
SUBMITTED FOR REVIEW 1

MARS: a DRL-based Multi-task Resource
Scheduling Framework for UAV with IRS-assisted

Mobile Edge Computing System
Feibo Jiang, Member, IEEE, Yubo Peng, Kezhi Wang, Senior Member, IEEE, Li Dong, Kun Yang, Fellow, IEEE

Abstract—This paper investigates a dynamic Mobile Edge
Computing (MEC) system enhanced by Unmanned Aerial Ve-
hicles (UAVs) and Intelligent Reflective Surfaces (IRSs). We
introduce a scalable resource scheduling algorithm aimed at
reducing energy consumption for all User Equipments (UEs)
and UAVs within the MEC system, accommodating a varying
number of UAVs. To address this challenge, we present a Multi-
tAsk Resource Scheduling (MARS) framework that employs
Deep Reinforcement Learning (DRL). Firstly, we present a
novel Advantage Actor-Critic (A2C) structure with the state-
value critic and entropy-enhanced actor to reduce variance and
enhance the policy search of DRL. Then, we present a multi-head
agent with three different heads in which a classification head
is applied to make offloading decisions and a regression head is
presented to allocate computational resource, and a critic head is
introduced to estimate the state value of the selected action. Next,
we introduce a multi-task controller to adjust the agent to adapt
to the varying number of UAVs by loading or unloading a part
of the weights in the agent. Finally, a Light Wolf Search (LWS)
is introduced as the action refinement to enhance the exploration
in the dynamic action space. Numerical results demonstrate the
feasibility and efficiency of the MARS framework.

Index Terms—Mobile edge computing (MEC), intelligent re-
flecting surface (IRS), unmanned aerial vehicle (UAV), deep
reinforcement learning (DRL), resource scheduling.

I. INTRODUCTION

Over the past few years, computationally intensive and
low-latency applications have experienced significant growth.
These applications demand short response time and substantial
computational resource, and encompass areas such as au-
tonomous driving, mixed reality, and the metaverse. This poses
a significant challenge for User Equipment (UE) to process
these tasks locally. Mobile Edge Computing (MEC) [1] has
revolutionized the way that computing tasks are handled on

This work was supported in part by the National Natural Science Foundation
of China under Grant nos. 41604117, 41904127.

Feibo Jiang (jiangfb@hunnu.edu.cn) is with Hunan Provincial Key Labora-
tory of Intelligent Computing and Language Information Processing, Hunan
Normal University, Changsha, China.

Yubo Peng (pengyubo@hunnu.edu.cn) is with School of Information Sci-
ence and Engineering, Hunan Normal University, Changsha, China.

Kezhi Wang (Kezhi.Wang@brunel.ac.uk) is with the Department of Com-
puter Science, Brunel University London, UK.

Li Dong (Dlj2017@hunnu.edu.cn) is with Changsha Social Laboratory
of Artificial Intelligence, Hunan University of Technology and Business,
Changsha, China.

Kun Yang (kunyang@essex.ac.uk) is with the School of Computer Science
and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, U.K.,
also with Changchun Institute of Technology.

mobile devices, allowing UEs to offload computationally in-
tensive tasks to nearby servers. However, deploying stationary
MEC servers on the ground may not be cost-effective, espe-
cially in temporary, unexpected, or emergency situations [2].
Hence, researchers have proposed an innovative system: Un-
manned Aerial Vehicle (UAV)-assisted MEC. This approach
enables the delivery of flexible and efficient computation and
communication services to the ground UEs [3]. Despite these
benefits, physical signal obstructions and interference from tall
buildings and other obstacles can cause frequent disruptions
in wireless communication channels between UAVs and UEs.

Intelligent Reflecting Surface (IRS) technology has emerged
as a leading research and development focus in wireless com-
munication. By modifying the amplitude and phase of incident
signals through a number of affordable passive reflecting
elements, IRS can enhance network performance within the
propagation environment [4]. Notably, IRS consumes con-
siderably less energy than alternative approaches like active
relays. In UAV-assisted MEC systems, IRS can be deployed on
building facades, enabling efficient signal reflection between
UAVs and UEs even when faced with connection obstructions.

Although UAV and IRS-assisted MEC systems present
numerous benefits, they still face challenges that should be
addressed: (1) Resource allocation generally involves contin-
uous variables, while offloading decisions comprise integer
variables, leading to a Mixed-Integer Nonlinear Programming
(MINLP) problem [5]. Such problems are difficult to manage
using traditional techniques. (2) The wireless environment
becomes increasingly complex as the number of UEs and
UAVs varies, particularly when incorporating IRS elements
in UAV-assisted MEC systems.

As a result, we propose a dynamic UAV with IRS-assisted
MEC system. We introduce a Multi-tAsk Resource Scheduling
(MARS) framework based on deep reinforcement learning
(DRL) to minimize energy consumption for both UEs and
UAVs, considering a variable number of UAVs in the system.
The MARS framework achieves online resource scheduling
by jointly optimizing UAV location, offloading decisions,
resource allocation, and a phase-shifted diagonal matrix. The
key contributions of the study are summarized as follows:

• A2C structure: We introduce a novel Advantage Actor-
Critic (A2C) structure with the state-value critic and
entropy-enhanced actor. In the critic network, we use
advantage value to reduce variance in the learning process
of DRL. In the actor network, we apply policy entropy
to enhance the policy learning of DRL.

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works by
sending a request to pubs-permissions@ieee.org. See: https://www.ieee.org/publications/rights/rights-policies.html

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 2

• Multi-head agent: We design a multi-head agent with
three output heads, in which a classification head is
applied to make offloading decisions and a regression
head is presented to allocate computational resource in
the actor network, and a critic head is introduced to
estimate the state value of the selected action in the critic
network.

• Multi-task controller: We present a multi-task controller
to adjust the agent for adapting to the varying number of
UAVs. In the multi-task controller, we perform pruning
and network retraining to sequentially pack the resource
scheduling knowledge of multiple UAVs into the multi-
head agent. The agent can reuse the stored resource
scheduling knowledge by loading or unloading a part of
weights when the number of UAVs is changing without
retraining the agent.

• LWS refinement: We incorporate the action refinement
into the proposed A2C structure to improve the explo-
ration and accelerate the search for the best policy in the
dynamic action space. A Light Wolf Search (LWS) is
introduced as the action refinement module and a light
wolf driven by the channel gains is applied to guide the
wolf pack for enhancing the global policy search.

The remainder parts are as follows: Some related works are
reviewed in Section II. Section III describes the system model
and problem formulation. Section IV captures the architecture
of the MARS framework. Numerical results are conducted in
Section V, and finally, Section VI draws conclusions.

II. RELATED WORKS

A. Resource Allocation in IRS Aided Communication Systems

In [6], researchers explored the fundamental capacity con-
straints of IRSs, optimizing both the IRS reflection matrix and
resource allocation to boost system performance while taking
into account factors such as maximum reconfiguration times.
[7] employed three Reinforcement Learning (RL)-driven tech-
niques to tackle issues in three distinct IRS scenarios, resulting
in dynamic resource allocation for each grant-free user. [8] in-
vestigated an IRS-supported wireless-powered communication
network and presented three beamforming schemes to enhance
overall system efficiency. [9] introduced an innovative IRS-
assisted coordinated multi-point system, aiming to optimize
energy efficiency. [10] focused on devising optimal resource
allocation algorithms for large-scale IRS-assisted systems that
improve concurrent wireless information exchange and energy
transfer. [11] studied the deployment of the IRS approach, suc-
cessfully increasing efficiency in wireless energy transmission
and task offloading while addressing challenges in wireless
connections between hybrid access points and IoT devices.

B. Resource Allocation in UAV Aided Communication Systems

In [12], a resource allocation strategy for UAV networks
was proposed, employing multi-agent cooperative environment
learning to enhance system performance. The study of [13]
integrated UAVs’ advantages with Ultra-Reliable Low-Latency
Communication (URLLC) systems, primarily aiming to boost
the transmission rate of the backward link. [14] presented a

tiered network architecture based on a UAV swarm, skillfully
managing sensing, computing, and communication resources
simultaneously, thereby increasing computing effectiveness.
Considering the limited energy resource of UAVs, [15] ex-
plored techniques for reducing overall power consumption
during training by jointly optimizing factors like local training
parameters and resource allocation. To address the different
Quality-of-Service (QoS) requirements for tasks and maximize
the number of completed tasks, [16] developed a multi-agent
proximal policy optimization-based method that simultane-
ously optimized UAV resource allocation and task offloading
to achieve these objectives.

C. Resource Allocation in MEC Systems

Also, reference [17] suggested two resource allocation
strategies aimed at optimizing the total computational bits
for IoT devices, enhancing the system’s computational en-
ergy efficiency. To reduce the combined computational and
communication overhead associated with joint offloading and
resource allocation strategies in vehicular systems, [18] ap-
plied a decentralized RL approach based on value iteration.
[19] studied dynamic resource management in MEC-assisted
railway IoT networks, highlighting the integration of subcarrier
allocation, offloading ratios, power distribution, and computa-
tional resource assignment. Additionally, [20] analyzed a data
processing scenario within IoT architecture, aiming to improve
long-term average system utility through the joint optimization
of communication resource allocation, data generation and dis-
card strategies, and computational resource allocation. In [21],
resource allocation challenges in a proposed millimeter-wave
(mmWave) MEC system with dynamic offloading processes
were explored. To address these issues, the authors introduced
a matching-aided-learning resource allocation framework. Au-
thors in [22] presented a harvest-and-offload protocol that
jointly considered wireless energy transfer and computation
offloading to minimize total energy consumption.

Despite the advances in the aforementioned studies, few
papers explored the UAV and IRS-assisted MEC systems with
a variable number of UAVs operating in fast-fading channel
conditions. Multi-task learning demonstrates effectiveness in
dynamic environments. Therefore, we introduce a MARS
framework applied to UAV and IRS-assisted MEC systems
that can achieve real-time resource scheduling in dynamic
environments.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The system model for a UAV with IRS-assisted MEC
system is depicted in Fig. 1. In this system, we assume there
are N UEs, represented by the set N = {1, 2, . . . , N}, with
each UE having a computational task to execute. The UEs are
randomly distributed. We also consider L IRSs, represented
by the set L = {1, 2, . . . , L}, deployed on buildings. In
addition, there are several UAVs, denoted by the set M =
{1, 2, . . . ,M}, equipped with edge servers. A control center
or central cloud collects environmental information (e.g., the
number of UEs, IRSs, and UAVs, channel state information,
etc.) and task information (e.g., the task’s data size and

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 3

required computing resource). The central cloud is responsible
for resource scheduling in the system. Since the amount of
collected information is relatively small, the communication
overhead of the central cloud is not considered in this study.

Fig. 1: UAV with IRS-assisted MEC network.

A. MEC Model
We assume that there is a computationally intensive task Ai

on each UE, which can be expressed as:

Ai = (Di, Fi) , ∀i ∈ N (1)

where Di denotes the data size needing transmission to the
UAV for execution, and Fi represents the total number of
required CPU cycles for the task.

Each UE can either offload the entire task to a single UAV
or execute it locally. We denote local execution with aloci , and
offloading the task to the j-th UAV with auavij . We have the
following constraints:

C1 : aloci ∈ {0, 1}, ∀i ∈ N (2)

C2 : auavij ∈ {0, 1}, ∀i ∈ N , ∀j ∈ M (3)

where aloci = 0 implies that the i-th UE does not execute
the task locally, whereas aloci = 1 indicates that the i-th UE
chooses local execution. Similarly, auavij = 0 represents that
the i-th UE does not offload the task to the j-th UAV, and
auavij = 1 otherwise. We assume that each UE can select only
one place to execute the task, thus we have the following
constraint:

C3 : aloci +
∑
j∈M

auavij = 1, ∀i ∈ N . (4)

1) Local Computing: The execution time for local comput-
ing at the i-th UE is given by:

T loc
i =

Fi

f loc
i

, ∀i ∈ N (5)

where f loc
i denotes the local computation capacity of the i-th

UE, measured in CPU cycles per second. The computational
capacity of the i-th UE is limited by:

C4 : aloci f loc
i ≤ F loc

i,max, ∀i ∈ N (6)

where F loc
i,max represents the maximum local computation

capacity of the i-th UE.
Energy consumption during the local computing phase is

expressed as:

Eloc
i = γ1

(
f loc
i

)v1−1
Fi, ∀i ∈ N (7)

where γ1 ≥ 0 represents the effective-switched capacitance,
and v1 ≥ 1 denotes a constant. To maintain consistency with
practical measurements, we assign the values γ1 = 10−27 and
v1 = 3 [23].

2) Remote Computing: The time of task execution for the
i-th UE at the j-th UAV is expressed as:

Tuav
ij =

Fi

fij
, ∀i ∈ N , ∀j ∈ M (8)

where fij represents the computation capacity provided by the
j-th UAV to the i-th UE. The energy consumption during the
remote computing phase is:

Euav
ij = γ2 (fij)

v2−1
Fi (9)

where γ2 ≥ 0 is the effective-switched capacitance, and v2 ≥ 1
is a constant. We set γ2 = 10−28 and v2 = 3 [23].

Due to the fact that the computation capacity provided by
each UAV is limited, the constrained computational resource
of the j-th UAV can be expressed as:

C5 :
∑
i∈N

auavij fij ≤ Fuav
j,max ∀j ∈ M (10)

where Fuav
j,max indicates the total computation capacity of the

j-th UAV.

B. IRS Model

Assume that UEs are located in a prosperous environment
with many tall buildings, and the direct links of UAVs are
blocked, which suffer from severe path loss. Deploying IRSs
on the building surface can improve the communication quality
between the UEs and the UAVs. Assume each IRS has several
reflecting elements denoted as K = {1, 2, . . . ,K}, and all
of the reflecting elements can improve the communication
quality by adjusting the phase shift of the incident signal.
We assume that only one IRS is applied to help one UE
with communication. The coordinate of the l-th IRS can be
denoted as

(
XR

l , Y R
l , ZR

l

)
, the coordinate of the i-th UE can

be represented as
(
XU

i , Y U
i , ZU

i

)
, the coordinate of the j-th

UAV can be denoted as
(
XM

j , Y M
j , ZM

j

)
. Thus, the distance

from the i-th UE to the l-th IRS is expressed as:

dU,R
i,l =

√(
XU

i −XR
l

)2
+
(
Y U
i − Y R

l

)2
+
(
ZU
i − ZR

l

)2
.

(11)

Likewise, the distance from the l-th IRS to the j-th UAV
can be calculated as:

dR,M
l,j =

√(
XM

j −XR
l

)2
+
(
Y M
j − Y R

l

)2
+
(
ZM
j − ZR

l

)2
.

(12)

We assume that the communication link between the i-th UE
and the j-th UAV is divided into two parts: the initial UE-IRS
link, followed by the IRS-UAV link. Assuming that each UE

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 4

exclusively uses a single IRS for signal transmission. Hence,
the channel gain corresponding to the UE-IRS link for the i-th
UE is denoted as hU,R

i,l . The channel gain of the UE-IRS link,
hU,R
i,l ∈ CK×1, can be expressed as:

hU,R
i,l =

√√√√ β(
dU,R
i,l

)α [1, e−j 2π
λ dϕU,R

i,l , . . . , e−j 2π
λ [K−1]dϕU,R

i,l

]T
(13)

where α represents the path loss exponent of the channel used
from the i-th UE to the l-th IRS, while β is the path loss
at the reference distance of one meter. Additionally, ϕU,R

i,l =
|XU

i −XR
l |

dU,R
i,l

indicates the cosine of the Angle Of Arrival (AOA)

of the signal transmitted between the i-th UE and the l-th IRS.
We assume that each UE can offload its tasks to a single

UAV, hence the channel gain for the IRS-UAV link for the i-th
UE is represented as hR,M

l,j ∈ CK×1. This can be calculated
by:

hR,M
l,j =

√√√√ β(
dR,M
l,j

)2 [1, e−j 2π
λ dϕR,M

l,j , . . . , e−j 2π
λ [K−1]dϕR,M

l,j

]T
(14)

where the right term in Eq. (14), represents the array response
for the l-th IRS, which contains K reflective components.
d is the antenna separation distance between two elements,

while ϕR,M
l,j =

|X R
l −XM

j |
dR,M
l,j

denotes the cosine of the Angle Of

Departure (AOD) for the signal transmitted between the j-th
UAV and the l-th IRS. λ represents the carrier wavelength.

We assume that there are K elements in each IRS, and the
phase shift of the k-th reflecting element of the l-th IRS is de-
noted by θk,i,l,j ∈ [0, 2π). Therefore, we have a phase-shifted
diagonal matrix for the IRS-assisted signal transmission, which
can be denoted as Θi,l,j = diag

{
ejθk,i,l,j ,∀k ∈ K

}
.

When the i-th UE decides to offload the task to the j-th
UAV by the l-th IRS, the whole channel gain of the UE-UAV
link can be expressed as:

Hij = (hU,R
i,l)TΘi,l,jh

R,M
l,j , ∀i ∈ N ,∀j ∈ M. (15)

For any pair of UE and UAV, the data transmission rate can
be formulated as:

rij = B log2

(
1 +

P tra
ij |Hij |2

σ2

)
(16)

where B denotes the channel’s bandwidth; P tra
ij is the trans-

mission power utilized between the i-th UE and j-th UAV,
as derived from [24]; σ2 serves as an indicator of noise
spectral density. Importantly, we operate under the assumption
that UEs allocate tasks to the UAV employing Orthogonal
Frequency Division Multiplexing (OFDM) channels, thus ef-
fectively mitigating any interference between the devices.

Then, the transmission time can be expressed as:

T tra
ij =

Di

rij
, ∀i ∈ N ,∀j ∈ M. (17)

Hence, the energy consumption during transmission can be
calculated as:

Etra
ij = P tra

ij T tra
ij . (18)

C. UAV Model

When the j-th UAV hovers at a fixed position, the consumed
energy can be approximated as:

Ehov
j = Phov

j Thov
j (19)

where Phov
j means the hover power of the j-th UAV, and Thov

j

means the hover time of the j-th UAV.
The energy consumption during the UAV’s flight can be

denoted as

Efly
j = P fly

j

Lj

vj
(20)

where P fly
j denotes the power required for the j-th UAV’s

flight, Lj is the flight distance of the j-th UAV, and vj
represents the constant flight velocity of the j-th UAV.

D. Problem Formulation

Our objective is to minimize the cumulative energy con-
sumption for the UAV with IRS-assisted MEC system. There-
fore, the associated optimization issue can be formulated as
follows:

P0 : min
p,a,f ,Θ

∑
i∈N

aloci Eloc
i +

∑
j∈M

auavij Etra
ij

+
∑
j∈M

(
η1E

hov
j + η2E

fly
j +

∑
i∈N

auavij Euav
ij

)

s.t. C1− C5 (21)

where p =
{
XM

j , Y M
j , ZM

j

∣∣j ∈ M
}

are the locations of
UAVs, a =

{
aloci , auavij

∣∣i ∈ N , j ∈ M
}

is the offloading
decision, f =

{
f loc
i , fij

∣∣i ∈ N , j ∈ M
}

is the computing
resource allocation, Θ = {Θi,l,j |i ∈ N , l ∈ L, j ∈ M} rep-
resents the phase-shifted diagonal matrix for the IRS-assisted
signal transmission, and η1 and η2 are weight coefficients.

IV. THE MARS ALGORITHM

We introduce a DRL-based MARS architecture designed
to minimize energy consumption for all UEs and dynamic
UAVs in an IRS-assisted MEC system. The MARS framework
operates as follows: The central cloud gathers information
about the environment and tasks, runs the MARS algorithm,
adjusts the UAV positions and IRS phase-shift matrices, and
determines real-time task offloading and resource allocation
for each UE. Under the guidance of the central cloud, every
UE offloads tasks to the appropriate UAV and receives the
results afterward.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 5

Algorithm 1 MARS framework

Input: Di,t, Fi,t.
Output: (XM

j,t , Y
M
j,t , Z

M
j,t),Θi,l,j,t, ai,j,t, fi,j,t.

1: Initialize the parameters θm of the multi-head agent for
m UAVs randomly.

2: Initialize a replay buffer R.
3: Set the iteration number TAC .
4: while t < TAC do
5: if the number of UAVs has changed then
6: Adjust the parameters θm,t of the multi-head agent

by multi-task controller.
7: Optimize the locations (XM

j,t , Y
M
j,t , Z

M
j,t) of UAVs by

LS-FCM algorithm.
8: end if
9: for i = 1, . . . , N do

10: Calculate the phase-shifted diagonal matrix Θi,l,j,t

by Eq. (24).
11: Take the action Ai,t ∼ πθm,t

(·|Si,t) by the forward
propagation process of the multi-head agent.

12: Add Ai,t to the epoch register.
13: end for
14: Execute action At, receive reward Rt and the next state

St+1.
15: Evaluate the current solution At, and execute the offline

learning stage when the current solution is abominable.
16: Search the optimal action A∗

t from the initial action At

by Algorithm 2.
17: Append the transition

{
Si,t,A∗

i,t,Ri,t,Si,t+1

}
of all

UEs to the replay buffer R.
18: Sample a batch of transitions by prioritization experi-

ence replay strategy.
19: Feed the sampled transitions to the multi-head agent.
20: Train the multi-head agent and update the parameters

θm,t by the backpropagation process of the multi-head
agent.

21: end while

A. Algorithm Overview

The MARS framework workflow, as described in Algo-
rithm 1, assumes UAVs are redeployed only when their
number changes in order to save the flight energy. By using
the large-scale path-loss fuzzy c-means clustering algorithm
(LS-FCM) to optimize UAV locations, we obtain p in P0
[25], based on large-scale path-loss factors. Following that,
we adopt a quantitative passive beamforming approach to de-
termine the phase-shifted diagonal matrix Θ, considering the
positions of UAVs and UEs. Finally, we develop a novel A2C
algorithm to generate offloading decisions a and computational
resource allocations f for all UEs.

The structure of the DRL part of the MARS framework
is illustrated in Fig. 2. The key elements of the DRL in the
MARS framework are described as follows:

• State: St = {Si,t|i ∈ N} denotes the environment
information of the i-th UE at time t, where Si,t =
{Hi,t, Di,t, Fi,t}. Hi,t = {hi,j,t|j ∈ M} represents the
channel gain between the i-th UE and all UAVs, while

Di,t and Fi,t signify the task attributes of the i-th UE.
• Action: At = {Ai,t|i ∈ N} defines the resource

scheduling decision of the i-th UE at time t, where
Ai,t = {ai,t, fi,t}, ai,t ∈ N indicates user association,
and fi,t ∈ R denotes the allocated resource for the i-th
UE.

• Reward: Ri,t is the reciprocal of the i-th UE’s task energy
consumption, and Rt denotes the objective function’s
reciprocal at time t.

• Transition: {Si,t,Ai,t,Ri,t,Si,t+1} is stored in the replay
buffer and employed for updating the agent’s policy. The
First In First Out (FIFO) strategy manages transition
updates in the replay buffer.

In the following, more details of four main parts in the
MARS framework are introduced: (1) A quantitative passive
beamforming method (detailed in Section IV-B) is introduced
to solve the phase-shifted diagonal matrix according to the
positions of UAVs and UEs. (2) A multi-head agent (detailed
in Section IV-C) is designed to solve the formulated MINLP by
A2C learning. (3) A multi-task controller (detailed in Section
IV-D) is presented to adjust the structure of the multi-head
agent when the number of UAVs is changed without retraining
the whole neural network. (4) A novel LWS (detailed in
Section IV-E) is applied to enhance the action exploration
of the DRL and accelerate the learning process in dynamic
environments.

B. Quantitative Passive Beamforming

We apply a quantitative passive beamforming method to
optimize the phase shift matrix of IRSs. Specifically, Eq. (14)
can be transformed into the following equation:

hR,M
l,j =

[∣∣∣hR,M
l,j

∣∣∣ ejωR,M
l,j,1 ,

∣∣∣hR,M
l,j

∣∣∣ ejωR,M
l,j,2 , . . . ,

∣∣∣hR,M
l,j

∣∣∣ ejωR,M
l,j,k

]T
(22)

where
∣∣∣hR,M

l,j

∣∣∣ is the magnitude and ωR,M
l,j,k ∈ [0, 2π) denotes

the phase shift of the k-th reflecting element from the j-th
UAV to the l-th IRS. Also, Eq. (13) can be transformed into
the following equation:

hU,R
i,l =

[∣∣∣hU,R
i,l

∣∣∣ ejωU,R
i,l,1 ,

∣∣∣hU,R
i,l

∣∣∣ ejωU,R
i,l,2 , . . . ,

∣∣∣hU,R
i,l

∣∣∣ ejωU,R
i,l,k

]T
(23)

where
∣∣∣hU,R

i,l

∣∣∣ is the magnitude and ωU,R
i,l,k ∈ [0, 2π) denotes the

phase shift of the k-th reflecting element from the l-th IRS to
the i-th UE.

To simplify our approach, we consider discrete phase shift
angles in the study. The IRS phase shift, θk,i,l,j , can be
selected from the set Ψ ≜ { 2π

Np
i|i = 0, 1, . . . , Np − 1}, where

Np represents the number of phase shift values available for
each element. By coherently combining signals from different
paths at the UAV, the resulting signal maximizes the received
power and achievable rate. Therefore, we optimize the phase
shift θk,l,i,j for the k-th reflecting element of the l-th IRS

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 6

Fig. 2: The DRL part of the MARS framework.

between the i-th UE and the j-th UAV using the following
equation [26]:

θk,i,l,j = argmin
θ
′
k,i,l,j∈Ψ

∣∣∣θ′

k,i,l,j −
(
ωR,M
l,j,k + ωU,R

i,l,k

)∣∣∣. (24)

C. Multi-head Agent

We propose an A2C structure with a multi-head agent to
address the proposed MINLP. The multi-head agent features
two networks, each with three heads. The critic head calculates
the state-value function for actions, while the actor head
predicts resource allocation and offloading decisions. During
the learning process, the actor and critic networks share
parameters in their shallow parts to extract common features.
They then independently adjust subsequent parameters to learn
the unique features of each head, respectively. Fig. 3 illustrates
the structure of the multi-head agent.

Fig. 3: The multi-head agent.

1) Forward propagation process: In Fig. 3, the multi-head
agent has L shared layers and each task has K independent
layers. The output of the ℓth shared layer can be described as
follows:

Oℓ = ReLU (WℓOℓ−1 + bℓ) (25)

where Wℓ means the weights of the ℓ-th shared layer and
the bℓ means the biases of the ℓ-th shared layer, ReLU is the
activation function.

The output of the k-th independent layer of the j-th head
can be represented as:

Oj,L+k = ReLU (Wj,L+kOj,L+k−1 + bj,L+k) (26)

where Wj,L+k means the weights of the k-th independent
layer for the j-th head and the bj,L+k means the biases of the
k-th independent layer for the j-th head.

The output layer of the j-th head can be represented as:

Oj,L+K =

Sigmoid (Wj,L + KOj,L+K−1 + bj,L+K) ,
For the regression head in the actor.

Softmax (Wj,L+KOj,L+K−1 + bj,L+K) ,
For the classification head in the actor.

Wj,L + KOj,L+K−1 + bj,L+K ,
For the critic head.

(27)

where Wj,L+K means the weights of the output layer for the
j-th head and bj,L+K means the bias of the output layer for the
j-th head. Sigmoid and Softmax are the activation functions.

2) Back propagation process: In our study, the critic head
is presented to calculate the state-value function of the action.
Hence, the advantage value can be calculated as:

δt = Rt + (Vωt(St+1)− ηt)− Vωt(St) (28)

where ηt is the discount factor for the state-value function
Vωt(St+1). The advantage value highlights the difference
between the action-value and state-value functions. Thus,
actions with smaller advantage values are less likely to occur,
effectively lowering the overall variance [27].

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 7

The loss function of the critic head can be expressed as:

Lc =
1

Z

Z∑
k

δ2k (29)

where Z is the number of selected transitions.
The actor network consists of a regression head for the

resource allocation and a classification head for the offloading
decision. Hence, we can solve the original MINLP problem
with two different heads efficiently.

In the classification head, the loss function of the user
association is cross-entropy loss which can be expressed as:

La =
1

Z

Z∑
k

−
M∑
j=1

ykj log pkj

 (30)

where ykj is an indicator variable, ykj = 1 means that the
true label is same as the predicted label, and pkj denotes the
probability that the k-th transition belongs to the j-th class.

In the regression head, the loss function of the resource
allocation is Mean Square Error (MSE) loss which can be
expressed as:

Lf =
1

Z

Z∑
k

(
f̂k − fk

)2
(31)

where f̂k means the predicted computational resource and fk
means the true computational resource.

The shared layers of the multi-head agent can be updated
by:

θt+1 = θt + αt
1

Z

Z∑
k

∇θt log πθt (Ak|Sk) (δk)+

βt
1

Z

Z∑
k

(∇ωt(δk)
2) + γt

1

Z

Z∑
k

∇θtH(πθt (Sk))

(32)

where αt is the learning rate of the actor network, βt is the
learning rate of the critic network, H(·) is the entropy of the
policy πθt

, and its learning rate is γt. Policy entropy assigns
the exploration probability according to the advantage value
of the action, thus making the agent could explore various
actions as much as possible, implying that various state will
also be explored [28].

D. Multi-task Controller

Multi-task learning is a machine learning method that puts
multiple related tasks together to learn [29]. We consider a
dynamic MEC system in which the number and positions of
UAVs are variable, and we should memorize the offloading
knowledge of different UAVs in the agent. Therefore, we
design a novel multi-task controller to meet this challenge. The
basic principle of the multi-task controller is to design different
learning tasks for different numbers of UAVs, then adjust
the structure of the network for different learning tasks. For
enhancing the learning efficiency, we free up redundant param-
eters for each task in the network, so that we can sequentially
”pack” multiple tasks into a single network while ensuring

minimal performance degradation. This structure can naturally
accumulate experiences for varying numbers of UAVs and is
immune to catastrophic forgetting. The detailed process of the
multi-task controller can be described as follows:

1) Network training: We initialize the agent and train it
for the scenario with the minimum number of UAVs (Task 1).
Taking into account network redundancy, after the network
training is finished, we delete a certain number of weights.
At this point, the performance of the network degrades due to
the pruning in the network structure, and then we continue to
fine-tune the network until the performance of the network is
optimal on Task 1. Then, we increase the number of UAVs in
the scenario for learning as a new Task 2. On the one hand,
we freeze the weights of Task 1 and train all the remaining
parameters as the initial weights of Task 2. After the network
training is completed, a part of the weights is deleted, and then
we fine-tune the network again until the network performance
is optimal on Task 2. We then repeat the process until all tasks
are trained or the network with no extra free weights.

2) Network pruning: We delete the weights of the agent by
network pruning and get a high-performance multi-head agent.
In the pruning process of each task, we arrange the weights of
each layer by absolute value and remove the smallest weights
in a fixed proportion, and then we add a small number of
random weights for exploration. It is important to note that
we only prune the weights of the current task, not the weights
of the previous tasks. This allows the weights of the previous
tasks to be used in the later task, but the weights of the later
task do not interfere with the previous tasks. This mechanism
ensures that when training a new task, the knowledge of old
tasks is retained and the performance of old tasks does not
change, thus avoiding catastrophic forgetting.

3) Network inference and adjustment: After the training
of all tasks in the agent is completed, we will select the
corresponding task weights according to the number of UAVs
in the current scenario, so that the network structure of
the current task corresponds to the number of UAVs. Then
the offloading decision and resource allocation are generated
according to the current network structure.

The adjustment process of the multi-task controller is de-
scribed in Fig. 4. The load rule of the ℓ-th layer for the k-th
task can be represented as:

Oℓ,k = ReLU(Wℓ,cOℓ−1,c+bℓ,c+
k∑

i=c+1

(Wℓ,iOℓ−1,c+bℓ,i))

(33)
where c means the weights of the current task, and the unload
rule of the ℓ-th layer for the k-th task can be represented as:

Wℓ,i = 0, bℓ,i = 0, ∀i = k + 1, .., c. (34)

E. Light Wolf Search
Action refinement is an effective exploration strategy for

large-scale action space presented by Google DeepMind [30],
and we propose a novel light wolf search algorithm to realize
the action refinement in the study. The Gray Wolf Optimizer
(GWO) is inspired by the hunting behaviors of wolves [31],
and combined with the channel quality information, we design
the LWS as follows:

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 8

1) Solution representation: The solution of LWS is repre-
sented as a vector x = (a, f), where the a is the offloading
decision, and f denotes the resource allocation. The initial
solution x0 = (a0, f0) is obtained from the epoch register.

2) Population initialization: We initialize four wolves ran-
domly form a population P = {x1,x2,x3,x4} in the d-
dimensional search space. For simulating the social hierarchy
of wolves, the optimal wolf is selected as the α wolf xα, the
second and the third-best wolves are selected as the β wolf xβ

and δ wolf xδ , respectively. The initial solution x0 is marked
as the light wolf xω .

3) Parameter updating: We update the hunt parameters of
the population P. A(t) and C(t) are coefficient vectors which
can be defined as follows:

A (t) = (2r1 − 1) · a (t) (35)

C (t) = 2 · r2 (36)

where t is the current iteration number, r1 and r2 are indepen-
dent random numbers in the range of [0,1]. a(t) is the control
parameter, whose formula is defined as follows:

a (t) = 2− 2t

tmax
(37)

where tmax is the maximum iteration number. The control
variable a(t) decreases linearly from 2 to 0.

4) Wolf hunt: During the hunt process, wolves encircle their
prey, and the update formula of the light wolf is defined as
follows:

De (t) = |C (t) · xe (t)− xω (t)| (38)

xω (t+ 1) =
1

3

∑
e∈{α,β,δ}

(xe (t)−A(t) ·De (t)) (39)

where xω(t) is the position vector of the light wolf. xe (t)
represents the positions of elite wolves (i.e., α, β and δ).
De represents the distances between the light wolf and elite
wolves. The offloading part of all solutions needs to be
rounded to the feasible solution space.

5) Wolf evaluation: We define P0 as the fitness function
of the wolf pack. We calculate the fitnesses of all wolves, and
the optimal wolf is selected as the wolf xα, the second and
the third-best wolves are selected as the wolf xβ and wolf xδ ,
respectively. The remaining individual is marked as the light
wolf ω. Finally, we update the offloading part of the light wolf
whose offloading decision for each UE is set to the UAV with
the highest channel gain.

6) Constraint check: When a new solution is generated,
the constraint check will be performed to ensure that the
resource allocated by the UAV will be no more than the
maximum computational resource of the UAV. When the
allocated resource of the UAV is overflowing, we will reduce
the allocated resource of the UAV for each UE proportionally
until the total computational resource is within the maximum
computational resource constraint. The overall algorithm for
LWS is summarized in Algorithm 2.

Algorithm 2 LWS

Input: a0, f0.
Output: xα.

1: Initialize the wolf population.
2: Initialize a, A and C.
3: Select elite wolves xα, xβ and xδ .
4: Define initial light wolf as xω = (a0, f0).
5: while t < tmax do
6: for each wolf do
7: Update the position of the current wolf by Eqs. (38)-

(39).
8: end for
9: Calculate the finesses of all wolves.

10: Update elite wolves xα, xβ and xδ .
11: Update the light wolf xω according to channel gains.
12: Update a by Eq. (37).
13: Update A and C by Eqs. (35) - (36).
14: t = t+ 1.
15: Carry out the constraint check and obtain valid solu-

tions.
16: end while

F. Convergence Analysis of the MARS Framework

1) Propositions: In the proposed framework, the critic
network utilizes linear function approximation for gauging the
state-value function, represented as V (·;ω) = ϕ⊤(·)ω [32].
We depict A and b in the following formulation:

A := ES,A,S′

[
ϕ(S) (ϕ (S ′)− ϕ(S))⊤

]
(40)

b := ES,A,S′ [(R(S,A)−R(θ))ϕ(S)] (41)

where A is the action and A ∼ πθ (·|S); S ′ is the next
state and S ′ ∼ P (·|S,A), where P(·|S,A) is the transition
probability measure. R is the reward function and R(θ) is the
predicted reward. The limiting point ω∗(θ) satisfies [33]:

Aω∗(θ) + b = 0. (42)

The error associated with the linear function approximation
is defined as follows:

ϵapp(θ) :=

√
ES (ϕ(S)⊤ω∗(θ)− V (S))2 (43)

where V (·) represents the state-value function.
We assume throughout the study that the approximation

error is uniformly bounded for all potential policies:

ϵapp(θ) ≤ ϵapp (44)

where ϵapp is a constant, with ϵapp ≥ 0.
2) Assumptions:

Assumption 1. Regarding every possible policy parameter θ,
the previously defined matrix A exhibits negative definiteness,
with the maximum eigenvalue being −λ [34].

Assumption 2. Given a constant θ, let µθ(·) represent
the stationary distribution induced by policy πθ(·|S) and
transition probability measure P(·|S,A). Envision a Markov
chain generated through the process At ∼ πθ (·|St) ,St+1 ∼

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 9

Fig. 4: The multi-task controller with varying number of UAVs.

P (·|St,At). Consequently, an m > 0 and ρ ∈ (0, 1) exist,
fulfilling the condition [35]:

dTV (P (Sτ ∈ ·|S0 = S) , µθ(·)) ≤ mρτ ,∀τ ≥ 0, (45)

where dTV (·) represents the total variation norm between two
probability measures.

Assumption 3. Consider πθ (A|S) as a policy characterized
by θ. Constants L,B,Ll > 0 are present, and for any specific
state S and action A, the subsequent association is maintained
[33]:

∥∇ log πθ(A | S)∥ ≤ B, ∀θ ∈ Rd (46)

∥∇ log πθ1(A | S)−∇ log πθ2(A | S)∥ ≤
Ll ∥θ1 − θ2∥ ,∀θ1,θ2 ∈ Rd

(47)

|πθ1(A | S)− πθ2(A | S)| ≤ L ∥θ1 − θ2∥ ,∀θ1,θ2 ∈ Rd

(48)

Assumption 4. Under Assumptions 1 and 2, there exists a
constant L∗ > 0 such that [36]

∥ω∗ (θ1)− ω∗ (θ2)∥ ≤ L∗ ∥θ1 − θ2∥ ,∀θ1,θ2 ∈ Rd. (49)

3) Convergence Analysis:

Theorem 1. Assuming that Assumptions 1-3 are valid and
setting αt = cα/(1 + t)σ , with constants σ ∈ (0, 1) and
cα > 0, the critic satisfies the following formulation at the
t-th iteration [36]:

8

t

t∑
k=1

E ∥ωk − ω∗
k∥

2
+

2

t

t∑
k=1

E (ηk −R (θk))
2
= E(t) (50)

where ωk signifies the critic’s parameter, while ηk corresponds
to the discount factor at the actor’s k-th update. Assuming that
E(t) constitutes a limited series, the following is established:

min
0≤k≤t

E ∥∇J (θk)∥2 =

O (ϵapp) +O
(

1

t1−σ

)
+O

(
log2 t

tσ

)
+O(E(t))

(51)

where O(·) is used to further hide constants [36].

Theorem 2. Presuming that Assumptions 1-3 are valid, and
we select αt = cα/(1 + t)σ and βt = cβ/(1 + t)ν , with
0 < σ < ν < 1 and positive constants cα and cβ ≤ λ−1, the
following is asserted [36]:

1

1 + t− τt

t∑
k=τt

E ∥ωk − ω∗
k∥

2
=

O
(

1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

) (52)

1

1 + t− τt

t∑
k=τt

E (ηk −R (θk))
2
=

O
(

1

t1−ν

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

(53)

Combining Theorem 1 and Theorem 2, we can deduce the

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 10

TABLE I: Simulation parameters.

Parameters Assumptions

Number of UEs N 50
Number of IRSs L 50
Transmitting data size Di 20 MB

Transmitting power P tra
ij 1 W

UAV executing power Puav
ij 1 W

UAV hover power Phov
j 1 W

Max computation capacity of the local F loc
i,max 109 cycles/s

Required number of CPU cycles Fi 109 cycles/s

Total computation capacity of the UAV Fuav
j,max 3× 1010 cycles/s

Bandwidth B 1 MHz

Noise spectral density σ2 10−12 W/Hz

convergence rate of the proposed A2C structure as follows:

min
0≤k≤t

E ∥∇J (θk)∥2 = O (ϵapp) +O
(

1

t1−σ

)
+O

(
log t

tν

)
+O

(
1

t2(σ−ν)

)
.

(54)

Finally, the MARS framework can find an ϵ-approximate
stationary point of J(·) within T steps, namely

min
0≤k≤T

E ∥∇J (θk)∥2 ≤ O (ϵapp) + ϵ (55)

where T is the total iteration number and ∇J (θk) is the policy
gradient.

V. NUMERICAL RESULTS

A. Simulation Settings

In this section, we present simulation results evaluating
the performance of the MARS framework. The simulation
environment was established using Python 3.7 and TensorFlow
2.2.0, running on an Intel Xeon CPU with 32 GB RAM and
a Tesla T4 GPU with 15 GB SGRAM. The initial multi-head
agent consists of two shared layers with 64 and 128 neurons,
respectively. Each independent layer contains 32 neurons. The
replay buffer size is set at 8000, and the minibatch size is
50. Dropout is utilized during the training process to prevent
overfitting. For the multi-task controller, a compression ratio
of 75% is assigned for each UAV. In the LWS, the wolf pack
size is fixed at 4, and the maximum iteration number is 10.
All other simulation parameters are detailed in Table I, unless
specified otherwise.

B. Performance Evaluation of the Multi-Head Agent

We compare the performances of agents in the MARS
framework with different heads. These agents are introduced
as follows:

• Single-head agent: The agent in the A2C structure outputs
the state value of the critic network, and the offloading

decision and resource allocation of the actor network by
a single head.

• Two-head agent: The agent in the A2C structure outputs
the state value of the critic network by one head, and the
offloading decision and resource allocation of the actor
network by the other hand.

• Three-head agent: The agent in the A2C structure outputs
the state value of the critic network and the offloading
decision and resource allocation of the actor network by
three heads.

For fairness, the number of weights in all agents is set
to the same. In the single-head agent, MSE loss is used to
optimize all network parameters. In the two-head agent, MSE
loss is introduced to optimize the critic head and the regression
head, and the cross-entropy loss is applied to optimize the
classification head. The rewards of all agents are shown in Fig.
5. We can see that all agents can obtain relatively good rewards
and achieve convergence at last. However, the three-head agent
can obtain the highest reward and this phenomenon can be
explained by the reason that different heads have different
feature representations, and the MSE loss is good at optimizing
the regression head but hard to optimize the critic head and
classification head.

Fig. 5: Rewards of different agents.

C. Performance Evaluation of the Multi-Task Controller

In this section, we simulate a scenario where the number
of UAVs is varying and compare the energy consumption of
the MEC system when the agent for Task 1 (One UAV) is
well-trained. Fig. 6 summarizes the multi-task performances
for different multi-task methods, in which we add three UAVs
as new tasks one by one to the MEC system. The contender in
Fig. 6 is Dynamic-Expansion Net (DEN) [37], which reduces
the weights of the previous tasks via sparse-regularization and
does not ensure non-forgetting. As shown in Fig. 6, while
training for a new task (adding a new UAV), the energy
consumption of DEN on Task 1 increases continuously, which
means the catastrophic forgetting has already happened, and
the knowledge of the old task in DEN has been forgotten.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 11

TABLE II: The performance comparison of different tasks.

Different
Tasks

Scratch Finetune Progressive
network

Pruning
(75%)

One UAV 78.37 - 78.37 79.02

Two UAVs 80.42 75.86 75.35 75.47

Three UAVs 70.71 66.28 65.04 64.92

Four UAVs 61.55 59.56 58.21 57.69

Our multi-task controller is superior to DEN, and the energy
consumption on all tasks remains fixed.

Then, we evaluate the performance of the multi-task con-
troller in different tasks. These contenders are introduced as
follows:

• Scratch: All new tasks are trained from scratch without
any old task knowledge.

• Finetune: All new tasks are fine-tuned from Task 1 with
the previous knowledge.

• Progressive network [38]: The agent is grown by adding
nodes or weights for training new tasks.

• Pruning (75%): The agent is pruned by 75% weights, and
the new tasks are adjusted by the multi-task controller.

Table II presents the energy consumption comparisons for
various multi-task learning methods. For the first task (One
UAV), Pruning (75%) exhibits marginally inferior performance
compared to other methods, as it needs to compress the
agent through pruning. However, for tasks 2 to 4, Pruning
(75%) consistently surpasses other methods in nearly every
situation. These results illustrate the effectiveness of the multi-
task controller in constructing a compact and robust foundation
suitable for multi-task learning.

Fig. 6: Task 1 performances of different multi-task methods
for different numbers of UAVs.

D. Performance Evaluation of the Action Refinement

In this section, we evaluate the performance of the action
refinement on three benchmarks: DRL with LWS (LWS),

DRL with Taboo Search (TS) [39], and DRL without action
refinement (None). In the experiment, the iteration number of
LWS and TS is set to 10, the length of the taboo list is set to
5, and the search neighborhood size is set to 10.

The performances of different action refinements are illus-
trated in Fig. 7. The results in Fig. 7 show that LWS and TS
achieve lower loss than None, and LWS has faster convergence
than TS. This is because the LWS adopts the light wolf with
the highest channel gain to accelerate the search and the
LWS also executes the constraint check to obtain validly high-
quality solutions.

Fig. 7: Training performances of DRL with different action
refinements.

E. Performance Evaluation of the MARS Framework

In this section, we evaluate the MARS framework’s perfor-
mance against three well-known DRL algorithms: TD3 [40],
PPO [27], and SAC [28]. Table III displays the training time
for the Initial task (one UAV), New task (adding a UAV),
Old task (removing a UAV), and Average energy consumption
across all DRLs. The MARS framework demonstrates minimal
training time for the Old task and the lowest average energy
consumption. The MARS framework’s superior performance
is attributed to two factors: (1) The multi-task controller stores
parameters from old tasks, allowing agents to reuse policy
knowledge without retraining when the number of UAVs
changes. This results in reduced training time for Old tasks. (2)
The LWS refines actions and enhances exploration, enabling a
jump out of local extrema during the search process, yielding
the lowest average energy consumption.

Then, five offloading schemes are selected as benchmarks
to compare the offloading performance. These benchmarks are
introduced as follows:

• Random Offloading (Random): The offloading decision
for each UE is determined randomly.

• Local Execution (Local): All UEs execute tasks locally.
• Nearby Offloading (Remote): Each UE decides to offload

its task to the nearest UAV.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 12

TABLE III: The performance comparison of different DRLs.

Metric Initial task New task Old task Average energy
consumption

MARS 234.23 126.57 0.45 64.95

TD3 258.13 192.46 130.58 68.37

PPO 263.41 196.41 131.82 67.45

SAC 248.76 185.33 122.63 65.69

• LWS: Light wolf search is applied to determine the
optimal offloading decision for all UEs.

• Deep Reinforcement learning-based Online Offloading
(DROO): This well-established DRL offloading scheme
is designed for MEC systems and referenced in [41].

Fig. 8 presents the energy consumption for five offloading
methods. MARS significantly reduces energy consumption
compared to Local, Random, Remote, and DROO while de-
livering performance comparable to LWS. This is attributed to
the MARS framework’s ability to update its offloading policy
using high-quality solutions generated by LWS and its capacity
to construct a nonlinear mapping between state information
and resource allocation, enabling faster high-quality decisions
than traditional heuristic search methods.

Fig. 8: Energy consumption of different offloading schemes.

VI. CONCLUSIONS

In this paper, we present a novel MARS framework for
jointly optimizing UAV positions, phase-shifted diagonal ma-
trix, computation offloading, and resource allocation in dy-
namic UAVs with IRS-assisted MEC systems, aiming to
minimize the total energy consumption for all UAVs and UEs.
The proposed MARS framework offers several advantages.

(1) The A2C structure reduces variance and enhances DRL
policy learning. (2) The multi-head agent efficiently solves the
MINLP problem with three output heads. (3) The multi-task
controller adapts the agent for a varying number of UAVs. (4)
LWS improves DRL exploration and expedites policy search.

Simulation results show MARS outperforms existing bench-
marks, highlighting its potential in dynamic MEC systems.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. PP, no. 99, pp. 1–1, 2017.

[2] Y. Du, K. Wang, K. Yang, and G. Zhang, “Energy-efficient resource
allocation in uav based mec system for iot devices,” in 2018 IEEE Global
Communications Conference (GLOBECOM), 2019.

[3] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Ai driven
heterogeneous mec system with uav assistance for dynamic environment:
Challenges and solutions,” IEEE Network, vol. 35, no. 1, pp. 400–408,
2020.

[4] L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang,
C. W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-
metasurface holograms,” Nature Communications, 2017.

[5] F. Jiang, L. Dong, K. Wang, K. Yang, and C. Pan, “Distributed resource
scheduling for large-scale mec systems: A multiagent ensemble deep
reinforcement learning with imitation acceleration,” IEEE Internet of
Things Journal, vol. 9, no. 9, pp. 6597–6610, 2021.

[6] X. Mu, Y. Liu, L. Guo, J. Lin, and N. Al-Dhahir, “Capacity and optimal
resource allocation for irs-assisted multi-user communication systems,”
IEEE Transactions on Communications, vol. 69, no. 6, pp. 3771–3786,
2021.

[7] J. Chen, L. Guo, J. Jia, J. Shang, and X. Wang, “Resource allocation for
irs assisted sgf noma transmission: A madrl approach,” IEEE Journal
on Selected Areas in Communications, vol. 40, no. 4, pp. 1302–1316,
2022.

[8] M. Hua, Q. Wu, and H. V. Poor, “Power-efficient passive beamforming
and resource allocation for irs-aided wpcns,” IEEE Transactions on
Communications, vol. 70, no. 5, pp. 3250–3265, 2022.

[9] J. Chen, Y. Xie, X. Mu, J. Jia, Y. Liu, and X. Wang, “Energy efficient
resource allocation for irs assisted comp systems,” IEEE Transactions
on Wireless Communications, vol. 21, no. 7, pp. 5688–5702, 2022.

[10] D. Xu, V. Jamali, X. Yu, D. W. K. Ng, and R. Schober, “Optimal resource
allocation design for large irs-assisted swipt systems: A scalable opti-
mization framework,” IEEE Transactions on Communications, vol. 70,
no. 2, pp. 1423–1441, 2022.

[11] S. Mao, N. Zhang, L. Liu, J. Wu, M. Dong, K. Ota, T. Liu, and
D. Wu, “Computation rate maximization for intelligent reflecting surface
enhanced wireless powered mobile edge computing networks,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 10, pp. 10 820–
10 831, 2021.

[12] Z. Dai, Y. Zhang, W. Zhang, X. Luo, and Z. He, “A multi-agent
collaborative environment learning method for uav deployment and
resource allocation,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 8, pp. 120–130, 2022.

[13] Y. Cai, X. Jiang, M. Liu, N. Zhao, Y. Chen, and X. Wang, “Resource
allocation for urllc-oriented two-way uav relaying,” IEEE Transactions
on Vehicular Technology, vol. 71, no. 3, pp. 3344–3349, 2022.

[14] T. Li, S. Leng, Z. Wang, K. Zhang, and L. Zhou, “Intelligent resource
allocation schemes for uav-swarm-based cooperative sensing,” IEEE
Internet of Things Journal, vol. 9, no. 21, pp. 21 570–21 582, 2022.

[15] Y. Shen, Y. Qu, C. Dong, F. Zhou, and Q. Wu, “Joint training and
resource allocation optimization for federated learning in uav swarm,”
IEEE Internet of Things Journal, 2022.

[16] H. Kang, X. Chang, J. Mišić, V. B. Mišić, J. Fan, and Y. Liu,
“Cooperative uav resource allocation and task offloading in hierarchical
aerial computing systems: A mappo based approach,” IEEE Internet of
Things Journal, 2023.

[17] Y. Ye, L. Shi, X. Chu, R. Q. Hu, and G. Lu, “Resource allocation in
backscatter-assisted wireless powered mec networks with limited mec
computation capacity,” IEEE Transactions on Wireless Communications,
vol. 21, no. 12, pp. 10 678–10 694, 2022.

[18] N. Waqar, S. A. Hassan, A. Mahmood, K. Dev, D.-T. Do, and M. Gid-
lund, “Computation offloading and resource allocation in mec-enabled
integrated aerial-terrestrial vehicular networks: A reinforcement learning
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 11, pp. 21 478–21 491, 2022.

[19] J. Xu, B. Ai, L. Chen, Y. Cui, and N. Wang, “Deep reinforcement
learning for computation and communication resource allocation in
multiaccess mec assisted railway iot networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 12, pp. 23 797–23 808,
2022.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

SUBMITTED FOR REVIEW 13

[20] C. Zhao, S. Xu, and J. Ren, “Aoi aware wireless resource allocation
of energy harvesting powered mec systems,” IEEE Internet of Things
Journal, 2022.

[21] Z. Zhao, J. Shi, Z. Li, J. Si, P. Xiao, and R. Tafazolli, “Matching-aided-
learning resource allocation for dynamic offloading in mmwave mec
system,” IEEE transactions on wireless communications, 2023.

[22] S. Mao, J. Wu, L. Liu, D. Lan, and A. Taherkordi, “Energy-efficient co-
operative communication and computation for wireless powered mobile-
edge computing,” IEEE Systems Journal, vol. 16, no. 1, pp. 287–298,
2022.

[23] H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint altitude and beamwidth
optimization for uav-enabled multiuser communications,” IEEE COM-
MUNICATIONS LETTERS, vol. PP, no. 99, pp. 1–1, 2017.

[24] J. Zhang, X. Hu, Z. Ning, C. H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency tradeoff for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, 2017.

[25] F. Jiang, K. Wang, L. Dong, C. Pan, W. Xu, and K. Yang, “Deep-
learning-based joint resource scheduling algorithms for hybrid mec
networks,” IEEE Internet of Things Journal, 2019.

[26] S. Li, B. Duo, X. Yuan, Y.-C. Liang, and M. Di Renzo, “Reconfigurable
intelligent surface assisted uav communication: Joint trajectory design
and passive beamforming,” IEEE Wireless Communications Letters,
vol. 9, no. 5, pp. 716–720, 2020.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[28] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[29] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp.
41–75, 1997.

[30] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

[31] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in engineering software, vol. 69, pp. 46–61, 2014.

[32] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[33] M. Papini, D. Binaghi, G. Canonaco, M. Pirotta, and M. Restelli,
“Stochastic variance-reduced policy gradient,” in International confer-
ence on machine learning. PMLR, 2018, pp. 4026–4035.

[34] S. Zou, T. Xu, and Y. Liang, “Finite-sample analysis for sarsa with linear
function approximation,” Advances in neural information processing
systems, vol. 32, 2019.

[35] J. Bhandari, D. Russo, and R. Singal, “A finite time analysis of temporal
difference learning with linear function approximation,” in Conference
on learning theory. PMLR, 2018, pp. 1691–1692.

[36] Y. F. Wu, W. Zhang, P. Xu, and Q. Gu, “A finite-time analysis of
two time-scale actor-critic methods,” Advances in Neural Information
Processing Systems, vol. 33, pp. 17 617–17 628, 2020.

[37] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with
dynamically expandable networks,” arXiv preprint arXiv:1708.01547,
2017.

[38] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” arXiv preprint arXiv:1606.04671, 2016.

[39] D. Cvijović and J. Klinowski, “Taboo search: an approach to the multiple
minima problem,” Science, vol. 267, no. 5198, pp. 664–666, 1995.

[40] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International conference on
machine learning. PMLR, 2018, pp. 1587–1596.

[41] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581–2593, 2019.

BIOGRAPHIES

Feibo Jiang received his B.S. and M.S. degrees
in School of Physics and Electronics from Hunan
Normal University, China, in 2004 and 2007, re-
spectively. He received his Ph.D. degree in School
of Geosciences and Info-physics from the Central
South University, China, in 2014. He is currently
an associate professor at the Hunan Provincial Key
Laboratory of Intelligent Computing and Language
Information Processing, Hunan Normal University,
China. His research interests include artificial intel-
ligence, fuzzy computation, Internet of Things, and

mobile edge computing.

Yubo Peng received the B.S. degree from Hunan
Normal University, Changsha, China, in 2019, where
he is currently pursuing the master’s degree with the
College of Information Science and Engineering. His
main research interests include federated learning
and semantic communication.

Kezhi Wang received the Ph.D. degree in Engineer-
ing from the University of Warwick, U.K. He was
with the University of Essex and Northumbria Uni-
versity, U.K. Currently, he is a Senior Lecturer with
the Department of Computer Science, Brunel Uni-
versity London, U.K. His research interests include
wireless communications, mobile edge computing,
and machine learning.

Li Dong received the B.S. and M.S. degrees in
School of Physics and Electronics from Hunan Nor-
mal University, China, in 2004 and 2007, respec-
tively. She received her Ph.D. degree in School
of Geosciences and Info-physics from the Central
South University, China, in 2018. She is currently
an associate professor at Hunan University of Tech-
nology and Business, China. Her research interests
include machine learning, Internet of Things, and
mobile edge computing.

Kun Yang received his PhD from the Department
of Electronic & Electrical Engineering of University
College London (UCL), UK. He is currently a Chair
Professor in the School of Computer Science &
Electronic Engineering, University of Essex, leading
the Network Convergence Laboratory (NCL), UK.
He is also an affiliated professor at UESTC, China.
Before joining in the University of Essex at 2003,
he worked at UCL on several European Union (EU)
research projects for several years. His main research
interests include wireless networks and communi-

cations, IoT networking, data and energy integrated networks and mobile
computing. He manages research projects funded by various sources such
as UK EPSRC, EU FP7/H2020 and industries. He has published 400+ papers
and filed 30 patents. He serves on the editorial boards of both IEEE (e.g., IEEE
TNSE, IEEE ComMag, IEEE WCL) and non-IEEE journals (e.g., Deputy EiC
of IET Smart Cities). He was an IEEE ComSoc Distinguished Lecturer (2020-
2021). He is a Member of Academia Europaea (MAE), a Fellow of IEEE, a
Fellow of IET and a Distinguished Member of ACM.

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior
to final publication. Citation information: DOI10.1109/TCC.2023.3307582, IEEE Transactions on Cloud Computing

