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Abstract

This paper applies fractional integration and cointegration methods to examine
respectively the univariate properties of the four main cryptocurrencies in terms of
market capitalization (BTC, ETH, USDT, BNB) and of four US stock market indi-
ces (S&P500, NASDAQ, Dow Jones and MSCI for emerging markets) as well as the
possible existence of long-run linkages between them. Daily data from 9 November
2017 to 28 June 2022 are used for the analysis. The results provide evidence of mar-
ket efficiency in the case of the cryptocurrencies but not of the stock market indices
considered. The results also indicate that in most cases there are no long-run equi-
librium relationships linking the assets in question, which implies that cryptocur-
rencies can be a useful tool for investors to diversify and hedge when required in the
case of the US markets.

Keywords Stock market prices - Cryptocurrencies - Persistence - Fractional
integration and cointegration

JEL Classification C22-C58 - Gl11 - Gl15

1 Introduction

Since the creation of Bitcoin (Nakamoto, 2008) cryptocurrencies have rapidly
become a global phenomenon and generated new investment opportunities with
important implications for portfolio diversification and hedging decisions. In the last
decade numerous papers have analysed them from various perspectives, both at a
theoretical and empirical level. Examples include studies applying the extreme value
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theory (Gkillas and Katsiampla, 2018), modelling their volatility linkages with other
markets (Carrick, 2016), examining their predictive power (Watorek et al., 2020),
their degree of persistence (Caporale et al., 2018) and other characteristics such as
sustainability (Giudici et al., 2019), and carrying out tests regarding the efficient
market hypothesis (Gil-Alana et al., 2020), etc.

Another strand of the literature focuses on whether or not cryptocurrencies are
linked to other types of assets, which has implications for whether or not they are
suitable for diversification and hedging purposes. For instance, Corbet et al. (2018)
followed the connectedness approach of Diebold and Yilmaz (2012) and found only
short-run spillovers between cryptocurrencies and more traditional assets. Kurka
(2019) used the same framework as well as the Spillover Asymmetry Measure
(SAM) of Barunik (2016) and found evidence of asymmetries in the transmission of
shocks between Bitcoin and other assets. They also detected spillovers over some of
the sub-samples, which implies that diversification/hedging strategies can only work
at times. Stensas et al. (2019) estimated GARCH models and concluded that Bitcoin
is useful for diversification purposes in the case of developed (but not developing)
countries. Further (though weaker) evidence consistent with these findings was pro-
vided by Klein et al. (2018). Caferra and Tomas-Vidal (2021) used instead a wavelet
coherence approach and also estimated a Markov Switching autoregressive model,;
their results are more supportive of a possible hedging role for cryptocurrencies.

Some more recent papers have focused specifically on the effects of the Covid-19
pandemic on the relationship between cryptocurrencies and other assets. Their pur-
pose was to establish whether the former could serve as safe havens or hedges dur-
ing that period. For instance, Kumar et al. (2022) found that dynamic connectedness
with stock markets increased during the pandemic, thus cryptocurrencies could not
insulate portfolios from the crisis. Shahzad et al. (2021) used a cross-quantilogram
approach and concluded that Bitcoin and gold are weak hedges. Gonzales et al.
(2020) reported some evidence implying that cryptocurrencies were more effective
than gold to control risk during the Covid-19 crisis. Gonzales et al. (2021) found
that connectedness between gold price returns and cryptocurrency returns increased
sharply during the first wave of the pandemic.

The present study revisits these issues by examining linkages between the
four main cryptocurrencies in terms of market capitalisation (Bitcoin, Ethereum,
Tether and Binance Coin, for which the corresponding figures as of July 2022 are
$439.39bn, $196.77bn, $65.90bn and $46.53bn respectively) and four US stock
market indices (S&P500, Nasdaq, Dow Jones and MSCI emerging markets. It makes
an important contribution to this area of the literature by using a fractional integra-
tion/cointegration approach which provides evidence on the long-run linkages and
is more general and flexible than the standard framework based on the I(0) versus
I(1) (stationary versus non-stationary) dichotomy used in most previous studies.
Specifically, it allows for fractional values of the differencing (cointegration) param-
eter, thus it encompasses a much wider range of stochastic processes. The data are
daily and cover the period from 9 November 2017 to 28 June 2022. The empirical
results provide useful information to investors for portfolio choices and diversifica-
tion/hedging strategies (Urquhart, 2016). The paper is organised as follows: Sect. 2
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describes the data; Sect. 3 presents the empirical analysis; Section offers some con-
cluding remarks.

2 Data

We analyse daily data from Yahoo Finance on four cryptocurrencies (Bitcoin- BTC;
Ethereum—ETH; Tether- USDT; and Binance Coin—BNB) and four US stock mar-
ket indices (S&P500, NASDAQ, Dow Jones and MSCI for emerging markets). The
sample goes from 9 November 2017 (since some cryptocurrencies were not being
traded before then) to 28 June 2022, therefore the data cover a period of 1165 trad-
ing days. Note that data for holidays or weekends are available for cryptocurren-
cies but not for stock market indices. As a result, when analysing the relationships
between the two series weekdays only are considered in order to match them. Fig-
ures 1 and 2 display stock market and cryptocurrency prices respectively. Table 1
reports some descriptive statistics for all series, whilst Fig. 3 shows their correlation
coefficients. It can be seen that the Dow Jones has the highest value and MSCI the
lowest one whilst the Nasdaq has the highest mean and standard deviation in the
case of the stock market indices; as for the cryptocurrencies, USDT has the highest
mean and standard deviation and BNB the lowest ones. Concerning the correlations,
they are generally high between the stock market indices but not between them and
the four cryptocurrencies considered; as for the latter, there appear to be strong link-
ages only BTC, ETH and BNB.
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Fig. 1 Time series plots: Stock market prices. The sample goes from 09/11/2017 to 28/06/2022
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Table 1 Descriptive statistics Series Maximum Minimum Mean Std. Dev

(i) Stock Market Prices

S&P 500 9.383 —11.984 0.043 1.350
DOW JONES 11.365 —-12.927 0.034 1.371
NASDAQ 9.346 —12.321 0.056 1.570
MSCI 8.053 —12.479 —-0.001 1.473
(ii) Cryptocurrencies
Series Maximum Minimum Mean Std. Dev
ETH 29.788 —42.347 0.295 6.045
BNB 102.483 —4.8987 0.001 0.516
USDT 5.824 —41.905 0.688 7.875
BTC 27.467 —-3.717 0.209 4.860
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Fig.2 Time series plots: Cryptocurrency prices. The sample goes from 09/11/2017 to 28/06/2022

3 Empirical Results
3.1 Univariate Analysis

As a first step, we carry out univariate analysis using fractional integration methods.
The estimated model is the following:
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Fig.3 Correlations of Cryptocurrencies and Stock Market Indices
y = a + pt + x, (1 - BYx, = u, t = 1.2, ... (1)

where y, stands for the series of interest (the log of stock market indices and cryp-
tocurrencies respectively); o and  are unknown parameters to be estimated, specifi-
cally a constant and a (linear) time trend, X, is assumed to be I(d) (where d is a real
value estimated from data), B is the backshift operator, i.e., Bx,=x_;, and u, is I(0)
by assumption. Note that the model above can be re-written as:

y, = al, + 1, + u, r = 1.2, .. 2)
where
5, = 1 = B%,; 1, = (1 -B9; i = (1 - B,

and u, is I(0) by assumption, which implies that standard t-tests remain valid. Fol-
lowing (Robinson, 1994) the estimation is carried out using a Whittle function in the
frequency domain as in many other long-memory studies, and the series are logged
to smooth them.

Tables 2, 3, 4, 5 display the estimates of d along with the 95% confidence bands
for the differencing parameter for three different specifications, namely i) without
deterministic terms, i.e. setting a=p=0 in (1); ii) with a constant only, i.e. setting
f=01in (1); and iii) with a constant and a linear time trend. The coefficients in bold
are those from the model selected in each case on the basis of the statistical signifi-
cance of the deterministic terms. Table 2 reports the estimates of d when assuming
that u, in (1) is a white noise process. Table 4 presents those for the case of auto-
correlated disturbances based on the non-parametric approach of Bloomfield (1973)
rather than a classical AutoRegressive Moving Average (ARMA) structure. Tables 3
and 5 display instead the estimated coefficients of the selected models.

Under the assumption of white noise residuals (see Tables 2 and 3) both
the constant and the time trend are found to be significant in the case of Bit-
coin, S&P500 and Nasdaq. In all other cases only the constant is significant.
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Table 2 Estimates of d: White noise errors

Series

No deterministic terms

With an intercept

With an inter-
cept and a time
trend

(i) Stock Market Prices
S&P 500

DOW JONES
NASDAQ

MSCI

(ii) Cryptocurrencies
ETH

BNB

USDT

BTC

0.99 (0.95, 1.04)
1.00 (0.96, 1.04)
0.99 (0.95, 1.04)
0.99 (0.95, 1.04)

1.00 (0.96, 1.04)
1.01 (0.97, 1.05)
0.46 (0.43,0.51)
0.99 (0.95, 1.04)

0.91 (0.87, 0.95)
0.91 (0.87, 0.95)
0.91 (0.88, 0.95)
0.91 (0.88, 0.95)

1.04 (1.00, 1.08)
1.02 (0.99, 1.06)
0.46 (0.42, 0.50)
1.03 (0.99, 1.07)

0.91 (0.87, 0.95)
0.91 (0.87, 0.95)
0.91 (0.88, 0.95)
0.91 (0.88, 0.95)

1.04 (1.00, 1.08)
1.02 (0.99, 1.06)
0.46 (0.42, 0.51)
1.03 (0.99, 1.07)

The values are the estimates of the differencing parameter. Those in parenthesis are the 95% confidence
bands for the estimates of d. In bold, the selected specification in relation with the deterministic terms

Table 3 Estimated coefficients for the selected models in Table 2

Series

d

Intercept (t-value)

Time trend (t-value)

(i) Stock Market Prices
S&P 500

DOW JONES
NASDAQ

MSCI

(ii) Cryptocurrencies
ETH

BNB

USDT

BTC

0.91 (0.87, 0.95)
0.91 (0.87, 0.95)
0.91 (0.88, 0.95)
0.91 (0.88, 0.95)

1.04 (1.00, 1.08)
1.02 (0.99, 1.06)
0.46 (0.42, 0.50)
1.03 (0.99, 1.07)

7.856 (587.62)
10.0623 (740.96)
8.81733 (566.87)
3.83490 (262.46)

5.7697 (94.34)
0.6888 (9.34)
0.00414 (1.98)
8.8754 (181.37)

0.00036 (1.68)

0.00048 (1.89)

0.00407 (1.65)

The values in column 2 are the estimates of the d parameter (and in brackets the 95% confidence inter-
vals) from the selected models. The values in parenthesis in columns 3 and 4 are the t-values of the coef-
ficients on the deterministic terms

Concerning the estimates of d, in the case of stock market indices they are quite
large and close to 1. Note, however, that the confidence intervals are quite wide,
such that all values are strictly below 1 and the I(1) hypothesis is rejected in favor
of some degree of mean reversion (d<1). This implies that shocks only have
transitory effects. By contrast, the I(1) hypothesis (no mean reversion) cannot be
rejected for any of the four cryptocurrencies, the lowest value of d (0.46) being
estimated for USDT. This evidence suggests that the Efficient Market Hypothesis
(EMH), which in its weak form requires prices to be random, holds for the cryp-
tocurrencies but not for the stock market indices under examination.
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Table 4 Estimates of d: Autocorrelated errors

Series

No deterministic terms

With an intercept

With an inter-
cept and a time
trend

(i) Stock Market Prices
S&P 500

DOW JONES
NASDAQ

MSCI

(ii) Cryptocurrencies
ETH

BNB

USDT

BTC

0.99 (0.93, 1.06)
0.99 (0.93, 1.07)
0.99 (0.93, 1.06)
1.00 (0.92, 1.06)

1.01 (0.95, 1.09)
1.10 (1.04, 1.17)
0.51 (0.44, 0.59)
1.00 (0.94, 1.08)

1.09 (1.00, 1.17)
1.09 (1.00, 1.19)
1.06 (0.99, 1.14)
1.07 (0.99, 1.14)

1.10 (1.03,1.19)
1.09 (1.03, 1.17)
0.51 (0.43, 0.58)
1.08 (1.02, 1.16)

1.09 (1.00, 1.17)
1.09 (1.00, 1.19)
1.06 (0.99, 1.14)
1.07 (0.99, 1.14)

1.10(1.03, 1.19)
1.09 (1.03, 1.17)
0.52 (0.44, 0.58)
1.08 (1.02, 1.16)

The values are the estimates of the differencing parameter. Those in parenthesis are the 95% confidence
bands for the estimates of d. In bold, the selected specification in relation with the deterministic terms

Table 5 Estimated coefficients

from the selected models in

Table 4

Series Intercept (t-value) Time
trend
(t-value)

i) Stock Market Prices

S&P 500 1.09 (1.00, 1.17) ~ 7.8563 (594.70) -

DOW JONES  1.09(1.00, 1.19) 10.0612 (748.37) —

NASDAQ 1.06 (0.99, 1.14)  8.8172 (570.29) -

MSCI 1.07 (0.99, 1.14)  3.8350 (264.03) -

ii) Cryptocurrencies

BTC 1.10(1.03, 1.19)  5.7691 (95.13) -

ETH 1.09 (1.03, 1.17)  0.7040 (9.64) -

USDT 0.51(0.43,0.58) 0.00515 (1.95) -

BNB 1.08 (1.02, 1.16)  8.8792 (181.23) -

The values in column 2 are the estimates of the d parameter (and
in brackets the 95% confidence intervals) from the selected models.
The values in parenthesis in columns 3 and 4 are the t-values of the
coefficients on the deterministic terms

When allowing instead for autocorrelated residuals (see Tables 4 and 5) the
estimated values of d are slightly higher than in the previous case. Evidence of
unit roots (or lack or mean reversion) is found for all four stock market indices
and three out of the four cryptocurrencies, USDT being the only exception.
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3.2 Bivariate Analysis

Next we test for fractional cointegration between each series and all others on a
pairwise basis, thus examining all 16 possible pairings. Specifically, we use the
two-step method proposed by Engle and Granger (1987). This involves running
regressions between each pair of series in the first step, and then in the second
step estimating the value of the differencing parameter d as in Eq. (1) for the
residuals from those regressions. Note that the confidence intervals for the pur-
pose of statistical inference are obtained using Monte Carlo simulations. The rea-
son is that the residuals from the regression are estimated and not observed val-
ues, which produces a bias (see, e.g., Gil-Alana, 2003). The results are shown in
Table 6 for the case of autocorrelated disturbances (similar results, not reported
to save space, were obtained under the assumption of white noise errors). As can
be seen, in most cases the unit root null hypothesis (d=1) cannot be rejected, the
only exceptions being the pairings of the Nasdaq and the S&P500 respectively
with USDT. In other words, in most cases there is no evidence of a long-run equi-
librium relationship linking the assets in question. Consequently, it would nor-
mally be possible for investors to use cryptocurrencies for diversification or hedg-
ing purposes in the case of the US markets.

Table 6 Estimates of the fractional cointegration parameter in the bivariate regressions

No terms An intercept An intercept with

a linear time trend

Dow Jones/BTC 1.02 (0.94, 1.11) 1.01 (0.93, 1.09) 1.01 (0.93, 1.09)
Dow Jones/USDT 0.95 (0.88, 1.06) 0.93 (0.86, 1.03) 0.93 (0.86, 1.03)
Dow Jones/BNB 1.03 (0.94, 1.12) 1.02 (0.95,1.13) 1.02 (0.95, 1.13)
Dow Jones/ETH 1.03 (0.95, 1.12) 1.01 (0.95, 1.11) 1.01 (0.95, 1.11)
Dow Jones/BTC

MSCI/BTC 1.04 (0.97, 1.12) 1.05 (0.97,1.13) 1.05 (0.97, 1.13)
MSCI/USDT 1.07 (0.99, 1.16) 1.07 (1.00, 1.16) 1.07 (1.00, 1.16)
MSCI/BNB 1.04 (0.96, 1.14) 1.05 (0.98, 1.13) 1.05(0.98, 1.13)
MSCI/ETH 1.03 (0.96, 1.11) 1.03 (0.95, 1.11) 1.03 (0.95, 1.11)
Nasdag/BTC 1.04 (0.97, 1.14) 1.02 (0.95,1.11) 1.02 (0.95, 1.11)
Nasdaq/USDT 0.85 (0.80, 0.92) 0.79 (0.73, 0.84)* 0.79 (0.72, 0.84)
Nasdag/BNB 1.03 (0.96, 1.11) 1.05(0.98, 1.11) 1.05(0.98, 1.11)
Nasdagq/ETH 1.09 (0.97, 1.11) 1.01 (0.94, 1.08) 1.01 (0.94, 1.08)
S&P500/BTC 1.04 (0.96, 1.12) 1.02 (0.94, 1.10) 1.02 (0.94, 1.10)
S&P500/USDT 0.89 (0.83, 0.97) 0.85 (0.78, 0.92)* 0.85(0.78, 0.92)
S&P500/BNB 1.01 (0.94, 1.11) 1.03 (0.95, 1.10) 1.03 (0.95, 1.10)
S&P500/ETH 1.02 (0.97, 1.12) 1.01 (0.95, 1.08) 1.01 (0.93, 1.08)

The values in parenthesis are the 95% confidence intervals for the estimates of d. In bold, the selected
specification on the basis of the statistical significance of the deterministic terms. * indicates evidence of

mean reversion
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4 Conclusions

This paper applies fractional integration methods to examine the univariate prop-
erties of the four main cryptocurrencies in terms of market capitalization (BTC,
ETH, USDT, BNB) and of four US stock market indices (S&P500, NASDAQ,
Dow Jones and MSCI for emerging markets). Then the possible existence of
long-run linkages between these two sets of series is examined using a fractional
cointegration approach. Daily data from 9 November 2017 to 28 June 2022 are
used for the analysis. The results provide evidence of market efficiency in the case
of the cryptocurrencies but not of the stock market indices examined. They also
indicate that in most cases there are no long-run equilibrium relationships link-
ing the assets in question. This implies that cryptocurrencies can be a useful tool
for investors to diversify and hedge when required in the case of the US markets.
These findings are broadly consistent with previous evidence reported by Gon-
zales et al. (2020) and Shahzad et al. (2021). As mentioned before, some other
studies reach instead the opposite conclusion, namely they find stronger linkages
implying that cryptocurrencies were not a useful hedge and/or safe haven during
the Covid-19 crisis (see, e.g., Kumar et al., 2022). However, such papers focus on
dynamic connectedness, whilst ours sheds light on the long-run properties of the
relationships under investigation. Thus our analysis provides more useful infor-
mation to investors in terms of the appropriate asset choices to insulate their port-
folios from falls in stock prices.

Future work could carry out some robustness checks using other (semi-para-
metric) methods (Geweke & Porter-Hudak, 1984; Shimotsu & Phillips, 2006) for
the univariate analysis and the FCVAR approach of Johansen and Nielsen (2010,
2012) for the multivariate one. It could also allow for nonlinearities in the long
memory framework (Gil-Alana & Cuestas, 2016; Yaya et al., 2021).
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