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Abstract: Movement-based brain–computer Interfaces (BCI) rely significantly on the automatic
identification of movement intent. They also allow patients with motor disorders to communicate
with external devices. The extraction and selection of discriminative characteristics, which often
boosts computer complexity, is one of the issues with automatically discovered movement intentions.
This research introduces a novel method for automatically categorizing two-class and three-class
movement-intention situations utilizing EEG data. In the suggested technique, the raw EEG input is
applied directly to a convolutional neural network (CNN) without feature extraction or selection.
According to previous research, this is a complex approach. Ten convolutional layers are included
in the suggested network design, followed by two fully connected layers. The suggested approach
could be employed in BCI applications due to its high accuracy.

Keywords: electroencephalogram; movement intention; brain-computer interface; convolutional
neural network

1. Introduction

The brain–computer interface (BCI) is the direct interaction between the human brain
and external technologies. Specifically, motor imagery BCIs that depend on electroen-
cephalography (EEG) signals enable the subject to accomplish various activities without
needing physical motion. In recent years, this method’s contribution to the rehabilitation of
disabled people has made it an important inter-disciplinary issue. MI-EEG BCIs analyze
and interpret imagined task signals as instructions for controlling peripherals, wheelchairs,
and prostheses [1,2].

BCIs are typically driven by evoked activity paradigms, such as visually evoked
steady-state potentials (SSVEP) [3,4], event-related potentials (ERP) [5], and motor-related
paradigms, such as motor imagery [6]. SSVEP and ERP use visual and attention processes,
and they constantly include an external trigger to generate a visible response. On the other
hand, movement neural correlates allow the intuitive control of BCIs by generating move-
ment intentions at will, without the need for external stimuli [7,8]. Typically, power changes
in several EEG frequency bands are employed to determine movement intent. However,
this disregards the movement-related information available in the rest of the EEG spectrum
and the temporal domain, since the EEG signal is fundamentally non-stationary. Regu-
larly used neural movement correlates, notably event-related synchronization (ERD/S)
and motor-related cortical potential (MRCP), are often employed to determine voluntary
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movement intention, execution, and imagery from EEG [9]. ERD and ERS, which result in
a reduction in µ and β power and a rise in power, respectively, are commonly employed to
determine movement intention and imagery [10,11]. As a result, the EEG spectral domain
is used to derive several characteristics for detecting movement-related tasks [7]. The most
popular technique for evaluating ERD is the assessment of power spectral density (PSD)
and time frequency [11–13]. MRCP is a slow negative cortical potential identified at low fre-
quencies [11], approximately 2 seconds before voluntary human movement [14]. Compared
with spontaneous EEG activity (100 µV), MRCP has a minimal amplitude (8–10 µV) which
makes it difficult to detect [11]. The average of multiple EEG trials of voluntary movements
is a typical approach [11] to identifying MRCP. Numerous computational methods relying
on EEG data were evolved to evaluate and observe automatically recognized movement
intention, as is detailed in the following section.

Yom et al. [15] automatically identified movement intention in five healthy volunteers.
They used nine channels of EEG signals for the experiment. Furthermore, they used a
finger-tapping movement to record the signal. The researchers used the MRP component to
classify movement intention. They used a 10-hertz low-pass filter to preprocess the section.
The support vector machine (SVM) and k-nearest neighbor (KNN) were also used for the
classification. Haw et al. [16] automatically identified movement intention in five healthy
volunteers from a single-channel EEG signal. They used the BP component to classify
the movement intention. In addition, the correlation and error thresholds were used for
two-stage classification. The accuracy of their method was reported at 70%. One of the
limitations of their research was the change in performance of the proposed method on
different subjects. One of their research’s benefits was the use of a single-channel EEG
signal. Bai et al. [17] tested the automatic detection of movement intention on 12 subjects.
They used 122 channels of EEG signals to record the signal. The type of movement in their
experiment was based on finger tapping. In addition, the researchers used the MRP and
ERD components to classify the movement intention. They used a third-order Butterworth
low-pass filter to preprocess the section. Their classification accuracy for two stages based
on artificial neural networks (ANN) was 75%. The limitations of their method were the
use of 122 channels of EEG signals, which can be uncomfortable for the patient, as well as
increasing the power consumption in the design of prosthetic prostheses. Boye et al. [18]
used only one volunteer to automatically identify movement intention. They used a finger-
tapping movement to record the EEG signal. Furthermore, the researchers used the MRP
component to classify movement intention. They used a low-pass filter and principal
component analysis (PCA) algorithm for the preprocessing section. The SVM and KNN
were also used for the classification. The sensitivity of their classification for two stages was
reported to be 96%. One of the limitations of the study was the experiment on one subject.
Kato et al. [19] automatically identified movement intention in seven healthy volunteers
from a single-channel EEG signal. The type of movement in their experiment was based on
tapping. They used the CNV component to classify the movement intention. The SVM was
also used for classification. Lew et al. [20] used eight healthy volunteers and two unhealthy
volunteers with a history of stroke to identify movement intention automatically. They
used 64 channels of EEG signals to record the signal. Furthermore, the type of movement
in their experiment was based on the movement of the arms. They used an IIR filter with a
cutoff frequency of 0.1 for the preprocessing section. In addition, the KNN was also used
for the classification. Overall, the performance of their method for separating movement
intention was reported to be 76%. However, their proposed algorithm’s performance was
reported to be 82% for healthy subjects and 64% for unhealthy subjects. Niazi et al. [21] used
16 healthy subjects in their experiment to automatically identify movement intention. They
used ten channels of EEG signal to record the signal. In addition, the type of movement
in their experiment was based on the movement of the legs. The researchers also used
the MRCP and BP components to classify the movement intention. The Neyman Pearson
Lemma (NPL) was also used for the classification. Niazi et al. [22], in another study, used
twenty healthy and five unhealthy people with stroke to automatically identify movement
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intention. Their study was based on limb movement, and they also used ten channels of
EEG signals to record the signal. Furthermore, the researchers used the MRP component
to classify the movement intention. They used a band-pass filter in the range of 0.05 to
10 Hz for the preprocessing data section. Ahmadian et al. [23] used three healthy subjects
for their experiments. They used 128 channels of EEG signals to record the signal for
automatically identified movement intention. They used a finger-tapping movement to
record the signal. The researchers used the BP component to classify movement intention.
They used an ideal filter (0.5 to 70 Hz) for the preprocessed section. Additionally, they used
the independent component analysis (ICA) approach to minimize the dimension of the
feature vector. The time required to separate the blind sources in their algorithm was about
51 seconds. Their research limitations included the high number of channels used in the
EEG signal and the low number of samples. Jochumsen et al. [24] used 12 healthy subjects
in their experiment to automatically identify movement intention. Furthermore, they used
ten channels of EEG signals to record the signal. In addition, their movement type was
based on leg movement in the experiment. They used an ideal filter (0.5 to 10 Hz) for the
preprocessed section. They used the constraint-satisfaction-problem (CSP) algorithm to
reduce the feature-vector dimension. SVM was also used for the classification. Overall, the
performance of their method for separating movement intention was reported to be 80%.
Jiang et al. [25] used nine healthy subjects for their experiments. They used nine channels
of EEG signals to record the signal for automatically identified movement intention. In
addition, their movement type was based on leg movement in the experiment, and they
used the MRCP component to classify the movement intention. They used LSF to increase
the SNR. The stated accuracy of their two-stage categorization was 76%. Xu et al. [26]
used nine healthy subjects in their experiment. They used nine channels of EEG signals to
record the signal. Their movement type was also based on foot movement and they used
the MRCP component in the experiment. They used a band-pass filter in the frequency
ranges (0.5 to 3 Hz) to preprocess the data. Their classification accuracy for two stages
based on KNN was reported to be 75%. Wairagkar et al. [27] used nine healthy subjects
(eight women and six men between 22 and 30 years of age) for their experiments. In this
study, the autocorrelation function was used. The researchers used the ERD component
to classify the movement intention. The KNN was also used for the classification. The
sensitivity of their classification for two stages was reported to be 78%. The main purpose
of automated-identified-movement-intention systems is to accurately detect classes (resting
state, right- or left-hand movement, left- or right-foot movement) with high accuracy for BCI
applications (such as designing intelligent prosthetics to assist patients after amputation).
Recent studies have shown that the accuracy with which automatic movement intention is
identified is below 80%. Previous studies have also observed that most movement-intention
algorithms require more than one EEG signal channel, which can be uncomfortable for
the patient and is a problem in prosthetic design. Selecting the discriminative elements
of several phases is the challenging step in automatically detecting movement intention.
The majority of current research begins by extracting statistical characteristics. The most
discriminating qualities are then chosen manually or via commonly used, time-consuming,
and complicated feature-selection algorithms. Additionally, the ideal characteristics for one
scenario may not be considered optimal for another. Thus, developing an algorithm that
learns the relevant characteristics for every scenario is vital. This continues to be the main
advantage of such a study. The contributions and novelty of this article are as follows:

• An automatic algorithm that can extract the effective features from the signal without
the feature-selection/extraction block diagram and classify them into several classes
with the precondition of high accuracy.

• An optimal architecture that is resistant to a wide range of different SNRs.
• Experimental data in two scenarios of two classes and three classes.
• A higher level of accuracy, sensitivity, accuracy, and specificity compared to previous

studies for the automatic classification of movement intention.
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In the proposed algorithm, active electrodes are determined after preprocessing the
data. Next, a deep convolutional network is used to train and classify 2-class and 3-class
scenarios of movement intention. The proposed approach might be seen as an end-to-end
classifier in which no feature selection/extraction methodology is required, and a deep
convolutional neural network automatically acquires the proper features of every class.

The following sections of the paper are arranged as follows. Section 2 provides
the CNN networks and the associated mathematical background. Section 3 presents the
suggested approach. Section 4 contains the simulation outcomes and a comparison of the
suggested approach to those in previous studies. Section 5 contains the conclusion.

2. Materials and Methods

In this part, the mathematical background related to deep convolutional neural net-
works is described.

Deep Convolutional Neural Network

CNN seems to be a superior alternative to the traditional neural network, which
provides classification techniques in machine vision [28]. CNN comprises two learning
stages: the feed-forward and backpropagation (BP) phases [29]. CNN comprises three
layers: convolutional, pooling, and fully connected (FC) [29–31]. Feature mapping is the
output of the convolution layer. The max-pooling layer, which takes the highest values
from each feature map, was utilized in this investigation. The drop-out technique prevents
overfitting; thus, every neuron is randomly removed from the network at every training
step, resulting in a decreased network. The network’s data are normalized using the batch
normalization (BN) layer. The following is the BN transformation:

^
y
(l-l)

=
y*(l-l) − µB√

σ2
B + ε

z*(l) = γ(l)^
y
(l-l)

+ β(l)

(1)

where y*(l-l) is the input vector to the BN layer, z*(l) indicates the output response associated
with a neuron in layer 1, µB = E[y*(l-l)], σ2

B = var[y*(l-l)], ε indicate a small constant for
numerical stability, and γ(l) and β(l) are the scale and shift parameters, respectively, which
are determined by learning. An activation function is used following every layer. In this
investigation, the activation functions Relu and Softmax were utilized. Relu is used in the
convolutional layers as the activation function and can add nonlinearity and sparsity to the
network structure, as described in (2).

R(d) =

{
d i f d > 0

0 otherwise
(2)

A Softmax activation function may determine the distribution of the output classes.
The Softmax function is thus implemented in the final FC layer and is described as follows:

σ(δ)i =
eδi

∑k
j=1 eδj

for i = 1, . . . k and δ = (δ1, . . . , δk) ∈ Rk (3)

where δ denotes the input vector and σ(δ) represents the output values ranging from 0 to
1, with 1 [29–31].

3. Suggested Method

This part describes the suggested automated identification of movement intention
relying on CNN. The block diagram of the suggested method is illustrated in Figure 1.
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Figure 1. The block diagram of the proposed algorithm.

3.1. EEG Collection

Fourteen university students (eight women and six men, 22–30 years of age) partic-
ipated in this experiment. A moral license number, IR.TBZ-REC.1397.3, was issued for
experiments at the Biomedical Engineering Department’s BCI Laboratory at the Faculty of
Electrical and Computer Engineering, University of Tabriz. The international 10–20 system
was used for digitizing the 21-channel electrode cap’s data at a rate of 1024 Hz, with all
channels referring to two Fpz and Fcz reference electrodes. The experiment consisted of
3 classes, resting, right-hand tapping, and left-hand tapping, for 40 repetitions. The length
of each state was 6 seconds, which was available for each state of 6 × 1024 = 6144 sampling
points with 35 repetitions. The participants in this study had no previous experience with
EEG recording or BCI. There were 12 right-handed participants; the first and sixth were
left-handed. Figure 2 shows how the EEG signals were recorded for one of the participants
during the experiment. Figure 3 shows a sample EEG signal collected for resting state
and left- and right-hand tapping from the F3 electrode in one experiment; in the Figure,
an important distinction between resting state, right-hand, and left-hand tapping can be
seen. However, this visual distinction makes it difficult to detect the three different stages.
Based on the collected data, we considered two scenarios in this research. The first scenario
includes two classes, left- and right-finger tapping, and the second scenario is related to
left-finger tapping, rest mode, and right-finger tapping.
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3.2. Preprocessing

According to the data dimensions for each class (resting state, left-hand tapping, right-
hand tapping) equal to 6 seconds (6144 sampling points) with 35 repetitions
(35 × 6144 = 21,504), for each subject, six pairs of electrodes were considered (F3-C3, Fz-
Cz, F4-C4, C3-P3, Cz-Pz, C4-P4); we therefore obtained 2 × 21,504 sampling points of
data. In order to avoid overfitting, the data for every electrode were then separated into
4135 sampling points utilizing the overlap approach, and we had 1020 samples for each
class. Since the two electrodes were used, each class’s sample size and initial character-
istics were (2 × 4135) × 1020. In addition, for the two-class scenario, involving Class 1
(right-hand movement) and Class 3 (left-hand movement), together considered Class 1,
the dimensions were (2 × 4135) × 2040. As with the three-class scenario, the dimensions
of each class were (2 × 4135) × 1020. The signals were also normalized using a min–max
normalizer between zero and one; subsequently, the data were subjected to a Notch filter
to eliminate the power supply’s 50 Hz frequency. We also focused only on F3-C3, Fz-Cz,
F4-C4, C3-P3, Cz-Pz, and C4-P4 channels for simulation according to [27] to avoid high
computational efficiency. Figure 4 shows this operation.
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3.3. Network Architecture

In the suggested network design, ten convolution 1-D layers were utilized. The
suggested CNN network was implemented with the assistance of a Python cross-library.
The following details the preferred deep-neural-network architecture: 1. A convolutional
layer containing a nonlinear Lealy–Relu function, followed by layers of integration that
use drop-out and maximum pooling, and, finally, a layer of batch normalization. 2. The
preceding step design is repeated nine times without a drop-out layer. 3. The result of the
previous design is connected to a two-dimensional matrix. Two fully connected layers are
used to access the output layer. The suggested deep-neural-network design is displayed in
Table 1. Table 1 shows that the number of key features was reduced from 8270 to 80, which
was the new dimension of the hidden layers. Ultimately, using the nonlinear Leaky–Relu
function and Softmax, the specified attribute vector was attached to the layer with all the
interconnections. Figure 5 depicts the design of the planned CNN network.
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Table 1. Details of the proposed deep-neural-network architecture.

Layer Number Layer Type Size and Filter Steps Number of Filters Output Value Padding

1 Convolution1 12 × 1/8 × 1 16 1034 × 16 yes
2 Pooling1 2 × 1/2 × 1 16 517 × 16 no
3 Convolution2 3 × 1/2 × 1 32 517 × 32 yes
4 Pooling2 2 × 1/2 × 1 32 258 × 32 no
5 Convolution3 3 × 1/1 × 1 64 258 × 64 yes
6 Pooling3 2 × 1/2 × 1 64 129 × 64 no
7 Convolution4 3 × 1/1 × 1 80 129 × 80 yes
8 Pooling4 2 × 1/2 × 1 80 64 × 80 no
9 Convolution5 3 × 1/1 × 1 80 64 × 80 yes
10 Pooling5 2 × 1/2 × 1 80 32 × 80 no
11 Convolution6 3 × 1/1 × 1 80 32 × 80 yes
12 Pooling6 2 × 1/2 × 1 80 16 × 80 no
13 Convolution7 3 × 1/1 × 1 80 16 × 80 yes
14 Pooling7 2 × 1/2 × 1 80 8 × 80 no
15 Convolution8 3 × 1/1 × 1 80 8 × 80 yes
16 Pooling8 2 × 1/2 × 1 80 4 × 80 no
17 Convolution9 3 × 1/1 × 1 80 4 × 80 yes
18 Pooling9 2 × 1/2 × 1 80 2 × 80 no
19 Convolution10 3 × 1/1 × 1 80 2 × 80 yes
20 Pooling10 2 × 1/2 × 1 80 1 × 80 no
21 Fully-connected 100 100
22 Softmax 2–3 1 2–3Electronics 2022, 11, 3297 8 of 16 
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3.4. Proposed Network Training and Evaluation

After using the trial-and-error method, the cross-entropy loss function and Adam
optimizer [32,33] with a learning rate of 0.001 were employed to define the deep neural
network’s hyperparameters. The standard BP approach with a size of 10 was used for the
recommended network training. For the three-class scenario, there were 42,840 specimens
overall, of which 82% were selected at random to train the network (35,000), and the other
18% were used as the test set (7840). Additionally, 8% of the data from the training set
were utilized for validation. Furthermore, there were 57,120 examples overall for the
two-class situation, of which 48,000 were randomized for training the network (84%), and
9120 were used as the test set. Additionally, 6% of the training set’s data were utilized for
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the validation. Figure 6 illustrates an evaluation of the suggested two-class and three-class
scenarios after training a deep neural network.
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4. Results

This section displays the simulation outcomes of the suggested approach for auto-
matically identifying movement intention. A laptop containing 4 GB of RAM and a Core
i5 processor running at 2.4 GHz was used to demonstrate the suggested technique. The
suggested network’s loss function for the F3 and C3 channels for categorizing two-class
scenarios is demonstrated in Figure 7. As shown in Figure 7, the error decreased from
0.7 to 0.15. Figure 8 shows the accuracy of the proposed method for classifying two-class
scenarios for the F3 and C3 channels in 500 iterations for the validation data. Figure 8
illustrates how the suggested strategy for identifying two-class situations achieves an
accuracy of 99.23%. The suggested network’s loss function for the F3 and C3 channels
for categorizing three-class situations is displayed in Figure 9. As shown in Figure 9, the
error decreased from 1 to 0.45. Figure 10 shows the accuracy of the proposed method
for classifying three-class scenarios for the F3 and C3 channels in 500 iterations for the
validation data. Figure 10 reveals that the recommended method for classifying three
different class scenarios is 99.23% accurate.
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Figure 11 also depicts the T-Sen diagrams for the raw signal, Conv6, Conv10, and FC2
layers in instances involving two-class F3 and C3 channels. The T-Sen chart for the raw
signal, Conv6, FC1, and FC2 layers, and the three-class scenarios for the F3 and C3 channels,
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are displayed in Figure 12. As can be observed in the final layer, practically all of the
samples were divided for the evaluation set, demonstrating the proposed method’s efficient
classification of scenarios into two classes and three classes. Figure 13 depicts the confusion
matrix for identifying two- and three-class scenarios for the F3 and C3 channels for further
analysis of the suggested approach. The effectiveness of the suggested approach is also
remarkable. Figure 14 additionally depicts the ROC diagram for categorizing scenarios
into two-class and three-class categories using the suggested strategy. Table 2 also shows
the accuracy obtained for the selected channels. According to this table, the performance of
the F3 and C3 channels is promising for classifying two-class and three-class scenarios.
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Table 2. The accuracy of the intended channels for classifying two-class and three-class scenarios.

Channels F3-C3 Cz-Fz C4-F4 P3-C3 Cz-Pz P4-C4

Acc in two-class scenarios 96.90 96.81 93.57 94.10 93.84 94.15

Acc in three-class scenarios 89.80 79.9 78.5 81.3 82.4 78.6

Several automatically identified movement-intention methods using EEG signals have
been proposed recently. In Table 3, we compare various studies classifying two-class
scenarios using EEG signals. Table 3 reveals that our suggested technique has the greatest
accuracy, sensitivity, and specificity for categorizing two-class situations compared to all
other comparable methods. The classification sensitivity of the suggested technique for
two classes is 96.93%, while [26] and [27] claim sensitivity values of 86% and 90% for
identical situations. In the majority of previous works, common techniques, such aswavelet
transform and empirical-mode decomposition, were used to distinguish the signal’s main
characteristics and properties. However, these techniques often involved issues with the
parameters of the feature selection and extraction process, depending on factors such
as the number of decomposition levels and the kind of mother wavelet. Compared to
previous approaches, one of the greatest advantages of the suggested method is that feature
extraction is performed automatically, without the need for a feature-selection procedure
when employing deep learning.
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Table 3. The proposed method compared with previous studies.

Research Method Precision (%) Accuracy (%) Sensitivity (%) Specificity (%)

[23] CBSE - - 74±14 -
[24] CSP - - 76 -
[25] MLP - - 75 -
[26] DBM - - 79±11 -
[27] ICA - 70/76 78±8 -
P-M CNN 97 96/93 96/93 96/93

In order to show the performance of the proposed CNN method with different data
types as inputs, the accuracy of the classification was determined using the other common
methods for the automatically identification of movement intention. In this regard, time
data and several manual features of these data, along with DBM and MLP, were selected as
comparative methods [34–38]. The number of hidden layers was considered 3 for DBM
and MLP, and the learning rate was chosen as 0.001. Furthermore, for CNN, the proposed
architecture in Table 1 was selected. The parameters minimum, maximum, skewness,
crest factor, variance, root mean square (RMS), mean, and kurtosis were chosen as the
hand-crafted features of the time domain (time features). The classification accuracy of the
different methods based on the feature learning from the raw data and the manual features
are presented in Figure 15. The reliability of the CNN, DBM, and MLP reached 96%, 82%,
and 71%, respectively, after 100 iterations. As can be seen from Figure 15, the performance
of the proposed network is promising compared to the DBM and MLP and the proposed
algorithm converges to the desired value faster. White Gaussian noise with a signal-to-
noise ratio (SNR) of −4 to 20 dB was introduced to the EEG signals as measurement noise.
Figure 16 shows the classification accuracy for every approach for investigating how well
the suggested CNN, DBM, and MLP methods work against measurement noise. With
accuracy over 90% for SNR −4 to 20 dB, the classification performance of the suggested
approach seems very resilient to measurement noise over a broad range of SNR.
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Many researchers have used CNN in their research. However, although previous stud-
ies used deep convolutional networks, the classification accuracy is low and the network
requires a large amount of data to be trained. Furthermore, the efficiency of the deep net-
works in previous studies in noisy environments has not been considered. In addition, most
of the previous studies applied many forms of pre-processing, such as wavelet transform
and empirical-mode decomposition, with a high computational volume on the raw signal
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before entering the signal into the network, which increases the computational load of the
algorithm. The key point of this research is that the proposed network can select/extract
the necessary feature from the raw signal based on the unique architecture, according to
Table 1, without the need for additional pre-processing. Furthermore, due to the choice of
optimizer, the number of layers, etc., the proposed network has the best performance in
terms of speed and accuracy compared to previous those in previous studies. In addition,
due to the selection of filters with large sizes in the initial layer and the selection of filters
with medium and small layers in the other layers in the unique architecture, the proposed
network, according to the results, can offer good resistance in noisy environments in a wide
range of different SNRs.
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5. Conclusions

This research introduces a novel deep-neural-network-based technique for automati-
cally identifying movement intention. The proposed network comprises ten layers of CNN
and two fully conected layers. In addition, we obtained 96.9% and 89.8% accuracy for identi-
fying two-stage and three-stage movement intentions, respectively, which is a considerable
improvement over earlier methods. Previous methods have often been based on manual
feature extraction, which increases the computational efficiency of the algorithm. Based
on this, the proposed deep architecture aims to remove the feature-selection/extraction
block diagram, which makes it possible to receive the raw EEG signal and extract the
necessary features from the raw signal without the need for additional pre-processing, and
classify them into two different scenarios. Due to the use of large-sized filters in the initial
layer and the use of small-sized filters in the middle layers, the proposed network has a
good ability to withstand a wide range of different SNRs. Therefore, in SNR = 1 dB, the
classification accuracy is still above 90%. It is predicted that the suggested approach will
also be employed in BCI applications.
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