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Abstract: Over 1 million Syrian refugees have fled war to seek asylum in Lebanon. The population
has been placed in substandard conditions which could lead to adverse health effects, particularly
in vulnerable subgroups, notably due to evident chronic dampness and inadequate ventilation
potentially leading to indoor mold growth. To investigate whether the types and conditions of Syrian
refugee shelters influence indoor mold populations, a cross-sectional indoor environmental study
was performed in 4 provinces of Lebanon. Accordingly, a total of 80 refugee households and 20 host
population households (baseline) were selected. Mold air sampling and moisture measurements
of shelter material were performed in residential, non-residential, and non-permanent shelters.
Results revealed that although non-residential shelters had the highest mean total indoor count
(1112 CFU/m3), Aspergillus, Stachybotrys, and Penicillium spp. were strongly associated with non-
permanent shelters (p < 0.001). Additionally, occupancy was found to be strongly associated with
Cladosporium (p < 0.05), Ulocladium (p < 0.05), and Stachybotrys spp. (p < 0.001). As for shelter
conditions, the highest total indoor count (1243 CFU/m3) was reported in unfinished structures.
These findings suggest that shelter category, condition and occupancy significantly influence indoor
mold concentrations, increasing respiratory health risks for Syrian refugees in Lebanon.

Keywords: refugee; conflict; shelter; mold; dampness; occupancy; environmental exposure; indoor
air quality

1. Introduction

The Syrian war has relocated over 10 million Syrian refugees of which 7.5 million are
displaced internally. By 2016, the number of Syrian refugees registered with the United
Nations High Commissioner for Refugees (UNHCR) in Lebanon, exceeded 1 million
(equivalent to 25% of the local population), making it the third largest refugee population
globally. Nevertheless, in 2017, Lebanon became the second largest Syrian refugee-hosting
country after Turkey and maintained this position through 2022 [1–3].

As of June 2018, the distribution of Syrian refugees across the 4 major provinces in
Lebanon, was 36% in Bekaa, 26.2% in Beirut, 25.8% in Northern Lebanon, and 12.1% in
Southern Lebanon. About 47.5% of refugees are males and 52.5% are females with children
under the age of 17 accounting for 55.5% of the population. The 222,695 refugee households
reside in urban, suburban and rural areas [1,3,4]. While 70% of refugees live in apartments
and rented rooms, 16% of households live in temporary structures known as informal
tented settlements (IS), 5% reside in unfinished buildings and 9% as annexed structures
to existing houses. Moreover, 44% of refugee households have 5 or more people sharing
one bedroom [5]. A similar crowding occurs in neighboring countries accommodating
Syrian refugees. Within the Za’atari camp in Jordan, for example, the needs of refugees
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have already surpassed the camp’s capacity, leading to sanitation problems and limited
access to medical care [6].

Lebanon is adjacent to conflict zones and subject to regular domestic political and
social unrest, resulting in issues with the dissemination of aid to refugees and a lack of
economic investment to improve shelters and stakeholder conditions. Syrian refugees
in Lebanon accordingly lack essential services relating to access to drinking water and
sanitation, due partially to budget constraints of non-governmental humanitarian orga-
nizations and restrictions on the establishment of larger refugee camps imposed by the
Lebanese government which put the refugee population at risk whereby the vulnerable
subpopulation such as children, women, the elderly and immunocompromised individuals
are at an even higher risk of developing respiratory and other diseases [7,8].

Building codes are developed to promote occupants’ health by setting construction
quality and structural integrity standards [9]. Structurally unsound units and poorly
designed low-cost housing can lead to susceptibility to environmental, sanitary, and severe
weather conditions [10–12]. Building products are a source of hazardous emissions and
structural defects can promote pollutants pathway within dwellings [13,14]. Previous
studies related to housing conditions and health in Middle East refugee camps have
shown strong associations between poor housing quality and respiratory illnesses, such as
asthma prevalence in children and women’s health. Before the Syrian war, humanitarian
research focused on internally displaced and asylum-seeking Palestinian refugees. For
example, the ISAAC study in 2000, revealed that schoolchildren from refugee camps were
at significantly greater risk of asthma than those from neighbouring villages and cities
in Palestine [15]. In 2001, a study of 1625 households in the Gaza Strip found that the
quality of environmental health and hygiene significantly influenced the occurrence of
parasitic infections and dysentery particularly among children aged 1–4 [16]. A study at
another Palestinian refugee camp, revealed a strong association between women’s health
and unhealthy housing conditions from overcrowding, inadequate ventilation and poor
hygiene [17]. The clinical association between microbiological exposure and incidence
of allergies, asthma, respiratory and immunological conditions in refugee camps is well
recognized [18–20], but it should be borne in mind that refugees are exposed to mixtures
containing volatile chemicals (including pesticides and cleaning chemicals), suspended
particulates as well as airborne immunogens and pathogens, which together exacerbate
health impacts. Naturally, it is very difficult to attribute causality to the exposure of a
single entity and disease, and there is a paucity of research due to limited resources and
local politics [21].

Natural ventilation, which is the main method adopted in refugee settlements, uses
pressure differences between the indoor and outdoor air to create air exchange without
mechanical intervention, thus reducing energy cost. Mechanical ventilation on the other
hand, requires electrical consumption to adjust temperature and control humidity [22,23].
Both methods have their drawbacks, nevertheless. Natural ventilation in urban settings,
for instance, introduces harmful pollutants from the untreated outdoor air and does not
contribute to dilution of indoor contaminants concentration which according to the US
EPA may be 2 to 5 times and in some cases 100 times more concentrated than outdoor
air [22,24,25]. Furthermore, HVAC systems are potential sources of pollutants contributing
to microbial growth resulting in condensation from heat exchange [26]. However, ventila-
tion is not the only contributing factor to indoor air quality, building material can also be a
potential source of toxicity and a medium for microbial and fungal growth [13,14,26–28].

Mold are eukaryotic microorganisms which grow filaments called hyphae [29]. They
pertain to the kingdom Fungi and fall into 3 main common groups which are Zygomycetes,
Basidiomycetes, and Ascomycetes, the group which contains the main fungi that colo-
nize building materials [30]. Fungal mould growth is a major concern for architects and
structural engineers which is a housing epidemic that leads to undesirable changes in
the structural characteristics of buildings [31]. Fungi are ubiquitous in nature, they can
be parasitic or symbiotic, however, most fungi are saprophytic, absorbing nutrients from
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decaying material. In indoor environments, materials such as wood, paper, paint, insula-
tion, and dust are suitable for fungal growth. [32] These bio-receptive materials allow the
growth of fungi such as Alternaria, Stachybotrys, Cladosporium, Penicillium, and Aspergillus
spp. [33,34]. Mould growth also depends on certain environmental conditions such as
temperature and relative humidity (RH%). Mould usually favor temperatures between
15 and 30 ◦C, however, some species grow below or above this range [32]. As for relative
humidity (RH%), a range between 30% and 50% should be maintained for a healthy indoor
air (ASHRAE standard 62.1 recommends 30 and 65% RH [35]) as fungal growth and dust
mite infestations occur above 50% RH [36]. Although fungal spores can travel passively
through environments, indoor fungal presence is mainly attributed to moisture, and growth
can occur on material with water activity varying between < 0.8 and > 0.98 [37].

In 2004, the Damp Indoor Spaces and Health Committee of the Institute of Medicine
(IOM) reviewed and summarized the scientific evidence for relationships between indoor
air exposure and the development and exacerbations of asthma. It concluded among
several studies sufficient evidence of an association between damp indoor exposure and
certain respiratory health outcomes, but insufficient evidence of an association between
the presence of mold and the onset of asthma [38–40]. Conversely, the World Health
Organization (WHO) concluded the level of evidence was sufficient to suggest causality for
asthma development and “almost” sufficient for the exacerbation of asthma irrespective of
age group [21]. Although several studies have focused on refugee health in relation to the
built environment [41–48], none have investigated the evidence for correlations between
categories and conditions of settlements, and the type and prevalence of airborne mold
knowing that vulnerable and immunosuppressed individuals (children, the elderly, HIV
patients, pregnant women, and patients on immunosuppressive medication) account for
more than 60% of the Syrian refugee population which put them “at risk” from health
effects from exposure to elevated levels of pathogenic fungi [49–53]. Such information is
vital to refugee management for planning locations and types of settlements according
to season, resources, refugee demographics (composition and proportion of vulnerable
groups) and refugee health status. The aim of this study is thus to investigate correlations
between mold concentrations and the categories, structural conditions, occupancy and
moisture content of Syrian refugee shelters to evaluate the influence of each of these factors
on total indoor mold counts and abundance of specific mold genera.

2. Materials and Methods
2.1. Population Data

An original sample size representing the total number of registered refugee house-
holds by UNHCR was calculated to be 97 and rounded to 100 households with a 95%
confidence interval and a 10% error margin. Access to refugee households was limited by
geographical, logistical, and communication challenges. Consent for accessing the shelters
was obtained on the same day of sampling by each head of household. The sample size
was accordingly reduced to 80 refugee households due to these limitations. While random
selection was the method of recruitment, only Syrian refugee households residing in the
identified settlements were selected since other nationalities were also present, however,
did not share the current humanitarian and socio-political profile of refugees governed by
forced displacement and constricted temporary residency. Furthermore, an effort was made
to obtain a close representation of shelter classifications under residential, non-residential,
and non-permanent shelters (Table 1). Settlements were selected from four Lebanese
governorates using the beneficiaries’ database of Save the Children in Lebanon. House-
holds were anonymized and referenced as per Save the Children’s internal Memoranda of
Understanding established with the beneficiaries.
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Table 1. Distribution of Sampled Refugee Households (n = 80).

Governorate Area No. Households Residential Non-Residential Non-Permanent

Beirut Bourj Hammoud 20 20
Bekaa Bar Elias 20 2 18
South Abra 20 7 13
North Biret Akkar 20 20

The selected sample included non-residential (41.25%), non-permanent (22.5%), and
residential (36.25%) households. Non-residential households included classrooms, garages,
and storerooms; residential households included rented apartments and rooms in multi-
family buildings, while non-permanent households were informal tented settlements,
composed of detached structures made from timber, plywood ceilings and walls, draped
with cloth and plastic sheets (Figure 1). The floor area of these structures was approximately
45 m2 for single-family households and 100 m2 for multi-family households. The average
occupancy per household in all refugee shelters was 6 persons and children accounted for
more than 50% of the selected population. As for the control group, 20 residential standard
apartments were selected from the host population, representing indoor baseline conditions,
whereby 10 apartments were located in Beirut and 10 in Mount Lebanon. Accordingly,
the total sample size was 100 households with a 4:1 refugee to baseline control ratio. The
cross-sectional study covering sampling and moisture assessment was performed in the
spring season (May 2019).
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Figure 1. (Left) Aerial views of the Bourj Hammoud neighborhood in Beirut. (Right) and informal
tented settlements in the Bekaa Bar Elias region.

The selected households were naturally ventilated through windows in residential
and non-residential shelters, while non-permanent shelters (informal settlements) relied
on natural air infiltration through structural gaps and guided exhaust from small wall-
mounted fans. Shelters were further categorized based on structures such as concrete or
wood, and on conditions such as “Standard”, “Damaged”, “Unfinished”, or “Visible Mold”
(Table 2). Standard shelters are mainly residential apartments with intact structural integrity.
Damaged shelters, on the other hand, are any type of shelter that has cracks in walls and/or
ceilings, and/or a leaking roof. Unfinished shelters were rooms lacking insulation, floor
tiles and/or paint primer. The presence of visible mold patches was considered evidence of
fungal growth on building surfaces.
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Table 2. Shelter Condition.

Shelter Category Standard Damaged Unfinished Visible Mold

Residential
n = 29 5 1 4 19

Non-residential
n = 33 13 20

Non-permanent
n = 18 18

2.2. Mold Air Sampling and Enumeration

A walkthrough inspection was performed in every household prior to sampling [54].
Photographs of building structural integrity and conditions were taken, including visible
mold growth. Most shelters consisted of a single room and adjacent connected cooking
area and a shared toilet with low or absent interior walls. Images of visible mold growth
typically seen on residential and informal settlement walls and ceilings are shown in
Figures 2 and 3.
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An Andersen N6 single-stage impactor, consisting of 400 precision holes of 0.65 µm
cut-off diameter was placed on a tripod in the middle of the selected room at 1.5 m above
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the ground [55]. The impactor was connected to a Zefon® pump adjusted to 28.3 Liter
per minute (L/min) with 9 mm Sabouraud dextrose agar media plates placed inside the
impactor to collect samples. A total of 2 samples were taken for 5 min and another 2 for
2.5 min according to ISO standard methods (ISO 16000-17) [56,57]. An ambient outdoor
and a blank sample were collected to establish the ambient baseline concentrations for each
monitoring exercise. Control (field blank) samples were processed alongside samples and
treated in an identical manner for quality control [56]. Samples were incubated at 25 ◦C on
the day of collection and observed for colony growth at 24, 48, 72 and 96 h. Enumeration
was performed before the overgrowth of colonies. Positive hole correction to calculate a
probable count from the total raw count (assuming multiple particles can impact the same
hole) was applied to total counts before conversion to colony-forming units per cubic meter
(CFU/m3) [56,57]. Positive hole correction was calculated using the following formula:

Pr = N [1/N + 1/N − 1 + 1/N − 2 + . . . 1/N − r + 1]

where;
Pr is the expected number of viable particles to produce ‘r’ positive holes.
N is the total number of holes which is 400 in the case of the Andersen N6 single-stage

impactor.
Sampled volumes at 5 and 2.5 min were 141.5 L and 70.75 L, respectively. The concen-

tration of colony-forming units per cubic meter of air CI was calculated for each sample
according to the following formula [57]:

CI =
nCFU

VI

where;
nCFU is the total number of colony-forming units on the agar plates.
VI is the total sampling volume, in cubic metres.
To calculate the total concentration of molds in each location, the 4 sampled volumes

(2 × 141.5 L and 2 × 70.75 L) were added, as per the following formula:

CI =
n1CFU + n2CFU + n3CFU + n4CFU

VI1 + VI2 + VI3 + VI4

The indoor/outdoor ratio (i/o) was calculated by dividing the total indoor count by
the total outdoor count after positive hole correction adjustment.

2.3. Identification of Mold/Fungi

For the identification of indoor mold genera, a sample from distinctive colonies on the
Sabouraud dextrose agar was taken by means of an inoculating loop and placed on alcohol
covering the center of the microscopic slide. A total of 3 drops of lactophenol cotton blue
were used to stain the fungal culture and a cover slip was placed over the sample. Slides
were gently heated before microscopic examination at 100, 40 and 20× magnification to
identify mold genera. Microscopic structures were identified using the Atlas of Clinically
Important Fungi and the Pictorial Atlas of Soil and Seed Fungi [58–60]. Enumeration
of specific mold type was reported as CFU/m3, for the purpose of establishing possible
correlations between mold genera, and type and conditions of shelters.

2.4. Moisture Content

The moisture content of shelter material was determined using a Tramex® non-
destructive moisture meter using a scale of 5–30% moisture for wood structures and
0–100% scale for concrete structures. For concrete structures, an average of three readings
was taken for study locations around windows, on shelter floors and walls adjacent to
frequently damp environments (e.g., bathrooms and kitchens). For informal settlements,
moisture was measured on wood structures (e.g., beams and ceiling panels). Readings
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were collected once the device was firmly placed against the structure and moved around
until the highest reading was recorded [61].

2.5. Data Analysis

Descriptive statistics were used to determine the percentages of each mold present
within a household. Analysis of variance (ANOVA) was used to determine the statistical
significance of any differences between mean mold concentration, indoor/outdoor (I/O)
mold ratio and total indoor count (TIC), among different types of shelters. ANOVA was also
used to determine the statistical significance of any difference between the above-mentioned
variables among different observed shelter conditions.

Barlett’s test for equality of variances was used to account for unequal sample sizes.
Pearson correlation was used to determine associations between moisture content in

concrete for residential and non-residential shelters, and wood for non-permanent shelters
and the following parameters:

• Concentration of different mold types
• I/O ratio
• Total indoor count
• Occupancy

The adjusted p-value for all parts was determined using a regression test. The signifi-
cant model with high R2 and adjusted R2 was considered the final one.

To account for outliers in the selected sample, non-parametric analysis using the
Kruskal–Wallis test was conducted to determine the correlation between TIC and type
of shelter.

Similarly, robust regression was used to determine the correlation between TIC
and occupancy.

3. Results and Discussion
3.1. Mold Concentration

Aspergillus, Cladosporium, Penicillium, and Rhizopus spp. were the most prominent
genera in the 3 shelter categories and baseline households (Figure 4). The results revealed
that non-permanent shelters had the highest concentrations of Stachybotrys (8.6 CFU/m3),
Aspergillus (64 CFU/m3), Penicillium (223.4 CFU/m3), Pithomyces (7.5 CFU/m3) and Ulocla-
dium (3.9 CFU/m3) spp., indicating that the shelter structure influenced the abundance of
these genera. Furthermore, Cladosporium and Alternaria spp. (p < 0.01) were more abundant
in non-residential compared to non-permanent and residential shelters, and significantly
higher than baseline households. A final regression model (R2 = 56.32%) established be-
tween types of shelter and the most abundant mold genera revealed a significant association
(p < 0.001) with Aspergillus, Penicillium, and Stachybotrys spp., which may be considered as
predictors of informal architecture and design.

Rhizopus spp. was higher in non-residential shelters compared to other categories,
followed by controls, however, no significant association was found. The presence of Rhizo-
pus in control households may indicate that seasonal and psychometric factors influence
airborne concentrations, more than building material [62,63]. Additionally, despite the low
concentrations of Candida spp. in all types of shelters, controls were found to have the
highest counts and no significant association with refugee shelters. As seen with Rhizopus
spp., Candida spp. abundance was attributed to factors unrelated to building structure,
such as indoor emissions and/or human activity [58].

Health effects attributed to mold exposure include fungal infections, allergic rhini-
tis, asthma, hypersensitivity pneumonitis, interstitial lung disease, bronchopulmonary
aspergillosis, allergic fungal sinusitis, and organic dust toxic syndrome. The illnesses
and symptoms caused by such exposure range from flu-like syndromes and congestion
to interstitial or cavitary pneumonia and fibrosis [32,64–66]. Furthermore, some of the
identified genera, particularly Aspergillus and Penicillium spp., produce secondary myco-
toxins such as aflatoxins and ochratoxins which can cause adverse health effects in exposed
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humans [67–69]. Table 3 summarizes major symptoms and diseases associated with mold
exposure, adopted from Storey et al. (2004) Guidance for Clinicians [32]:
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Table 3. Clinical Outcomes of Mold Exposure.

Health Effects Illness/Symptoms

Fungal Infections Flu-like syndrome, interstitial or cavitary pneumonia,
meningoencephalitis, tinea cruris, corporis, and pedis.

Allergic Rhinitis and Asthma

Upper airway: clear rhinorrhea, nasal congestion,
sneezing, post-nasal drip with sore throat, coughing,
and hoarseness.
Lower airway: bronchospasm, chest tightness, and
shortness of breath.

Hypersensitivity Pneumonitis and
Interstitial Lung Disease

Extrinsic allergic alveolitis, farmer’s lung, Japanese
summer-house, cryptogenic fibrosing alveolitis,
idiopathic pulmonary fibrosis.

Bronchopulmonary Aspergillosis Eosinophilic pneumonia, mucous plugs, or
asthma exacerbations.

Allergic Fungal Sinusitis Polyposis

Allergic Dermatitis Dryness, pruritus, and skin rashes.

Irritation Cough, skin irritation, and burning or itching of the eyes
and nose.

Organic Dust Toxic Syndrome Flu-like syndrome with prominent respiratory
symptoms and fever.
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Simoni et al. (2005) reported a strong correlation between early childhood mold ex-
posure and the onset of respiratory disorders and asthma, more evident in children than
adolescents [70]. Furthermore, the Leipzig Allergy Risk Children Study (LARS) suggested
a significant association between respiratory tract infection and exposure to Penicillium
spores > 100 CFU/m3, and between allergic rhinitis and exposure to Aspergillus > 100 CFU/m3

in 200 children aged 36 months [71].
The majority (67%) of identified mold genera are commonly found in air samples of

moisture-damaged dwellings and in bulk samples of water-damaged building
material [72,73]. Damaged structures had the highest concentrations of Aspergillus and
Alternaria spp. (p < 0.05) compared to standard, unfinished and visibly mold-infested
shelters. Cladosporium spp. was highest and equally abundant in damaged and unfinished
shelters and lowest in standard shelters (p < 0.001). Compared to standard, damaged
and visible mold-infested shelters, unfinished shelters had the highest concentrations of
Penicillium and Rhizopus spp., however, this was not statistically significant (Figure 5).

Aerobiology 2023, 1, FOR PEER REVIEW  10 
 

 

   

   
   

Figure 5. Indoor Mold Abundance by Shelter Condition (mean ± std. error). 

0
50

100
150
200
250
300
350
400
450

Co
nc
en

tr
at
io
n 
CF

U
/m

3

Mold Genera

Damaged (n=14)

0
50

100
150
200
250
300
350
400

Co
nc
en

tr
at
io
n 
CF

U
/m

3

Mold Genera

Standard (n=5)

0

100

200

300

400

500

600

Co
nc
en

tr
at
io
n 
CF

U
/m

3

Mold Genera

Unfinished (n=24)

0

50

100

150

200

250

300

Co
nc
en

tr
at
io
n 
CF

U
/m

3

Mold Genera

Visible Mold (n=37)

Figure 5. Indoor Mold Abundance by Shelter Condition (mean ± std. error).

Among the 9 identified fungal genera, only Cladosporium (p < 0.05), Stachybotrys
(p < 0.001), and Ulocladium (p < 0.05) spp. were significantly associated with occupancy
(Table 4).

There were no significant correlations between concrete moisture content and mold
concentrations, except for Aspergillus spp. (R2 = 14.2%, p < 0.001), Penicillium spp. (R2 = 7.6%,
p < 0.05), and Cladosporium spp. (R2 = 9.3%, p < 0.05). However, a significant correlation was
observed between moisture content in wood and Stachybotrys spp. (R2 = 24.3%, p < 0.05)



Aerobiology 2023, 1 28

only (Figure 6). Although wood is used alongside concrete and other building materials in
residential and non-residential structures, it is the predominant material in non-permanent
shelters and unlike other shelter categories, it is exposed to moisture and environmental
conditions. The abundance of Stachybotrys spp. in non-permanent shelters could hence
be attributed to the bioreactivity of exposed wood and timber and would lead to material
biodeterioration as well as health implications [37,74,75].

Table 4. Correlation between mold concentrations and occupancy.

Genus Occupancy p-Value R2

Aspergillus 0.075 0.461 0.6%

Cladosporium 0.215 0.032 * 4.6%

Penicillium −0.015 0.879 0.02%

Alternaria 0.077 0.448 0.6%

Stachybotrys 0.337 <0.001 * 11.3%

Ulocladium 0.216 0.031 * 4.7%

Pithomyces −0.033 0.745 0.1%

Candida −0.033 0.743 0.1%

Rhizopus 0.014 0.893 0.02%
* p-value less than 0.05 is considered to be significant.
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concentration of Stachybotrys spp.
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3.2. Total Mold Indoor Count

Mean TIC was highest in non-residential (1112 CFU/m3), followed by non-permanent
(782 CFU/m3) and residential (733 CFU/m3) shelters (Figure 7). The Kruskal-Wallis test
revealed a significant association between TIC and the type of shelter (p < 0.05).
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Mean TIC (Figure 8) was significantly highest (1243 CFU/m3) in unfinished shelters
and lowest (411 CFU/m3) in standard shelters (p < 0.05). Furthermore, robust regression
performed to account for outliers in the sample also revealed a significant association
between TIC and occupancy (p < 0.05).

The outdoor air of the Bekaa region, where non-permanent settlements are established,
had the second highest mold count compared to other regions which could be caused by
outdoor concentrations of mold spores, reflecting higher infiltration and slow cross-flow
ventilation guided by exhaust fans inside the tents. The winter storms of (2018–2019) caused
flooding of shelters in most regions of Lebanon which damaged construction materials
especially non-permanent shelters. Poor building design of some residential and non-
residential shelters resulted in plumbing leaks and permeability of surfaces to moisture,
further exacerbating absorbance and retention in shelters. Nevertheless, one of the sources
of indoor mold growth, as determined from walkthrough observations of the settlements,
could be attributed to excessive moisture and dampness from human activity. This was
mainly observed in indoor line drying of laundry and wet floors from cleaning, dripping
laundry, bathing, and accidental spillage, all of which contribute to ambient humidity
following evaporation (Figure 9).

This was also evident as reflected by the significant association (R2 = 23.63%,
p < 0.001) between moisture content in concrete material and occupancy (Figure 10) suggest-
ing that human activity and indoor practices could influence moisture content in residential,
non-residential, and standard shelters where concrete is the predominant building material.
Nevertheless, the low R2 value indicates that occupancy reflected by human activity is just
one of the factors affecting moisture content in structural material. The sampled shelters
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are architecturally different from each other and their susceptibility to moisture or water
intrusion is determined by their design, age, and exposure to environmental factors [76,77].
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The concern for inadequate ventilation and human activity in self-built shelters was
also reported in a study conducted in 6 countries including Turkey and Jordan which host
Syrian refugees. Results revealed high concentrations of total volatile organic compounds
(TVOC = 102,400 µg/m3) and particulate matter (PM = 3000 µg/m3) mainly attributed to
cooking, smoking and poor aeration of the indoor environment [78].

3.3. I/O Ratio

The mean I/O ratio was higher than 1 in all sampled environments including controls.
The ratio was highest in residential shelters (10.1) followed by baseline households (10.9)
and non-residential shelters (3.6), and lowest in non-permanent shelters (1.8), with no
significant association with types of shelters. In relation to shelter condition, the I/O ratio
was highest in structurally damaged shelters (13.8) followed by standard (9.6), visible
mold (6.8), and unfinished shelters (4.4), with no significant associations, however. No
association between moisture content and the I/O ratio was concluded. As for occupancy,
there was a slightly negative correlation with the I/O ratio.

The outcomes can be attributed to the fact that outdoor concentrations vary depending
on several factors and vastly influence the I/O ratio. Outdoor conditions due to weather or
activity may suppress the release of spores from outdoor sources leading to higher indoor
concentrations albeit indoor sources of potential fungal growth may be absent [79]. Addi-
tionally, the exceedances in I/O ratios could be due to single-sided ventilation prevalent in
residential shelters compared to other categories [21].

Although mold is present in non-refugee households, sources of moisture are often re-
mediated in residences with better socioeconomic status. Refugees, on the other hand, lack
the privilege of improving living conditions, mainly due to prioritization of expenditure.
Since remediation can be costly to refugee households and non-governmental agencies,
household demographics and medical conditions should be taken into consideration dur-
ing shelter assignment. Some remediation measures, however, are less costly than others
such as in the case of non-permanent shelters where replacing water-damaged porous
material such as wood could potentially reduce mold in indoor air. Finally, considering the
large refugee population size vis-à-vis the availability of standard shelters, NGOs should
focus on securing budgets to standardize the living conditions of refugee households
and prioritize those with immunocompromised members. Accordingly, efforts must be
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made to develop a universal design for temporary shelters, accounting for ventilation and
psychrometric requirements for human occupancy.

4. Conclusions

This study revealed several significant associations between categories of shelter and
mold concentrations and has further established strong associations between certain mold
types and shelter conditions. The aim of this study was to identify environmental risks
associated with Syrian refugee shelters in Lebanon, focusing on indoor mold populations,
and for NGOs to present local authorities and policymakers with scientific evidence of
alarming nature and address a public health concern that may add to the existing burden
on the national health system.

The shelter conditions in which Syrian refugees are residing are potential sources of
diseases related to mold exposure. Several studies and international agencies including
the World Health Organization have recommended remediating the sources of moisture
and dampness to prevent microbial growth [21,80,81]. Cooperation, collaboration and
international investment from humanitarian agencies and policymakers are imperative to
establish adequate housing to protect the health and well-being of Syrian Refugees.

5. Limitations and Future Research

The study did have its limitations, more specifically, data was inherently impacted
by outliers which require future studies to expand the sample size and account for indoor
and outdoor influencing factors for mold. The study did not address seasonal variation in
mold concentrations as it was performed only in the Spring season. Additionally, moisture
content and dampness should ideally have been assessed more frequently to better reflect
extreme weather events such as flooding over the winter period preceding sampling, as
this increases background moisture levels. The I/O ratio should also be established for
identified mold genera as the study only reported total outdoor counts without details on
outdoor populations. Nevertheless, indoor microorganisms and dampness will persist in
Syrian Refugee shelters in Lebanon and will worsen without proper intervention including
improved ventilation and dilution. This investigation shows the vulnerability of shelters to
climatic and environmental factors which worsen living conditions and indoor air quality.
Further epidemiological studies, including in-depth investigation of fungal species and
reported illnesses, are thus needed to determine the quantitative impact of these factors on
the health of refugees, involving the cooperation of all stakeholders, particularly clinicians
with access to health information for refugees, to determine whether indoor air quality is
significantly influencing the health and wellbeing of this population.
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