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Experimental and numerical study of rate-dependent 
mode-I failure of a structural adhesive
Leo Škec a and Giulio Alfano b

aFaculty of Civil Engineering, University of Rijeka, Rijeka, Croatia; bDepartment of Mechanical and 
Aerospace Engineering, Brunel University London, Uxbridge, UK

ABSTRACT
We present an experimental and numerical study of the rate 
dependence of the mode-I failure of adhesive joints, focussing 
on aluminium plates bonded with Araldite® 2015. For the 
experimental part, we tested 24 double-cantilever beams 
(DCB) at six different prescribed speeds, from 0.1 to 5000 mm/ 
min. The numerical simulations use a previously proposed cohe-
sive-zone model (CZM) based on fractional viscoelasticity and 
a novel finite element combining a Timoshenko beam and an 
interface element. The CZM had previously been validated for 
a rubber interface, so here we present a procedure to identify its 
input parameters and validate its capability to predict the failure 
of joints made with an epoxy adhesive. An effective procedure is 
also developed to evaluate the dependence of the fracture 
energy on the crack speed without experimentally measuring 
the crack speed. The adhesive response was found to be mark-
edly rate dependent. Within the range of tested speeds, the 
fracture energy of the adhesive more than doubles its value and 
the shape of the ‘fracture energy-crack speed’ curve resembles 
a sigmoidal shape, but more tests are needed at higher speeds 
to better determine the maximum value of the fracture energy 
and the actual shape of the complete curve.
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1. Introduction

Adhesive joints are nowadays used in a very wide-ranging variety of structural 
engineering applications, because of the associated reduction of stress con-
centrations and their suitability for joining lightweight components. Although 
a number of procedures are available to characterise the interface fracture 
energy in such structures for quasi-static problems, the increasing use of 
adhesive bonding in the automotive and aerospace sectors makes it particu-
larly important to evaluate the rate dependence of the fracture energy, because 
of the importance of modelling these structures under dynamic loading, and in 
particular during impact loading. This is more challenging, which is why 
a significant amount of research is still conducted in this area [1–13].
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One problem that arises is how to account for inertial effects in the analysis 
of experimental result. To this end, Lißner et al. [3,4] tested specimens in 
mode-I butt joints, mode-II single-lap joints and mixed-mode joints made 
with end caps bonded on an interface at 45 deg to the load application, and at 
the highest speed, they used the Split-Hopkinson Tensile Bar (SHTB) rig 
because the results of these tests are not practically affected by inertia effects. 
On the other hand, these specimens do not have a predefined crack tip, so that 
fracture mechanics approaches could not be used. A Split-Hopkinson Pressure 
bar (SHPB) rig and digital image correlation (DIC) were also used by Lißner 
et al. [5], but in this case, the SHPB was effectively only used to apply high- 
speed dynamic loading on different types of specimens, namely wedge-DCB 
(WDCB) in mode I, end-notched-flexure (ENF) specimens in mode II and 
single-leg-beam (SLB) specimens for mixed mode, relying on DIC and 
a bespoke postprocessing technique to measure the position of the crack tip 
at each time. High-speed video acquisitions were also used by Blackman et al., 
[6,7] who conducted double-cantilever-beam (DCB) tests at several speeds and 
included a correction term to the data-reduction scheme when the kinetic- 
energy contribution to the fracture energy was higher than 5% of the conven-
tional quasi-static contribution. More recently, a similar approach was used by 
Sun et al. [8] to filter dynamic effects from the results of DCB tests.

One common characteristic of these valuable contributions is the use of 
high-resolution high-speed cameras and other state-of-the art techniques to 
experimentally determine the speed of crack and/or the crack tip opening. 
While this is feasible for research purposes, it requires expensive equipment, 
significant expertise and time-consuming procedures, which does not make 
them cost-effective for industrial standardisation. Furthermore, even for 
research purposes, the difficulty of accurate measurements of the crack-tip 
position, advance and opening displacement makes it difficult to characterise 
a large number of adhesives and adherents.

Another issue is how to account for rate dependence in computational 
modelling. Using traditional fracture mechanics approaches, the fracture 
energy can be taken as a function of the crack speed, regardless of whether 
the fracture energy is calculated as the critical values of the energy release rate, 
the stress intensity factor or the J integral. However, the crack speed is not 
known a priori, particularly for irregular structures, and therefore in the recent 
two decades cohesive-zone models (CZMs) have gained popularity as an 
alternative approach.

A number of CZMs have been proposed to account for the rate dependence 
of fracture in adhesive joints or delamination of composites. Among them, 
Corigliano et al. [14] proposed two models, one based on softening plasticity 
and a second one in which a rate-dependent damage evolution law is adopted. 
Allen and Searcy [15] developed a CZM via homogenisation of the response 
studied at the micromechanical scale. Xu et al. [16] a developed rate- 
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dependent CZM using a rheological model combining a rate-independent and 
a rate-dependent Maxwell element. Musto and Alfano [17] proposed a model 
combinding damage mechanics and viscoelasticity, in which the stress pro-
vided by a viscoelastic rheological model, made of one elastic arm and one 
Maxwell arm, was essentially scaled via a damage variable, whose evolution 
was taken as rate independent. Essentially, the underlying idea was that there is 
an intrinsically rate-dependent fracture energy in the interface, associated with 
the energy of the bonds, so that the rate dependence of the response is only the 
result of the viscoelastic dissipation occurring during the debonding process.

All these CZMs are found to be effective in modelling rate dependence and 
to some extent are formulated in an attempt to reproduce the underlying 
mechanics, but their range of validity is limited to the range of speeds for 
which the input parameters are determined. More recently, Lißner et al. [3–5] 
used a CZM in which the peak stress and the fracture energy are taken as 
a logarithmic function of the rate of relative displacement, essentially justified 
by curve-fitting of the experimental test results, whereas the stiffness of the 
interface is assumed to be rate independent. Again, given the empirical nature 
of this approach, it is difficult to expect that the predictive capability of the 
model extends beyond the range of tested speeds.

These limitations were the motivation for the CZM developed by Musto 
and Alfano, first in [18] and then revisited and extended in Ref. [19] The 
general idea is the same as in Ref. [17] but the model is formulated in the 
context of fractional viscoelasticity, which allows simulating the rate depen-
dence of polymers and elastomers within a very wide range of strain rates with 
a much smaller number of input parameters than those required by models 
based on an exponential kernel. This is because for these types of materials, the 
entire relaxation function is well approximated by a power law, which leads to 
the derivation of rate forms of the constitutive law that involve derivatives with 
respect to time of non-integer (i.e., fractional) order. This idea of combining 
fractional calculus with cohesive-zone models has then been followed by other 
authors [20,21] and the formulation presented in Ref. [18] with a very similar 
numerical implementation was combined with the widely used Park–Paulino– 
Roesler cohesive-zone model in Ref. [22]

However, the model proposed in Ref. [18] was only validated against 
experimental results for a rubber interface joining two steel plates and tested 
in a double-cantilever beam (DCB) configuration. The validation showed that 
the model was able to capture very well, and with a unique set of seven 
parameters, the load–displacement curves at different loading speeds, ranging 
from 0.01 to 500 mm/min, leading to a monotonic ‘fracture energy-crack 
speed’ relationship, with a sigmoidal shape. In Ref. [19], its formulation was 
recast within a thermodynamic framework, which led to consider a wider set 
of options for the damage evolution law. It was found that, depending on 
which part of the free energy is assumed to drive damage, different types of 
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rate-dependent behaviour are obtained. In particular, if only the immediately 
available part of the free internal energy is assumed to drive the damage, 
according to the model, the fracture energy as a function of crack speed turns 
out to be monotonically increasing, with the sigmoidal shape of the graph 
found in Ref. [18] If the rest of the energy is included, the same function is 
found to first increase and then decrease, with a bell shape of the graph. It was 
suggested that the latter case could be more representative of the behaviour of 
polymers, but no quantitative validation against experimental results was 
provided.

Experimental results obtained by other researchers do not provide 
a common qualitative trend of the relation between fracture energy and 
crack speed for different adhesives. For the rubber-toughened single-part 
epoxy adhesive Betamate XD4600, using different specimens and substrates, 
Blackman et al. [6] found practically no rate dependence at low speeds and 
a decrease in the fracture energy with testing speed at very high speeds, in 
which dynamic effects were significant. However, they could attribute the 
decrease in fracture energy to the change in material properties caused by 
heating, which in turn is due to the transition from an isothermal to an 
adiabatic process. For the thermosetting epoxy adhesive AF 163–2OST and 
adherents made of titanium alloy Ti–6Al–4 V, Lißner et al. [3] found a decrease 
in both the strength and the fracture energy with increasing loading speed. Sun 
et al. [8] found an increase in the fracture energy with loading speed for the 
toughened single-part epoxy adhesive SikaPower-497, whereas for the two- 
part polyurethane adhesive Araldite-2028 a non-monotonic trend was found 
with an initial increase followed by a decrease in fracture energy with increas-
ing loading speed. This last result could resemble the bell shape postulated by 
Alfano and Musto in Ref. [19] but Sun et al. [8] could attribute the final 
decrease to the transition from a combined interfacial-cohesive failure at lower 
speeds to a purely interfacial failure at the highest speeds.

In this paper, we present a numerical and experimental study of the rate 
dependence of the failure of adhesive joints based on DCB tests. For the 
experimental part, we tested 24 adhesive joints made of aluminium Al 2082- 
T6 bonded with the epoxy adhesive Araldite® 2015, in a DCB configuration 
with a prescribed cross-head displacement rate ranging between 0.1 and 
5000 mm/min, with 4 specimens tested at each speed.

To avoid the challenges and the lack of accuracy related to real-time 
measurements of the crack tip position, we develop a post-processing pro-
cedure that provides an excellent approximation of the relation between 
crack speed and fracture energy, without the need for measuring the crack 
length and the speed of its advance during the test. The method is an 
application of the data-reduction scheme proposed in Ref. [23] which is 
based on the enhanced simple beam theory (ESBT), and uses the concept of 
equivalent crack length, introduced by De Moura et al. [24] in their 
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compliance-based beam method (CBBM). In this respect, the proposed 
method is similar to the approach used by Dagorn et al. [25] which proved 
its accuracy by comparing the indirectly computed crack speed with that 
measured by means of a high-resolution video camera. Unlike the approach 
proposed in Ref. [25], our implementation does not require the assumption 
of a constant fracture energy and does not neglect shear deformability of the 
arms. By using the ESBT data-reduction scheme, which accounts for the 
crack-root rotation in combining Timoshenko beam theory with linear- 
elastic fracture mechanics (LEFM), we increase the accuracy of the proce-
dure and make it particularly suitable for composites. It is worth noting that, 
with our approach, we characterise the fracture energy using the critical 
energy release rate Gc, justified by the rigorous analysis presented in Ref. 
[26]. Furthermore, it was shown in Ref. [23] that the ESBT data-reduction 
scheme is more reliable and accurate than those currently used in standards 
[27,28], see also [26].

We also present a systematic parameter-identification procedure to deter-
mine the input constants for the fractional rate-dependent model proposed by 
Musto and Alfano [18,19] and experimentally validate the model for the cases 
tested. Furthermore, the numerical simulations reported in this paper have been 
conducted by developing a special finite element that combines together 
a Timoshenko beam finite element with a linear interface element, within one 
single element. This is a special reduced case of the multi-layer beam model 
presented by Škec et al. [29] where it has been shown that a combination of 
beam finite elements and interface elements can be an accurate, fast and robust 
alternative to the common approach with 2D-solid finite elements. Such prop-
erties are extremely important in the context of rate-dependent analyses because 
an accurate identification of interface parameters requires several runs of multi-
ple simulations (each one with a different load-line displacement speed).

The outline of the paper is as follows. The numerical methods used are 
presented in Section 2. In particular, the new finite element used in the 
numerical simulations is first described in Section 2.1. Then, in Section 2.2, 
for the rate-dependent CZM formulated in Ref. [18], we briefly provide its 
governing equations and the other essential features that we later refer to, 
for the sake of self-consistency. The experimental tests conducted and their 
results are described and discussed in Section 3. In Section 4, we describe 
the procedure developed to determine the rate dependence of the fracture 
energy in terms of crack speed and discuss the results obtained in our case 
study. In Section 5, we describe the identification procedure developed to 
calibrate the input parameters of the rate-dependent CZM and compare 
the obtained numerical results with the average load–displacement curves. 
Some conclusive remarks are finally provided in Section 6.

THE JOURNAL OF ADHESION 1327



2. Description of the numerical model

2.1. Combined beam-interface finite element

In the numerical model, a novel finite element, specially tailored for the DCB 
test, is used. In this element, the standard geometrically linear two-node 
Timoshenko beam finite element, with one integration point to avoid shear 
locking, is combined with a 4-node interface element (INT4). Because in 
a DCB test there are no axial forces in the arms if a geometrical linear model 
is used, this type of element has only two degrees of freedom per node, for 
a total of 4-element degrees of freedom, namely the two nodal vertical dis-
placements v1 and v2 and the two nodal cross-sectional rotations θ1 and θ2 (see 
Figure 1).

Due to symmetry, only the upper half of the specimen is modelled. The 
contribution of the interface is simply added to the corresponding elements of 
the beam’s element vector of residual forces and the stiffness matrix at the 
corresponding positions. Therefore, the main advantage of using this element 
is that the only degrees of freedom of the DCB model are those of the nodes of 
the beam elements. Because the two-node Timoshenko beam elements are well 
known and reported in many FEA textbooks [30], here we focus on the 
contribution of the interface, as explained in the following subsection.

2.1.1. Contribution of the interface in the mode-I beam finite element
It is assumed that the interface mode-I stresses at coordinate x, denoted by 
σðxÞ, act on the beam finite element as a distributed load qðxÞ, as shown in 
Figure 1. It is further assumed that the distribution of interface stresses is 
constant along the width of the specimen and that (mode-I) tensile stresses are 
positive. Because the y-axis of the beam’s coordinate system, unlike the 
positive interface stresses acting on the beam, is pointing upwards (as shown 

Figure 1. Schematic of the finite element.
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in Figure 1), it follows that qðxÞ ¼ � b σðxÞ. Finally, the virtual work W� of q 
done on the beam can be written as 

W� ¼ � b
ð

Le

σðxÞ vðxÞdx; (1) 

where b is the width of the specimen (interface), Le is the length of the beam 
finite element, v is the virtual transversal displacement of the beam and σ is the 
distribution of mode-I interface stresses along the interface, the last two being 
function of the position x on the interface. The interface stresses are unknown 
and depend on the formulation of the CZM, which will be discussed in the 
next subsection. For a two-node beam finite element, linear-interpolation 
functions are used for the transversal-displacement and cross-sectional- 
rotation fields so that 

pðxÞ ¼ ΨðxÞpN ; (2) 

where the unknown virtual kinematic fields are contained in vector 
pðxÞ ¼ vðxÞ θðxÞ

� �T
, the nodal values of virtual transversal displacements 

and cross-sectional displacements are contained in vector pN ¼

v1 θ1 v2 θ2
� �T 

and 

ΨðxÞ ¼ ψ1ðxÞ 0 ψ2ðxÞ 0
0 ψ1ðxÞ 0 ψ2ðxÞ

� �

(3) 

is the matrix containing linear interpolation functions ψ1ðxÞ ¼ 1 � x=Le 
and ψ2ðxÞ ¼ x=Le.

Because the vector of residual forces is computed as the difference between 
the vector of internal and the vector of external forces, which can be written as 
g ¼ qint � qext, the contribution of the interface to the vector of residual forces 
is actually positive and, from Equation (1), it can be written as 

g� ¼ b
ð

Le

βðxÞT σðxÞdx; (4) 

where βðxÞ ¼ ψ1ðxÞ 0 ψ2ðxÞ 0
� �

.
The contribution of the interface to the stiffness matrix is obtained by 

linearising the vector of residual forces (4) with respect to the vector of the 
nodal element degrees of freedom. As it will be shown in the next subsection, 
the interface stresses σðxÞ depend on the relative displacement δðxÞ, where due 
to the symmetry of the DCB test δðxÞ ¼ 2 vðxÞ. Thus, in the residual (4), it is 
necessary to linearise only σ with respect to v. Finally, the contribution of the 
interface to the element’s tangent stiffness matrix can be written as 
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K� ¼ b
ð

Le

βðxÞT
dσ
dv

βðxÞdx: (5) 

For the numerical integration of the finite-element, the contribution of the 
beam element is integrated using the 1-point Gauss quadrature, while for the 
contribution of the interface, the 3-point Simpson’s rule is used.

Note that in this subsection, for the sake of simplicity, the explicit depen-
dence of variables on time has been omitted. In the next subsection, however, 
such dependence will be made explicit because of the rate dependence of 
the CZM.

2.2. Rate-dependent CZM model

The interface is modelled using the mode-I rate-dependent CZM proposed by 
Musto and Alfano [18] which combines damage mechanics with fractional 
viscoelasticity and whose governing equations are recalled and discussed here 
because the physical meaning of the parameters is important for the analysis 
presented later in this article.

The rheological representation of the model, in the absence of damage, is 
shown in Figure 2, where ~σ indicates the interface traction that would be 
obtained as the response to the prescribed history δ if no damage occurs. 
Although similar to the standard linear solid (SLS) (or Zener model), the 
model proposed in Ref. [18] has several additional features that allow for the 
modelling of progressive rate-dependent damage at the interface. First of all, 
the dashpot of the SLS model is replaced by the ‘Scott Blair’ (SB) element, in 
which the stress is obtained as 

Figure 2. Rheological representation of the rate-dependent CZM.
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σSB ¼ η̂
dνα
dtν (6) 

where α is the relative displacement within the Scott Blair element, η̂ is 
a material constant and the second term is the fractional derivative of order 
ν of α with respect to time t, so that ν is a second material constant, with 
0< ν< 1. Note that in the original paper with the fractional rate-dependent 
CZM [18] the authors used the term ‘spring-pot’ for what they have referred to 
as the ‘Scott Blair’ element since their following publication [19] and we are 
following the latter terminology here.

We will refer to the bottom and top arms of the model in Figure 2 as elastic 
and inelastic, respectively. The stiffness of the spring in the elastic arm is 
denoted by k1, while the spring in the inelastic arm has stiffness k2. The normal 
interface traction at time t, σðtÞ, is given by the following non-linear 
functional: 

σðtÞ ¼ 1 � Dðδ; tÞ½ �~σðδ; tÞ; (7) 

where D is the damage variable ranging between 0 (no damage) and 1 (full 
damage), and δ in Equation (7) refers to the entire relative-displacement 
history δ : 0; t½ � ! <, which is why σðtÞ is a functional. Both springs in the 
model are assumed to be linear elastic, so that the following governing 
differential equation is obtained: 

~σ þ λ̂
dν~σ
dtν ¼ k1δ þ γ̂

dνδ
dtν ; (8) 

where λ̂ ¼ η̂=k2 and γ̂ ¼ λ̂ðk1 þ k2Þ.
For reasons that will be clarified later, here we use the damage-evolution law 

used in Ref. [18] instead of one of the alternative options proposed in Ref. [19]. 
In the latter article, it was shown that adopting the damage evolution law used 
in Ref. [18] is equivalent to assume that the damage is driven only by the 
energy stored in the elastic arm. In other words, in this model D grows when 
the energy in the elastic arm, k1δ2=2, reaches a critical threshold, which itself is 
a function of D.

Assuming a bi-linear traction-separation law (TSL) in the slow limit, as 
defined in Figure 3, the damage variable is computed as follows: 

D ¼
0 if δmax � δ0

min 1; δc
δc� δ0

1 � δ0
δmax

� �n o
if δmax � δ0

(

; (9) 

where δ0 and δc are the values of the relative displacement corresponding 
to damage (softening) onset and total debonding at the interface, respec-
tively, while δmax is the maximum relative displacement in the previous 
history.
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In the slow limit, the inelastic arm is completely relaxed so that α! δ and 
the stiffness of the model becomes k0 ¼ k1. In the fast limit, because α! 0, 
the stiffness of the model becomes k1 ¼ k1 þ k2. If � ¼ k0=k1 is introduced, 
it can be shown [18] that Ω1 ¼ Ω0=� and σ1 ¼ σ0=�, where Ωi and σi, with 
i ¼ 0 for the slow limit and i ¼ 1 for the fast limit, are the work of 
separation and the maximum interface traction, respectively, as shown in 
Figure 3.

It should be noted that, because the relative displacements δ0 and δc are 
rate-independent model parameters (see Figure 3), the evolution law for 
the damage variable D, as defined in Equation (9), is rate independent too. 
The overall damage process turns out to be rate dependent though because 
of the interplay between damage and visco-elastic response of the interface.

Between the slow and the fast limit, a sigmoidal variation of the work of 
separation with respect to the relative-displacement speed is obtained [18]. 
In Ref. [19], the authors considered different damage-evolution laws in 
which, besides the energy in the elastic arm, damage can be driven by the 
energy in both springs or the entire free energy (including the SB element). 
Such damage-evolution laws give bell-shaped variations of the work of 
separation with respect to the relative-displacement speed. However, such 
formulations have not been used in the present work because there has not 
been experimental evidence of a non-monotonic change of the fracture 
energy with respect to the relative-displacement speed, although this could 
be due to the fact that not sufficiently high speeds were reached in the tests 
conducted.

It needs to be emphasised that in compression (for δ< 0), no damage is 
allowed at the interface. Moreover, it is assumed that the rate dependence of 
the interface in compression is negligible so that the interface stiffness in 
compression is given by a scalar kc.

Figure 3. Bi-linear rate-independent traction-separation law (TSL) embedded in the CZM for the (a) 
slow and (b) fast limit and their ratios.
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For the time implementation of the rate-dependent cohesive model, which 
is based on the Grünwald-Letnikov definition of the fractional derivative, the 
reader is referred to [18].

It is worth noting that in this model, the CZM input parameters are not rate 
dependent. Instead, this CZM has fixed parameters that define the fast and the 
slow limit, while the transition between the two limits, which essentially 
defines the rate dependence of the model, is governed by two (also rate 
independent) parameters λ̂ and ν (see Equation (8)).

2.3. Parameters of the rate-dependent CZM and their identification

The model has seven independent parameters in total, and it is therefore useful 
to discuss the role of each of them in the simulation of the rate-dependent 
behaviour of the adhesive because this will be the basis for the parameter- 
identification procedure that will be presented in Section 5.

As mentioned earlier, kc is given as a separate parameter in order to ensure 
that the behaviour of the interface in compression is rate independent. In Ref. 
[18] it has been shown that, within certain limits, this parameter does not have 
any noticeable influence on the results of a DCB test simulation. Thus, we take 
the stiffness of the interface in compression as the mean of the stiffness values 
in tension at the slow and the fast limit, which gives 

kc ¼
1
2

k0 þ k1ð Þ ¼ k1 þ
k2

2
: (10) 

The next three parameters, namely Ω0, σ0 and k0 (or k1), are those that 
fully define the bi-linear traction-separation law in the slow limit. If 
experimental data at slow speeds suggest that the slow limit might have 
been reached (or at least closely approached), as it is the case in the 
experimental results presented in Section 3, the values of the slow-limit 
parameters can be identified using the force-displacement data of the 
slowest test. Although for identifying Ω0 there are several accurate 
approaches based on the critical energy release rate [23,24] or the 
J integral [26,31], identifying σ0 and k0 is less common and more 
demanding. In this work, the identification of all slow-limit CZM para-
meters will be done using a fast and accurate method implemented in the 
software application DCB PAR [32] (more details will be given in 
Section 5).

The fast limit is defined by parameter �, and its value can be easily identified 
if the experimental data suggest that the fast limit might have been reached or 
closely approached. In that case, using the load–displacement data of the 
fastest test, a rate-independent parameter identification (identical as for the 
slow limit) can be performed. It is sufficient to identify the fracture resistance 
at the fast limit, Ω1, from which it follows that � ¼ Ω0=Ω1.
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The two remaining parameters, namely λ̂ and ν, define the rate-dependent 
behaviour between the slow and the fast limit (see Equations (6) and (8)).

3. Experimental tests and results

Experimental tests have been carried out on aluminium DCB specimens 
bonded with the structural adhesive Araldite® 2015 over a wide range of test 
speeds.

3.1. Experimental set up

Geometrical properties of the specimens are reported in Figure 4 and Table 1. 
Because the aluminium plates were not thick enough for the loading arrange-
ment with loading holes drilled through the arms (as suggested in Ref. 
[27,28,33]), loading blocks screwed to the aluminium plates by means of 
conical-head screws were used, as shown in Figure 5(a). Thus, countersunk 
holes on the aluminium plates and threaded holes in the loading blocks were 
prepared for the conical-head screws. An additional cylindrical hole, used to 
attach the specimen to the tensile testing machine, was drilled through each 
loading block, whose height c was dictated by the need of accommodating the 
threaded holes (see Figure 4). It is worth noting that we did not take into 

Figure 4. Geometry of DCBs tested; dimensions are reported in Table 1.

Table 1. Dimensions of the DCB.
Dimensions [mm] L d b a0 c t lb

Average value 250 6.35 25.4 40 60 0.25 51.7
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account the presence of the loading blocks in Sections 4 and 5, but we provide 
a derivation in the Appendix showing that the loading blocks alter the value of 
the computed fracture energy of about 3%. On the other hand, incorporating 
the analysis from the Appendix into the procedures developed in Sections 4 
and 5 would not allow us to use the closed-form expression employed in 
Section 4 and in the parameter-identification procedure implemented in the 
software DCBPAR in Section 5. Given that the loss of accuracy is quite less 
than the scatter of the results, we prefer to neglect the influence of the loading 
blocks.

After attaching the loading blocks to the aluminium plates, the aluminium 
surfaces were roughened using sand paper and cleaned using acetone. As 
shown in Figure 5(a), some aluminium foil was applied on both plates to 
create the initial notch at the desired position, at a distance a0 from the loading 
line.

The adhesive was applied using a thin cylindrical wooden stick that was first 
dipped into the adhesive and then rolled over the aluminium surface. By using 
a spatula to additionally spread and level up the adhesive, a relatively thin and 
uniform adhesive layer was created on each plate, as it can be seen in Figure 5 
(a). The two arms were then carefully put in place and secured with clamps at 
both ends, as shown in Figure 5(b). In order to create a uniform adhesive layer 
at the interface and squeeze out the excess glue, the specimens were first 
pressed together with a force of 60� 10 N for 60 s, and then loaded by two 
1 kg weights that were put on a rectangular wooden bar used to uniformly 
transfer the load to the plates, as shown in Figure 5(b). After curing at room 
temperature for 24 h, the specimens were oven-cured at 80°C for 60 minutes. 
Prior to testing, the specimens were allowed to cool down to room tempera-
ture, and then, their thickness was measured with a digital caliper having 
a resolution of 0.01 mm. The difference with the initial measurement without 
the adhesive provided the thickness, the average of which was 0.25 mm, with 
a standard deviation of 0.08 mm. This relatively large deviation from the 

Figure 5. Preparation of DCB specimens: (a) assembling the two arms with loading blocks and 
aluminium foil inserts attached, (b) curing the adhesive at the room temperature under the 
uniformly distributed load of 2 kg.
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average is due to the fact that the thickness of the interface was not controlled 
during the process of preparation of the specimens. Although a dependence of 
the fracture energy on the thickness has been reported in the literature [4,34], 
for none of the tested any evidence of non-negligible dependence when 
comparing the results of the 4 specimens, which is also consistent speeds we 
found with the experimental results in Ref. [35] for the same adhesive and for 
values of thickness less than 3 mm. Therefore, it was concluded that the scatter 
of the experimental data can be primarily attributed to the imperfections at the 
interface that were similarly distributed in interfaces of different thicknesses.

Debonding test have been performed at six different load-line-displacement 
speeds, namely 0.1, 1, 10, 100, 1000 and 5000 mm/min. For each speed, four 
tests have been made. All tests were performed at room temperature using a 30 
kN electromechanical Instron testing machine, except for the tests at 
5000 mm/min, which were performed using a 100 kN servo-hydraulic 
Instron machine. The experimental set-up is shown in Figure 6.

3.2. Experimental results: load–displacement curves

The raw data (containing the time, the load-line displacement and the applied 
force) have been post-processed in order to allow a consistent comparison 
between test results and with the results of numerical simulation, in which self- 
weight was not included.

First, the weight of the specimen was subtracted from the measured load 
while at the same time ensuring that the remaining part of the initial preload-
ing was included in the measurement. To this end, the load was initialised to 
zero before the start of the test, when the specimen was mounted, that is when 
the load applied included both the effects of the self weight and that of the 

Figure 6. Loaded DCB specimen in the tensile testing machine.
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small additional preloading needed to make arms approximately horizontal. 
The (negative) load measured at the end of the test, after the DCB was 
completely broken, minus the weight of the half specimen still attached, gave 
us the total value of the initial preloading. This value, minus the total self 
weight of the specimen (including the loading blocks) was then added to the 
measured values of the load during the test.

Next, the zone with minimal compliance (maximum slope), which repre-
sents the pure linear-elastic behaviour, was identified in the early stage of every 
experiment. Due to the inevitable small differences in the initial preloading, 
the linear fit of these measurements gives a different non-zero intercept with 
the force-axis. Therefore, all load-line displacements were corrected by sub-
tracting this constant value so that the linear fit of the corrected data passes 
through the origin of the force-displacement co-ordinate system.

To obtain the final corrected load–displacement curve from each test, the 
(linear elastic) compliance of the rig, Crig , was measured, and the associated 
displacements, CrigF, were subtracted from the measured displacements, 
where F is the measured force.

Moreover, in order to compute an ‘average’ load–displacement curve, we 
computed an average force for a sufficient number of displacement points. To 
this end, the data was modified by defining a constant 0.2 mm displacement 
increments and interpolating the force values that correspond to the closest 
displacement below and above the desired one.

The post-processed force-displacement data for all 24 tests with displace-
ment increment equal to 0.2 mm is shown in Figure 7, where the results for 
each speed are given in a separate plot. Individual tests are labelled as s � i, 
where s ¼ f0:1; 1; 10; 100; 1000; 5000g represents the speed of the test in mm/ 
min, while i ¼ f1; 2; 3; 4g is the test number. In addition, the average load– 
displacement curve for each speed is given by a solid red line. The average 
value of the force is computed only for values of the displacements for which 
in all of the four selected tests, a force has been recorded before the total 
debonding of the plates. Therefore, the maximum value of the load-line 
displacement of the average curve for each speed is the minimum of the four 
values of the displacement corresponding to failure for each specimen, not 
their average. This is the reason why in Figure 8 the increase in the maximum 
load-line displacement with the loading rate, unlike that of the corresponding 
applied load, is not perfectly monotonic. Such an increase is due to the fact 
that the fracture energy also increases with the loading rate, as shown in 
Figure 9(b). From the expressions derived in Section 3.3, it clearly follows 
that for the same crack-tip position, increasing the fracture energy will also 
increase the applied load and load-line displacement. This is important 
because the last measured point for each test is when the crack-tip position 
is close enough to the edge of the specimen to result in a sudden drop of the 
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force. Therefore, the last measured value corresponds to a crack-tip position 
which is practically the same for all tests, and therefore, for higher test speeds 
in general, we normally obtain larger final values of load and load-line 
displacement.

Although most of the failure was cohesive, in all specimens a small amount 
of interfacial failure was also found, typically on 5% or less of the bond area. 
Another small amount of the fracture surface, typically between 5% and 10% 

Figure 7. Load–displacement data of the DCB tests at: (a) 0.1 mm/min, (b) 1 mm/min, (c) 10 mm/ 
min, (d) 100 mm/min, (e) 1000 mm/min, (f) 5000 mm/min.

1338 L. ŠKEC AND G. ALFANO



or less of the bond area and in small patches distributed in an apparently 
random way, was also characterised by a smoother and shinier appearance. 
These may be sites of imperfect bonding and, in conjunction with the small 
patches of interfacial failure, can partly explain the experimental scatter in the 
results, not only between different specimens but also within the same speci-
men, the latter explaining the oscillations in the individual load–displacement 
curves. Similar scatter and oscillations were found by other researchers for 
similar epoxy adhesives [36–38] and for the same adhesive used in our work 
[35,39]. The scatter is consistent across all speeds and has been quantified by 
computing the average value of the coefficient of variation for each speed given 
in Table 2.

3.3. Test results in terms of average load–displacement curves

The average load–displacement curves for each speed (represented by solid red 
lines in Figure 7) are now compared in a single plot in Figure 8. It is clearly 
visible that the adhesive has shown a considerable amount of rate dependence 
because the fracture energy of the adhesive (and therefore the overall bearing 
capacity of the adhesive joint) obviously increases with the load-line displace-
ment speed. However, it can be noticed that the two lowest speeds (namely 0.1 
and 1 mm/min) essentially overlap, which suggests that the slow limit (i.e., the 
limit below which the rate dependence of the adhesive is negligible [18]) has 
been reached. Results for the two highest speeds (namely 1000 and 5000 mm/ 
min) are also very close for displacements greater than 3 mm, but the peak 
load for 5000 mm/min is significantly higher than for 1000 mm/min. 
Therefore, despite the results providing a good assessment of the rate depen-
dence over a wide range of speeds, in order to characterise the behaviour when 

Figure 8. Average load–displacement curves across all speeds.
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the fast limit is approached more tests would be needed, which could not be 
conducted in this project because the maximum speed of the testing machine 
available was 5000 mm/min.

4. Determination of the fracture energy as a function of crack speed

The rate dependence of fracture resistance is often reported in the literature in 
terms of fracture energy against crack speed. Producing such type of data 
accurately is very challenging, time-consuming and expensive. This is because, 
to measure the crack speed, the crack length needs to be measured in the first 
place. If this is done optically, the challenge is that the crack tip is not always 
clearly visible because what appears to be the crack tip is often at a certain 
distance from the crack, and such distance can often vary for different values 
of the prescribed load or displacement. For tests at high speeds, an additional 
challenge consists of acquiring images of the area around the crack tip with 
sufficient resolution, which requires the use of expensive cameras and signifi-
cant time for post-processing results. Alternative experimental methods can 
also be used, but they are time-consuming and still require the use of expensive 
equipment. Last but not least, the accuracy achieved with these methods 
significantly depends on the expertise and experience of the person conducting 
the test.

For the specific case of a DCB, the crack speed significantly varies during 
a test even if a constant value of the line-load-displacement speed is pre-
scribed, as is shown here as well as in Ref. [25] It is interesting though that, 
although evaluating the crack speed at each time of the test is an additional 
challenge, when such measurements are available (directly or indirectly, the 
latter approach being used here), rate dependence within a non-negligible 
range of crack speeds can be assessed within a single DCB test performed at 
a constant value of the line-load-displacement speed.

To overcome the difficulties related to the measurement of the crack speed, 
in this paper, we determine the variation of the fracture energy as a function of 
the crack speed, based on the recently developed enhanced simple beam theory 
(ESBT) data-reduction scheme [23] used to estimate the critical energy release 
rate Gc. The method does not require any direct measurement of the crack 
length, which makes it very time- and cost-effective and therefore particularly 
convenient for industrial applications.

Table 2. Average values of the coefficient of variation (CV) of the load–displacement data for each 
speed.

Speed of test [mm/min] 0.1 1 10 100 1000 5000

Average CV [%] 15.04 16.88 13.57 12.61 16.47 15.23
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With our approach, based on the Timoshenko beam theory and the concept 
of equivalent crack length, the fracture energy, i.e., the critical energy release 
rate, is computed as 

Gc ¼
F2

b
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eq
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1þ 2aeq
ffiffiffi
α
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μAs

 !

; (11) 

where F is the applied load, b is the width of the specimen, EI and μAs are the 
bending and shear stiffness of each arm, respectively, while α ¼ μAs=EI. The 
equivalent crack length is defined as 
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ffiffiffiffiffiffiffiffiffiffi
3EIδ
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r

(13) 

is the equivalent crack length that is obtained if the Euler-Bernoulli beam 
theory is used. Note that in the above equations, δ is the load-line displace-
ment, EI ¼ E � I and μAs ¼ μ � A � ks, where E is Young’s modulus, μ is the 
shear modulus, ks ¼ 5=6 is the shear correction coefficient [40], while the 
area and the second moment of area for a rectangular cross-section of the 
arms read A ¼ hb and I ¼ bh3=12. Because the actual crack length is not 
provided in the ESBT data-reduction scheme, the values of the fracture 

Figure 9. Fracture energy of the adhesive at different load-line displacement speeds: (a) the 
equivalent R-curves for each speed (each point is the average from the 4 tests at that speed), (b) 
the mean values of the fracture energy for each speed (each point is the average across the whole 
specimen, in turn averaged over the 4 tests at that speed).
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energy are plotted against the equivalent crack length, as shown in Figure 9 
(a). Therefore, instead of the resistance curve (R-curve), with the ESBT data- 
reduction scheme the equivalent R-curve can be obtained. However, it is also 
shown in [26] and [41] that the derivative daeq=da of the equivalent crack 
length aeq with respect to the actual crack length a is so close to unity that, in 
practical terms, the equivalent R-curve is simply shifted to the right by 
a constant value of Δa with respect to the actual R-curve, which has no 
influence on the crack speed. Therefore, the equivalent R-curve can still be 
used to accurately represent the values of the fracture energy, as a function of 
both the crack length (except for a constant shift) and of the crack speed.

4.1. Fracture energy as a function of the equivalent crack length (R-curve)

The equivalent R-curves in Figure 9(a) were obtained by taking the average 
from the four tests at each speed. In turn, for each speed, Figure 9(b) reports 
the average of the R-curves of Figure 9(a). Both figures confirm the rate- 
dependent behaviour of the adhesive. In Figure 9(b), it can be noticed that the 
fracture energy between the slow and the fast limit increases more than twice. 
Interestingly, the minimum mean value of the fracture energy is obtained for 
1 mm/min, but the difference with the mean value obtained for 0.1 mm/min is 
very small and below the experimental scatter reported by the error bars in 
Figure 9(b).

It is worth noting that Figure 9(b) does not provide an accurate representa-
tion of the rate dependence of the fracture energy of the adhesive because the 
latter undergoes different strain rates at different points of the interface, even 
for a constant rate of the prescribed load-line displacement. One way of 
addressing this issue was proposed by Nunes et al. in Ref. [42] who prescribed 
a variable load-line displacement rate determined in such a way to result in 
a constant strain rate at a single point of the interface. An alternative approach 
used here is to determine the relationship between the fracture energy and the 
crack speed, which is done in the next section.

4.2. Fracture energy as a function of the equivalent crack speed

Since the equivalent crack length is obtained for known values of time, the 
equivalent crack speed can now be computed. To this end, the equivalent crack 
length vs time is interpolated by a power function, whose derivative gives the 
equivalent crack speed. Such approach, in comparison to the finite-difference 
approach, gives smoother results with less scatter.

Therefore, with our procedure, we can obtain a number of points for the 
fracture energy as a function of the equivalent crack speed, without any need 
to measure the actual crack length or crack speed. As discussed earlier, the 
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difference between this function, reported in Figure 10, and the fracture energy 
as a function of the actual crack speed is practically negligible.

Not only does Figure 10 clearly show the rate dependence of the adhesive, it 
also gives additional information about the response for the lowest and highest 
speeds that is not available in the force-displacement plot (Figure 8) or the 
R-curve (Figure 9(a)). First of all, it can be noticed that the equivalent crack 
speed varies within a single test (here represented by an average of four tests). 
In fact, it can be easily shown that for a constant load-line displacement speed, 
the crack speed decreases during crack propagation, at least in the simple 
assumption that the arms of the DCB are clamped at the crack tip and using 
Euler-Bernoulli theory, for which the load-line displacement (or the crack- 
mouth opening) can be written as 

δ ¼
2Fa3

3EI
(14) 

Replacing the expression of F in this simplified case (see also Equation (11) for 
a ¼ aeq and neglecting the shear deformation): 

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
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a
(15) 

we get: 
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Taking the time derivatives of both sides and solving for _a we have: 

Figure 10. Fracture energy vs. equivalent crack speed for different load-line displacement speeds.
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which shows that the crack speed is inversely proportional to the crack length 
for constant _δ.

In Figure 10, it can also be seen that for each load-line displacement speed, 
except for the test speed of 1000 mm/min, the highest value of the fracture 
energy is obtained for values of the crack speed equal to or close to the highest 
one (that corresponds to the beginning of the crack propagation). For every 
load-line displacement speed, except for the tests with loading speed of 0.1 and 
1000 mm/min, an increase in the fracture energy between the minimum and 
the maximum equivalent-crack speed can be noticed. This can also be noticed 
for 5000 mm/min, which would suggest that we cannot claim that the fast limit 
has been reached. This is regardless of the actual shape of the complete curve 
relating the fracture energy to the crack speed. If this curve had a bell shape, 
that is one of the possibilities suggested in Ref. [19], then the fast limit would 
certainly be very far away. If instead the curve had a sigmoidal shape, then the 
results for the highest speed could potentially be not far from those in the fast 
limit, but there does not seem to be sufficient evidence to claim that the fast 
limit has been reached. This is also in consideration of the significant scatter in 
Figure 10 for the highest loading speed of 5000 mm/min.

The results for the test speed at 1000 mm/min can be explained by noticing 
that the individual load–displacement curves in Figure 7 for 1000 mm/min are 
considerably smoother than all the remaining results at other speeds. This is 
not the case for the other speeds and can be attributed to the fact that 
1000 mm/min was the highest speed tested in the 30 kN testing machine, 
and for this speed, the measurement interval used must have resulted in 
automatic time-averaging of measured data during its acquisition in the 
tensile-testing machine software.

On the other hand, results for 0.1 mm/min indicate that the slow limit has 
probably been reached.

5. Parameter identification using the rate-dependent numerical model

In this section, the rate-dependent numerical model presented in Section 2 is 
used to simulate the DCB experiments presented in Section 3. The goal is to 
identify the values of the parameters of the rate-dependent CZM so that the 
average experimental force-displacement data is accurately captured over six 
different load-line displacement speeds and with a single set of input 
parameters.

To this end, an assumption is made regarding the behaviour at the highest 
tested speed. We noted that, based on Figure 10, there is not enough evidence 
to support the fact that the complete shape of the ‘fracture energy-crack speed’ 
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curve is sigmoidal. However, the parameter-identification method used in this 
section is based on the mean fracture energy, computed for each test speed and 
reported in Figure 9(b), which does result in a sigmoidal shape of the relation-
ship. We therefore assume, for the sole purpose of identifying the input 
parameters, that the curve is indeed sigmoidal and, furthermore, we also 
assume not only that the slow limit is reached for the lowest tested speed of 
0.1 mm/min but also that the fast limit is reached for the highest speed of 
5000 mm/min. With this assumption, if we obtain good correlation between 
numerical and experimental results within the range of tested speeds, we can 
expect that the model keeps its predictive capability for lower speeds than 
those tested, because the slow limit seems to have been reached and due to the 
typically observed predictive features of fractional viscoelastic models outside 
the ranges of tested speeds. However, we have no sufficient evidence to expect 
that the same happens for speeds higher than those tested.

The identification procedure comprises three steps, reported in the follow-
ing three subsections.

5.1. Identification of the slow-limit CZM parameters

As discussed in the previous section, we assume that the slow limit has been 
reached. Therefore, the slow-limit CZM parameters (Ω0, σ0 and k0) are 
identified using the procedure proposed in Ref. [32] and implemented in the 
DCB PAR software, which is based on an analytical solution with a rate- 
independent bi-linear TSL at the interface [41]. After loading the experimental 
load–displacement data (the average load–displacement curve for 0.1 mm/ 
min), and entering the geometrical and material properties of the plates (as 
reported in Section 3), the software returns Ω0 ¼ 0:2605 N/mm, σ0 ¼ 16:9528 
N/mm2 and k0 ¼ 4363:4 N/mm3. A comparison of the experimental load– 
displacement data and the analytical solution from [41] is given in Figure 11 
(a). Excellent agreement before and during crack propagation can be noticed.

5.2. Identification of the fast-limit CZM parameter � and of the compressive 
stiffness kc

Likewise, as earlier explained, it will be assumed that the average load–dis-
placement curve for 5000 mm/min corresponds to the fast limit. This curve is 
therefore used as an input for the DCB PAR software to obtain a new set of 
parameters Ω1 ¼ 0:5682 N/mm, σ1 ¼ 35:8366 N/mm2 and k1 ¼ 7642:1 
N/mm3.

Because � ¼ Ω0=Ω1 ¼ σ0=σ1 ¼ k0=k1, using the DCB PAR results for the 
slow and the fast limit, � can be computed in three different ways, that is as 
� ¼ Ω0=Ω1 ¼ 0:458, � ¼ k0=k1 ¼ 0:571 or � ¼ σ0=σ1 ¼ 0:4731.
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Figure 11. Fit between the experimental load-displacement data and the model prediction with 
the identified CZM parameters for (a) 0.1 mm/min, (b) 1 mm/min, (c) 10 mm/min, (d) 100 mm/min, 
(e) 1000 mm/min, and (f) 5000 mm/min.
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The first value � ¼ 0:458 was used because it gives the best agreement with 
the experimental data during crack propagation.

All values of the identified (Ωi, σi, ki) and computed (δ0, δc) parameters are 
given in Table 3, where the chosen value of � is denoted in boldface font. It 
should be noted that, based on the identified parameters for the slow and the 
fast limit, δc is indeed found to be practically rate independent, which is in 
accordance with the assumption made in Section 2.2. Although δ0 should be 
also rate independent, the difference between computed values for the slow 
and the fast limit is bigger (but still relatively small) due to the difference 
between slow/fast ratios for Ωi and ki (as given in Table 3 for i ¼ 0;1).

A comparison of the experimental load–displacement data at 5000 mm/min 
and the analytical rate-independent solution from [41] is given in Figure 11(f).

Finally, according to Equation (10), it follows that kc ¼ k0ð1þ 1=�Þ=2 ¼
6940:4 N/mm3.

5.3. Identifying the rate-dependent CZM parameters λ̂ and ν

Having determined the slow- and fast-limit parameters, identifying the two 
remaining rate-dependent CZM parameters is relatively simple and was 
done by using a trial-and-error method, first for ν and then for λ̂, facilitated 
by the following observations as well as engineering judgment. Increasing ν 
essentially narrows the band of speeds between the slow and the fast limit. 
Thus, in the present case, ν has been increased until the model’s solution at 
5000 mm/min reached the fast limit, which corresponds to ν ¼ 0:85. Only 
few iterations were then necessary to find the value of λ̂ that can accurately 
capture the load–displacement curves of the remaining speeds between the 
slow and the fast limit with a satisfactory level of accuracy. Lower values of λ̂ 
essentially reduce the force in the force-displacement diagram and finally 
λ̂ ¼ 0:25 has been determined. The final identified values of all CZM para-
meters are given in Table 4, while the comparison of the average 

Table 3. Values of the identified (Ωi, σi, ki) and computed (δ0, δc) CZM parameters for the slow 
(i ¼ 0) and the fast (i ¼ 1) limit.

CZM parameters Ωi σi ki δ0 δc
[N/mm] [N/mm2] [N/mm3] [mm] [mm]

Slow limit (i ¼ 0) 0.2605 16.9528 4363.4 0.0039 0.0307
Fast limit (i ¼ 1) 0.5682 35.8366 7642.1 0.0047 0.0317
Slow/Fast 0.4585 0.4731 0.5710 0.8285 0.9692

Table 4. Final identified values of the seven parameters of the rate-dependent CZM model.

Ω0 σ0 k0 � kc λ̂ ν
[N/mm] [N/mm2] [N/mm3] [] [N/mm3] [s ν] []

0.2605 16.9528 4363.4 0.4585 6940.4 0.25 0.85
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experimental load–displacement curve with the predictions obtained by the 
rate-dependent model for each speed is given in Figure 11. The agreement 
across all speeds is satisfactory.

For all numerical simulations presented using the finite-element model, 
convergence analyses have been made in terms of both spatial and time 
discretisation, and the results presented are characterised by a negligible 
error, which is unnoticeable on the graphs.

6. Conclusions

We presented an experimental–numerical study to characterise the rate 
dependence of fracture energy of adhesive joints under mode-I crack propaga-
tion, to validate the rate-dependent cohesive-zone model based on fractional 
viscoelasticity previously formulated in Ref. [18] then, extended in Ref. [19], 
and to calibrate its input parameters.

In the experimental part, 24 double-cantilever beam (DCB) specimens, 
made of aluminium Al 6082-T6 plates bonded with the adhesive Araldite® 
2015, were tested in displacement control, with constant cross-head displace-
ment speed for each test, and six speeds ranging from 0.1 to 5000 mm/min. For 
each speed, four specimens were tested, and average load–displacement curves 
were obtained.

The fracture energy was found to markedly increase with crack speed, with 
values obtained at the highest tested speed more than doubled with respect to 
those at the lowest two speeds.

We also presented an effective procedure to determine the ‘fracture energy- 
crack growth’ curve without the need for measuring the crack length and the 
crack speed, but only by closed-form post-processing of the measurements of 
the load and the displacement, immediately available at the end of the tests.

The numerical simulations were conducted using a novel finite-element 
that combines together a linear interface element with a linear Timoshenko 
beam element, making use of the symmetry of the configuration, as well as the 
cohesive-zone model proposed in Ref. [18] and previously validated only for 
a rubber interface.

To determine the CZM input values, we presented a systematic parameter 
identification procedure, which assumes that the slow and fast limits of the 
rate-dependent material behaviour have been sufficiently approached at the 
slowest and highest tested speeds, respectively. At each of these speeds, the 
parameters of a rate-independent CZM were computed using the procedure 
developed in Ref. [32] and the analytical rate-independent solution provided 
in Ref. [41]. Based on these, the remaining parameters of the rate-independent 
model were calibrated. The comparison between experimental and numerical 
results confirms the capability of the CZM of capturing the experimental 
response, also for a glassy polymer, over a wide range of speeds with the 
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same set of seven parameters, only two of which are related to the model rate 
dependence. This is unlike models based on experimental kernels, which 
require a much larger number of parameters.

The proposed numerical model can be used to simulate the response of 
a DCB joint at any loading rate (constant or variable). The procedure pre-
sented in this work is convenient for obtaining the seven parameters of the 
model for which, obviously, some experimental data is required. However, 
once the parameters are known, the model can be used for different loading 
rates (constant or variable) without the need for any additional experiments. 
Extrapolation outside the range of tested speeds (and strain rates) is possible, 
but in this case, as explained earlier, the predictive capabilities of the model 
might be limited.

The CZM used, unlike the more general formulation presented in Ref. [19], 
assumes that the ‘fracture energy-crack speed’ curve is monotonic and its graph 
has a sigmoidal shape. Although this assumption was useful for the purpose of 
the calibration of the model parameters, from the analysis of our results, we 
could neither rule out nor confirm that the ‘fracture energy-crack speed’ curve is 
monotonic and with a sigmoidal shape of its graph. Although the curve found is 
sigmoidal, we do not think we have sufficient evidence to exclude that at higher 
speeds than those tested in this work the monotonicity could be lost and the 
fracture energy could decrease. This would in turn result in some sort of ‘bell 
shape’ of the curve, such as the results theoretically obtained in Ref. [19] when 
damage is assumed to be driven by the entire free energy. This final observation 
suggests that more tests should be done to fully characterise the behaviour of the 
adhesive, which will be the objective of future work.

It is also worth noting that the models considered here are all visco-elastic, 
meaning that visco-plastic behaviour has not been considered. Adding visco- 
plasticity to the modelling framework is likely to affect how the fracture energy 
changes with crack speed, both qualitatively and quantitatively, and influence 
the results for non-monotonic loading. This line of research will also be 
pursued in the future work.
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Appendix A. Derivation of the formula for Gc that takes into account the 
loading block of a DCB specimen

Let us consider the case in which the load on a DCB specimen is not applied directly to the 
arms, but via a loading block whose deformation during a DCB test is assumed to be negligible, 
as depicted in Figure A12. The force is transmitted from the tensile testing machine to the 
loading block by means of a pin whose centroid distance from the arm’s midplane is denoted by 
lb (line AB). It will be assumed that the DCB arm is modelled as an Euler-Bernoulli beam, 
whose left-hand end corresponds to point A (see Figure A12). The stiffening effect of the block 
on a small portion of the arm around point A is assumed to be irrelevant because the bending of 
the arm is negligible close to the free end. In a deformed configuration, due to bending of the 
arm, the block rotates, while the applied load F transmitted from the tensile testing machine in 
point B remains always vertical. The force is then transferred from point B to A, which implies 
that the arm with a loading block is loaded not only by a transversal force F, but also by 
a bending couple M ¼ F e, where e ¼ lb θ for small cross-sectional rotations θ of the arm at 
point A (see Figure A12).

Assuming that the arms are clamped at the crack tip, the following expression for the load- 
line displacement and cross-sectional rotation of the arm at point A can be derived, 
respectively: 

δ ¼
2 F a3

3 EI
1 �

3 e
2 a

� �

; (A:1) 

θ ¼
F a2

2 EI
1 �

2 e
a

� �

; (A:2) 

where a is the crack length and EI is the bending stiffness of the DCB arm. The second 
(negative) term in the parentheses of each expression represents the contribution of the loading 
block. It can be noticed that the presence of the loading block decreases the deformation of the 
DCB arm for the same values of the load and crack length. The critical energy release rate can 
be computed from 

Figure A12. Graphical representation of the loading block on the upper arm of a DCB specimen in 
a deformed configuration with the reduction of the load F form the pin (point B) to the specimen 
(point A).
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Gc ¼ �
1
b
@�

@a
; (A:3) 

where for a DCB with loading blocks the total potential energy can be defined as 

� ¼ �
F δ
2
þ ðF eÞθ: (A:4) 

Note that the signs in the above equations are the result of assuming that on the top arm, the 
force is positive if upward, θ is positive if clockwise and δ is the total cross-head displacement, 
assumed positive when it is opening.

The derivative in (A.3) can be computed assuming that either force or displacement is 
prescribed, which in both cases leads to the same result for Gc. Although DCB experiments are 
usually displacement controlled, the analytical derivation of Gc (especially in this case) is 
simpler if we assume that the force is prescribed. By doing so, it follows that 

Gc ¼
F2

b EI
ða � eÞ2 þ 2 a e �

a2

2

� �
de
da

� �

: (A:5) 

In the absence of the loading block (e ¼ 0), this expression becomes the well-known expression 
for DCB, Gc ¼ F2a2=ðb EIÞ. From (A.2), one can write: 

e ¼ lb θ ¼
lb F a2

2 EI
1 �

2 e
a

� �

(A:6) 

Solving for e provides: 

e ¼
lb a2 F

2ðEI þ lb a FÞ
; (A:7) 

from which it follows that 

de
da
¼

lb a Fð2 EI þ lb a FÞ
2ðEI þ lb a FÞ

: (A:8) 

Using expressions (A.5)-(A.8), Gc can be computed using only measurements of F and a, while 
all other quantities are geometrical and material properties of the arms and loading blocks.

As discussed in detail in Ref. [23,26] by using the equivalent crack-length approach, Gc can be 
computed using only the measured values of load F and load-line displacement δ, while the 
measurement of the crack length a (much less practical and accurate) can be avoided. The main 
idea is to express a from (A.1) as a function of F and δ. This is not the actual value of the crack 
length, but the equivalent crack length (aeq) that, for measured values of F and δ, accommodates 
the assumption that the arms are clamped at the crack tip made in (A.1). In the absence of loading 
blocks (e ¼ 0), obtaining aeq from (A.1) is straightforward and leads to very simple analytical 
expressions, but for e�0 (where e is defined in (A.7)), this would require solving a relatively 
complex non-linear equation. An alternative is to numerically determine aeq from (A.1), which is 
done in the present work using the Newton–Raphson method. Once that aeq is determined, it is 
substituted for a in expressions (A.5)-(A.8), which finally gives the fracture energy that will be 
denoted by Gc:E. Note that when the equivalent crack length (aeq) is used instead of the actual one 
(a), Gc:E does not correspond to Gc as defined in Equation (A.5) because 
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Gc ¼ �
1
b

d�

da
¼ �

1
b

d�

daeq

daeq

da
¼ Gc:E

daeq

da
: (A:9) 

Determining daeq=da is impossible without measuring the actual crack length, but in Ref. [26] 
it was shown that the value of this derivative is usually very close to unity. Thus, Gc � Gc:E can 
be assumed whenever the crack-length measurement is not available without any significant 
loss in accuracy, which is also done in the present work.

In Figure A13, the comparison between the values of Gc computed using the approach that 
takes into account the loading block (expressions (A.5)-(A.8)) and the one that does not 
(Gc ¼ F2a2

eq=ðb EIÞ) is shown. The average load–displacement data for the load-line displace-
ment speed of 0.1 mm/min (plotted in Figure 8) is used in the analysis. The comparison shows 
that neglecting the effect of the loading blocks leads to slightly larger values of the fracture 
energy, with a relative error with respect to the approach that does take it into account of 
approximately 3%. Note that the main difference between the R-curves plotted in Figure A13 
can be attributed not to the difference in the fracture energy but to the horizontal shift that 
occurs because for the same values of F and δ, aeq is different depending on whether the loading 
blocks are taken into account or not in Equation (A.1). This implies that for the present set of 
experiments, the effect of the loading blocks can be neglected without a significant influence on 
the results and final conclusions. Note that in Section 4, this analytical model (without loading 
blocks) is further extended to account for shear strains in DCB arms.

Figure A13. A comparison between the R-curves obtained using formulae for Gc that either take 
into account or neglect the influence of the loading blocks using the average load-displacement 
data obtained for tests performed at 0.1 mm/min.
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