
systems to satisfy the development of adversarial attacks (AA) 
detection and mitigation for 6G wireless communication 
networks. It is critically required to confront the threats 
efficiently, abandoning the current incapable CE-targeted 
security systems that cannot adapt to the upgradable attacks [8], 
[9]. In risk-sensitive systems safety, detecting AA is a 
challenging issue as enormous traffic of suspicious activities is 
discovered every day.  The impact of these complex attacks is 
increasing, introducing additional complications to the current 
attacks. Moreover, cybersecurity has become a prioritized 
essential topic in the modern scientific community. Therefore, 
monitoring and analyzing network traffic is essential to detect 
potential AA. The main risk in traditional and machine learning 
(ML)-based security systems is the insufficiency of 
distinguishing AA in 6G communication networks as AA 
manipulates signals or data in ways that are not detectable by 
traditional measures [10]. To this end, it is important to design 
6G networks with security in mind and to implement best 
practices for securing the network against AA. This may involve 
developing new security measures that are specifically designed 
to detect and defend against AA. Deep Autoencoders (DAEs) 
are a type of NN that can be trained to learn a compressed 
representation of the input data, also known as the encoding, and 
then use this encoding to reconstruct the original input, also 
known as the decoding [11]–[19]. By training an AE on a set of 
received signals and their corresponding channel characteristics, 
the AE can learn to extract features that are relevant to CE. The 
encoding produced by the AE can then be used as a 
representation of the received signal, which can be fed into a CE 
to estimate the channel characteristics. This can be particularly 
useful in scenarios where the channel is highly complex or time-
varying, as the AE can adapt to changes in the channel over time 
and provide more accurate estimates of the channel 
characteristics.  

Hence, this work proposes a secure deep autoencoder (DAE)-
based communication environment (CE) model to address the 
challenges of accurately detecting and preventing adversarial 
attacks (AA) in 6G wireless communication networks with 
minimal complexity. To the best of the authors' knowledge, this 
outperforming integrated DAE model with its performance has 
not been achieved previously. It presents a valuable contribution 
to the field by introducing: 

• A sufficient DAE-based CE 6G model with a secure
transmission protocol that uses transmitted signal
parameters to learn and detect AA. The model provides a
feasible solution for deep learning training data
requirements, avoiding overfitting.
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A Secure Deep Autoencoder-based 6G Channel 
Estimation to Detect/Mitigate Adversarial Attacks 

Abstract—Channel estimation (CE) is critical in wireless 

communications. However, it is vulnerable to adversarial attacks 

(AA) that are associated with the incorporated artificial 

intelligence (AI) functionality in 6G wireless communication 

systems/networks. The hazardous threat can compromise 

communications' confidentiality and integrity due to the expected 

infrastructure, features, and AI models of the 6G paradigm. This 

paper proposed a deep autoencoder (DAE)-based 6G CE model to 

detect and prevent AA. It was trained using a dataset generated 

from the MATLAB toolbox for AA and incorporated a secure 

transmission protocol. Simulations were conducted to evaluate the 

model's performance under different parameters (i.e., CE and 

DAE) with maximal epsilon values range (0.5-3.0). The results 

proved the model's sufficiency of accuracy and security to detect 

AA compared to existing CE techniques. The proposal provided a 

promising solution for a secure 6G DAE-based CE and showed 

robustness against AA. Additionally, it offered a feasible solution 

for the deep learning training data required and avoids 

overfitting. Overall, the proposed model provides a valuable 

contribution towards enhancing the security of 6G networks, and 

its performance should be further validated in real-world 

scenarios. 

Keywords: 6G Wireless Communication Networks, Adversarial 

Attacks, Artificial Intelligence, Channel Estimation, Cybersecurity, 

Deep Autoencoder. 

I. INTRODUCTION 

In wireless communications channel estimation (CE), 
the security, cost, and complexity measurements 
represent important metrics for evaluating systems' 
feasibility and practicability. The CE process is critical 
for successful communications [1], [2]. The sixth 
generation (6G) CE represents a very complex operation 
compared to previous generations due to the upgraded 
infrastructure, features, applications, network traffic, 
technologies, and the number of associated gadgets/users 
connected ubiquitously to cope with the emerging internet 
of everything (IoE) [3]–[5]. Cellular networks have grown 
significantly over the past few decades with developments in 
communications technologies that enable faster data-rates, 
bigger cell/channel capacities, and lower latency. Such 
technologies' major objective is to make a variety of unique 
applications possible (e.g., online learning, 
telepresence, flying, driverless automobiles, smart cities/
grids, and intelligent manufacturing) [6], [7]. The 6G 
emerging requirements and features accompany serious 
security anxiety and increase network computational 
complexity. According to the jeopardizes of wireless 
communication networks to renewable various attacks, 6G-
related researchers must focus on the necessity for novel 
artificial intelligence (AI)-based security 

  1

This article has been accepted for publication in a future proceedings of this conference, but has not been fully edited. Content may change prior to final publication. Citation 
information: DOI10.1109/GPECOM58364.2023.10175718, 2023 5th Global Power, Energy and Communication Conference (GPECOM)

Copyright © 2023 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, 
or reuse of any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See: https://www.ieee.org/publications/rights/rights-policies.html



• A comprehensive evaluation of the proposed model under
different CE and DAE parameters to demonstrate its
effectiveness and robustness against AA with epsilon
values ranging (0.5-3.0).

Overall, the proposed secure DAE-based CE model offers a 
promising solution to enhance the security of 6G networks 
against AA with minimal complexity, paving the way for more 
advanced and effective security mechanisms. 

The paper's next section provides brief literature on the related 

technologies. System methodology with the software (libraries), 

generated dataset, and DAE model are described in detail in 

section III. Sections IV and V illustrate the implementation 

environment and the conducted results, evaluation, and 

discussion, respectively. And finally, section VI states the 

conclusion and future work. 

II. BACKGROUND

The CE process is the first step in identifying the characteristics 
of the radio transmission channel through which the transmitted 
signal propagates from the transmitter (Tx) to the receiver (Rx). 
This prerequisite information is called channel state information 
(CSI) and it requires to be realized by Tx and Rx. The common 
assessment of CE methods (e.g., mean square error (MSE)) is 
achieved by a predefined reference (pilot) sequential signal sent 
with the transmitted signal and compared to the original pilot at 
the Rx after undergoing influential (e.g., attenuation, distortion, 
and noise) effects while being transmitted. The traditional CE is 
poor, non-robust, complicated, and performs inaccurately 
because of the changeable non-linear channel characteristics and 
the information's high dimensionality. Its complexity increases 
with respect to the increase in the number of communication 
links [2]. Besides, 6G plans assume an upgraded mobile 
infrastructure, expanding the number of ubiquitously connected 
communication components and links to deploy ultra-densified 
networks using UM-MIMO. Providing extremely high data-
rates (Terabits/Second) and extremely-low latency with bigger 
cell/channel capacities is a fundamental objective of 6G 
networks. The incorporation of the edge of technologies, e.g., 
AI, UM-MIMO, and terahertz frequency bands (0.1-10 THz) is 
strongly nominated for 6G networks. The integration of the 6G 
key enabling technologies/networks provides the targeted 
performance THz, while very big arrays of antennas are 
designed at Tx and Rx sides using UM-MIMO. This causes a 
considerable increase in energy dissipation, 
procedural/computational complexity, and hardware [2]. 
Therefore, 6G CE operations require adapting to the upgraded 
features and satisfying the growing demands of services to 
certain standards of data-rates, cost-effectiveness, and 
spectral/energy efficiencies. To this end, AI was intended to 
embed in the new era's systems to optimize networks' 
functionalities and improve system performance. As a valuable 
candidate of 6G key enablers, AI plays a pivotal role in CE 
processes [20], [21]. DL-based CE is a promising approach for 
improving the accuracy and efficiency of CE in 6G wireless 
communication systems by learning the transmitted and the 
received signals. It has several advantages over traditional CE 
techniques. It is more adaptive to changing channel conditions 
in real-time. Additionally, DL-based CE can be performed more 

efficiently than traditional CE techniques, reducing system 
computational complexity [22]. AA are typically associated 
with AI systems and accordingly 6G communication networks 
by manipulating perturbed input data. They are constructed to 
deliberately deceive and mislead them into making the wrong 
prediction or decision. AA in 6G manipulate signals or data in 
ways that are not detectable and could potentially bypass 
traditional and existing security measures. They mimic 
legitimate traffic but contain malicious content or commands 
[23]. 

Remarkably, CE is considered an essential topic for 
academics' cybersecurity research in wireless communication 
networks resulting in several articles published in recent years. 
However, CE jeopardizes AA vulnerabilities that degrade 6G 
system efficiency despite applying ML against these attacks. 
Therefore; this paper introduces a DAE-based CE. 

III. METHODOLOGY

Fig. 1 shows the DAE-based CE general structure to track 

suspicious activity traffic over the 6G entire network.

Fig. 1. The General Structure of DAE-Based CE.  

Fig. 1 illustrates all processes made at the BS to detect AA and 

legitimate users using the DAE model. This model starts with 

pilots' uplink signals using MATLAB tools to generate an image 

dataset to evaluate system performance and robustness. The 

generated dataset and programming DAE model are: 
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A. Dataset Descriptions and Scenario

Many reference cases are available in Toolbox and other next-
generation network communication systems [24]. Collecting 
datasets for DL-based models enables customization and the 
generation of various waveforms, antennas, and channel models. 
A reference example in the MATLAB Toolbox is utilized to 
generate the training-dataset for DAE-based CE. Table I 
illustrates a sample of this dataset.  

TABLE I.  ORIGINAL DATASET DESCRIPTION.  

Feature 1 Feature 2 Feature 3 Feature 4 

0.15+0.89j 
-0.39+0.84j 
-0.56+0.78j 
-0.26+0.89j 

. 

. 

. 

. 
-0.86+0.43j 

 0.14+0.90j 
- 0.26+0.83j 
-0.41+0.82j 
-0.32+0.87j 

. 

. 

. 

. 
-0.88+0.15j 

0.17+0.91j 
-0.37+0.89j 
-0.55+0.79j 
-0.44+0.84j 

. 

. 

. 

. 
-0.33+0.23j 

0.11+0.88j 
-0.41+0.89j 
-0.26+0.72j 
-0.32+0.80j 

. 

. 

. 

. 
-0.89+0.21j 

A new channel characteristic is generated for every set of 
training-dataset based on different parameters. Table II lists 
channel characteristics with associated values. 

TABLE II. CE PARAMETERS.  

Channel Parameters Values 
Doppler-Shift 0.0004-100 MHz 
Delay Spread 0.001-0.25 ns 

Sample Rate 32950000 

NFFT 1024 
Windows 36 

Symbols/Slot 14 

Slots/Frame 20 

Slots/Sub-frame 2 
Polarity  CoPolar 

Transmit Antennas no. 64 

Receive Antennas no. 64 

Fading Distribution  Rayleigh 
Modulation 16QAM 

B. Programming Deep Autoencoder-Based Channel

Estimation

The DAE model can provide several advantages when used for 

CE in 6G wireless communication systems: 

1. Improving Accuracy: DAEs can learn complex features of a
wireless channel, e.g., multipath propagation, noise, and
interference, which can improve the accuracy of CE
compared to traditional methods.

2. Robustness: DAEs are robust to noise and interference,
which can improve the reliability of CE in practical wireless
communication scenarios.

3. Reducing Training Data Requirements: DAEs can learn
from fewer training samples than traditional methods, which
can be especially advantageous in low SNR scenarios where
collecting large amounts of training data is difficult.

4. Low Complexity: DAEs have a relatively low
computational complexity compared to other ML
algorithms, which makes them suitable for implementation
in real-time wireless communication systems.

5. Adaptability: DAEs can adapt to changes in the wireless
channel over time, which enables enhanced CE performance
in dynamic wireless communication scenarios.

The AE-based DL model's hyper-parameters are shown in Table 

III. 

TABLE III. DAE PARAMETERS.  

DAE Parameters Values 
Activation Function ReLu 

Batch size 128 

Testing samples 30% 

Training samples 70% 
Loss function MSR 

Learning rate 0.001 

Number of epochs 1000 

Optimizer Adam 
Momentum  0.9 

Input/output size 612 x 14 

The DAE model for the CE employed is depicted in Fig. 2.  

Fig. 2. The DAE-Based CE.  

In Fig. 2, DAE works when the dataset is generated then the first 

stage of AE, i.e., convolution 1 (Conv.1) layer with a stride-2 can 

be used for features extraction of the input signal. The Conv.1 

layer architecture is a set of filters that slide over the input signal 

to generate a set of feature maps. The basic idea behind using a 

Conv.1 layer with a stride is performing a local feature extraction, 

where each filter extracts features from a local region of the input 

signal. The stride ensures that the filter covers every possible 

local region of the input signal. To program a DAE using a 

Conv.1 layer with a stride, the following steps can be followed: 

1. Define the Conv.1 layer: it specifies the filters' number, filter

size, and stride.

2. Feed the input signal into the Conv.1 layer: it produces a set of

feature maps. For example, assuming the input signal is an

image of size 128x128 with 3 color channels as follows:

3. Use the feature maps for further processing: it is produced by

the Conv.1 layer and can be used as input for further processing

in the AE architecture.

By using a Conv.1 layer with a stride-2 in a DAE model, the 

model can learn to extract local features from the input signal. 

The local features can be used to reconstruct the input signal in a 

lower-dimensional feature space, which can be used for various 

applications, significantly for CE in wireless communication 

systems. While deconvolution (DeConv.) layers with a stride-2 

and flattening layers are often used for various applications, e.g., 

image dataset processing. These layers help to increase the 
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spatial resolution of the feature maps and convert them into a 

vector form, respectively. These layers work in a DAE as: 

1. DeConv. layer with stride-2 (so-called a transpose

convolutional layer or a fractionally-strides convolutional

layer): it can be used to increase the spatial resolution of the

feature maps produced by the previous layers. The DeConv

layer performs the opposite operation of a Conv.1 layer, and

it can be used to reconstruct the input signal or to up-sample

the feature maps.

2. Flattening layer: it is used to convert the 3D feature maps

into a 1D vector format. This is typically done before passing

the feature vectors through a dense layer for classification or

regression tasks, defined as:

3. Using these layers in a deep autoencoder: in a deep

autoencoder, a DeConv. layer with stride-2 can be used to

up-sample the feature maps, and a flattening layer can be

used to convert the feature maps into a 1D vector format.

4. The model is assessed and contrasted using MSE. The MSE

scores are used to analyze the model further. The following

is the MSE equation.

��� = ∑(Yt − Y˜t)
�

n (1) 

Where Yt  means the actual attribute and Y˜t  means forecasted

attribute. 

The MSE between the real and predicted scales is measured. 

Whenever a model is perfect that means the MSE measurement 

is zero. It is proportional to model-error. Algorithm 1 with 

pseudo-code demonstrates the main steps of DAE for CE. 
Algorithm 1: DAE-based CE 

1. Input: Generated and Load the dataset: Load the dataset which consists 

of input signals and corresponding CEs. /*Preprocess the input data: 

Normalize the input data by dividing each element by the maximum 

value*/. 

2. Output: Training dataset, MSR. 

3. Begin: 

4. Define the AE /*the encoder and decoder architecture using Conv. and 

DeConv. layers, respectively in Table III*/.

5. Define the CE parameters using Table II a dense layer.

6. Concatenate the input signal and CE. 

7. Define the DAE-based CE model: with the following Pseudocode.

8. AE-model=Model (concatenated-input, decoded-signal).

9. CE-model=Model (channel-input, channel-estimate).

10. Combined-input = Input (shape= (64, 64, 1)). 

11. Channel-output=CE-model (CE).

12. Combined-output=concatenate ([combined-input, channel-output]). 

13. AE-output = AE-model (combined-output) 

14. Full-model=Model (inputs= [combined-input, channel-input], outputs= 

[AE-output, channel-output]) 

15. Compile and train the model: Compile the full model and train it on the 

input data and channel estimates. As follows: 

16. Full model. Compile(optimizer=Adam(lr=0.001), 

17. loss= ['MSE', MSE], metrics=['accuracy']). 

18. history = full-model. Fit ([input-data, CE], [input-data, CE], 

epochs=50, batch-size=32, shuffle=True, validation-split=0.2) 

19. Return MSR (accuracy).
20. End. 

The model examinations of the AA's five attacks (FGSM, BIM, 

MIM, PGD, and C&W) trained and tested the effectiveness of 

the suggested mitigation measures to achieve the highest 

performance (i.e., the lowest possible MSE). 

IV. IMPLEMENTATION ENVIROMENT

MATLAB tools, Python, and Collaborator (Colab) are 

general-purpose programming languages, which are simple to 

use and learn. They are compatible with numerous operating 

systems i.e., Windows, Linux, and Mac. TensorFlow and Keras 

are two open-source DL libraries created to expand the Python 

library. As a result, this paper uses these languages and libraries 

to put the suggestions into practice. The DAE is carried out using 

MATLAB Toolbox to generate the dataset. Furthermore; the 

DAE model is implemented using Python 3.8 in colab, using 

TensorFlow and Keras libraries. The laptop used is equipped 

with a Core i7 CPU, 10th Generation, and 64-bit Operating 

System Win. 11. 

V. RESULTS, EVALUATION, AND DISCUSSION

A. Performance Results and Evaluation

To assess the effectiveness of DAE-based channel estimate 
models in the 6G Network, attack success ratio (ASR) was used 

for evaluation statistics as: 

��� = 1
��

��� ��(�)���, �(�)� − �����(�), �(�)�
��� ��(�)���, �(�)�

�

� !
(2) 

ASR represents the test-samples proportion, which the attacker 

may incorrectly forecast to all test samples. An attack is more 

effective if the ASR is higher. 

Table IV shows the experimental findings for the suggested AA-

based mitigation techniques. 

TABLE IV. EXPERIMENTAL TEST RESULTS OF DAE-BASED CE FOR AA. 

Attacks 

Names 

Epsilon  MSE ASR 

Normal Attacks 

FGSM

0.1 
0.5 
1.0 
2.0 
3.0 

0.02812 
0.02812 
0.02810 
0.02822 
0.02783 

0.02848 
0.03676 
0.07848 
0.19284 
0.30651 

0.018932 
0.218932 
0.618932 
0.818932 
0.918932 

BIM

0.1 
0.5 
1.0 
2.0 
3.0 

0.02812 
0.02812 
0.02810 
0.02822 
0.02783 

0.02848 
0.03676 
0.07848 
0.19284 
0.30651 

0.018932 
0.218932 
0.618932 
0.818932 
0.918932 

MIM 

0.1 
0.5 
1.0 
2.0 
3.0 

0.02812 
0.02812 
0.02810 
0.02822 
0.02783 

0.02848 
0.03676 
0.07848 
0.19284 
0.30651 

0.018932 
0.218932 
0.618932 
0.818932 
0.918932 

C&W _ 0.028314 0.02980 0.066435 

PGD 

0.1 
0.5 
1.0 
2.0 
3.0 

0.02812 
0.02812 
0.02810 
0.02822 
0.02783 

0.02848 
0.03676 
0.07848 
0.19284 
0.30651 

0.018932 
0.218932 
0.618932 
0.818932 
0.918932 
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in Table IV, epsilon values typically refer to the maximum 

amount of perturbation or distortion allowed to be added to the 

AA original input data (the epsilon value refers to a small 

perturbation value that is added to the input data to create AA. 

The objective of AA is to cause an ML model to misclassify an 

input by making small modifications to the input data. It 

determines the magnitude of these modifications). That generates 

more aggressive AA to fool intelligent systems. For example, in 

the popular Fast Gradient Sign Method (FGSM) attack, the 

perturbation added to the input image is scaled by a small value 

of epsilon, which controls the amount of distortion introduced to 

the original image. By adjusting the value of epsilon, an attacker 

can control the trade-off between the degree of distortion 

introduced to the input and the likelihood of AA successfully, 

fooling the model. The experiments-result demonstrates that the 

suggested approach can increase the CE model's accuracy. The 

findings depict that the approach can deliver superior outcomes 

for AA (FGSM, BIM, MIM, PGD, and C&W). Fig. 3 

demonstrates the training and testing dataset's MSE with epochs 

1000. 

Fig. 3. MSE for Training and Testing Datasets.  

The effectiveness of the CE model can be increased by the 

outcomes of the suggested DAE model. Fig. 4 shows the MSE 

values change before and after applying a DAE model. The MSE 

values before the model (left-sided Fig.) are virtually identical to 

the attacks and the values are maximum. However; when the 

DAE model is applied, the values of MSE of all attacks are 

minimum. 

Fig. 4. The experimental results of DAE-based CE between MSE and epsilon.  

Fig. 4 shows that DEA-based CE is efficient at predicting and 

detecting the AA with the epsilon values added to the original 

data. Table V demonstrates the details about all the AA. 

TABLE V. MALICIOUS DISTANCE WITH REAL AND PREDICTED MSE FOR 

EACH ATTACK. 

Index 
Malicious 
Distance 

Real 
Predicted 

MSE 

Malicious 
Predicted 

MSE 
Attacks epsilon 

377 2.7999999 0.0118651 0.0129488 
BIM 

3.0 

179 2.8000023 0.0329317 0.0329508 2.0 

301 0.7000001 0.0100393 0.0100881 

FGSM 

0.5 
290 1.4000003 0.0537686 0.0534277 1.0 

490 1.4000003 0.0382549 0.0385098 1.0 

510 1.4000003 0.0077401 0.0080595 1.0 

529 2.8000063 0.0344316 0.0354635 
MIM 

2.0 
66 2.8000068 0.0269185 0.0276220 1.0 

142 2.8000023 0.0296083 0.0299384 
PGD 

2.0 

131 2.8000068 0.0411919 0.0422248 0.5 

366 2.8000020 0.0319317 0.0319400 C&W 0.5 

Table V shows various forms of attacks. The index-based attacks 

focus on finding the closest AA, whereas distance-based attacks 

focus on maximizing the distance between the original data point 

and AA. The experimental results are consistent across all types 

of AA (BIM, FGSM, MIM, C&W, and PGD). Furthermore, the 

epsilon values range was expanded to (0.5-3.0), whereas the 

MSE values of real and predicted malicious are still similar or 

close to each other across the different combinations of attack, 

epsilon value, and distance metrics. These findings prove that the 

model is highly susceptible to a wide range of adversarial 

perturbations. Hence, small changes in the perturbation 

parameters do not significantly affect the quality of AA detection 

concerning the MSE metric.  

VI. CONCLUSION AND FUTURE WORK 

In a nutshell, this study proposed a secure DAE-based 6G CE 

model to detect and mitigate potential AA. It demonstrated 

promising results in improving the robustness and effectiveness 

of CE against AA in 6G networks throughout comprehensive 

experimental evaluations. The results proved the system's 

outperformance over traditional CEs per simplicity, accuracy, 

and resilience against AA (a high accuracy to detect AA (FGSM, 

BIM, PGD, MIM, and C&W) with minimum MSE of real and 

predicted malicious) when the epsilon values ranged (0.5-3.0) 

with various attacks' distances. Overall, the proposed approach 

paves the way for the development of more advanced and 

effective security mechanisms in 6G networks to ensure the 

reliability and availability of 6G communications. In the future, 

further developments might be made in several directions. 

Validating this model performance upon the deployment of 6G 

networks in real-world practice, integrating it with other defense 

mechanisms and response systems, or extending it to address 

other types of attacks in 6G networks, e.g., jamming, poisoning, 

dark net, and spoofing attacks.  
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