sum of the texts converted by
the three modalities).

C. Evaluation Results

The results of ablation experiments are illustrated in Fig.
4, where we observe that the transmission accuracy of mul-
timodal SC increases as the SNR improves. One can see

that the personalized prompt can improve the accuracy of
semantic transmission when comparing LAM-MSC and LAM-
MSC without LKB. Furthermore, one can also see that the per-
formance of LAM-MSC without CGE is the worst, indicating
the importance of having CGE in the proposed SC system.

Fig. 5 depicts the results of comparison experiments, where
we evaluate DeepJSCC-V [14] for image transmission and
Fairseq [15] for audio transmission as contenders. Addition-
ally, the compression rate in Fig. 5 is defined as the ratio
between compressed data and original data. This means that
less transmitted data indicates a higher compression rate. Since
DeepJSCC-V and Fairseq are specifically designed for their
respective single modalities, they slightly surpass LAM-MSC
in terms of transmission accuracy. However, since the LAM-
MSC can convert the image and audio to textual data and
thus the required transmitted semantic information is reduced,
the LAM-MSC exhibits significant advantages in terms of the
compression ratio. Moreover, DeepJSCC-V and Fairseq may
only process unimodal data, whereas the proposed LAM-MSC
is capable of effectively handling multimodal information.

Fig. 4: Transmission accuracy of multimodal SC under
different SNRs.

V. OPEN ISSUES

1) Unified Representation: Although the conversion of
multimodal data into unimodal data is considered in this
paper, developing a comprehensive and universal semantic
representation for more modalities still proves challenging.
An effective method to consistently represent multimodal
data would enhance interoperability and comprehension across
various modalities.

2) Semantics Compression: Multimodal data could be ex-
tensive, necessitating the implementation of efficient compres-
sion techniques for transmission. The preservation of semantic
information during the data compression process represents an
open issue, as conventional methods may contribute to the loss
of vital context.

3) Noise Robustness: Multimodal data sources may contain
noise, which could diminish the performance of SC systems.
The development of algorithms and methods for enhancing
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Fig. 5: Comparison results of different schemes.

robustness and maintaining SC quality among varying envi-
ronments remains important.

4) Adaptability and Scalability: With the rapid growth of
data volume and diverse demands, the next generation of
SC might require flexible and scalable approaches that can
effectively manage and process extensive and multimodal data.

VI. CONCLUSION

In this paper, we first introduced the challenges faced by
multimodal SC. Then, we presented a LAM-MSC framework
that incorporates MMA, enabling transformations between
multimodal and unimodal data while preserving semantic
consistency. Next, a personalized LKB was proposed in LAM-
MSC, allowing users to undertake individualized semantic ex-
traction or recovery, effectively tackling semantic ambiguous
issues in transmitted data. Additionally, we applied CGE to es-
timate the wireless channel gains which can reduce the impact
of fading channels in SC. Finally, simulations demonstrated
the superior performance of the LAM-MSC framework in
processing multimodal SC systems.
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