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Abstract: This paper introduces a procedure to compare the functional behaviour of individual units
of electronic hardware of the same type. The primary use case for this method is to estimate the
functional integrity of an unknown device unit based on the behaviour of a known and proven
reference unit. This method is based on the so-called virtual sensor network (VSN) approach, where
the output quantity of a physical sensor measurement is replicated by a virtual model output. In the
present study, this approach is extended to model the functional behaviour of electronic hardware by
a neural network (NN) with Long-Short-Term-Memory (LSTM) layers to encapsulate potential time-
dependence of the signals. The proposed method is illustrated and validated on measurements from
a remote-controlled drone, which is operated with two variants of controller hardware: a reference
controller unit and a malfunctioning counterpart. It is demonstrated that the presented approach
successfully identifies and describes the unexpected behaviour of the test device. In the presented
case study, the model outputs a signal sample prediction in 0.14 ms and achieves a reconstruction
accuracy of the validation data with a root mean square error (RMSE) below 0.04 relative to the data
range. In addition, three self-protection features (multidimensional boundary-check, Mahalanobis
distance, auxiliary autoencoder NN) are introduced to gauge the certainty of the VSN model output.

Keywords: Virtual Sensor Network; Digital Twin; Mahalanobis Distance; Neural Network; LSTM;
uncertainty estimation; cybersecurity; Industrial Control System

1. Introduction

Rapid development of electronic hardware is in high demand due to the competitive
market space, set product life cycles and customer demand [1]. At the same time, it is
important to ensure that the manufactured hardware operates as intended and is tested
in the development process based on prototypes. Otherwise, the result could lead to
additional customer support, costly recalls or warranty claims.

For safety-critical applications, the requirement for functional integrity usually has
implications on the health and safety of humans [2] or critical infrastructures of whole
societies [3,4]. An unexpected breach of the functional integrity of electronic hardware can
occur due to a multitude of reasons. Internal factors include errors in the manufacturing
process, software bugs, defective components, upgrades or redesigns of hardware/software.
Similarly, external influences can also interfere with the proper operation of electronic
devices. This includes the use of new or changed components due to a changed supply
from manufacturers or change of the supplier. Hardware degradation is another factor,
which can cause avoidable costly failures or downtime [5,6]. Finally, malicious activities
such as hacking attacks or sabotage should be considered [3,4]. The validation of proper
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functioning can greatly supplement the efforts to reduce risks and the impact of potential
malicious activity.

The proposed method is based on the virtual sensor network (VSN) approach [7,8],
which is adapted in this work to model the functional response behaviour of an electronic
device based on the provided input signals. The electronic inputs and outputs of a proven
reference device are measured and used for the training of a NN model for the VSN.
Therefore, the model outputs the nominal desired response of the electronic device based
on received inputs of an unknown device unit under test. When comparing the model
output to the measured output of the unknown test device, deviations between the two
can be identified. Moreover, upon detection, the specific differences in functionality can be
described and further assessed, since the response behaviour of a device is both measured
and modelled in a raw signal form. This also allows use of the virtual reference output as a
fault-redundant signal source. Therefore, this approach has an advantage over classifiers
or regression models, which provide a fault state or rating directly.

As with any model, there is a risk of model errors in the proposed method, which
can lead to a deviation between a false model output and a properly functioning test
device. Therefore, to avoid misinterpretation, conditions where the model is not qualified
to provide a correct output due to model errors should be distinguished from conditions
where the model indicates actual significant differences between the input/output relation
of reference and test device measurements. In this study, this is achieved by self-protection
features, which aim to gauge the uncertainty of the resulting model output. For this purpose,
the observed multidimensional input sample of a monitored test device is compared to
the space spanned by the training data inputs of the reference model. The following three
self-protection features are presented in this study:

i. A binary indicator of the uncertainty by a hypercube boundary-check.
ii. A prediction uncertainty measure based on the Mahalanobis distance (MD).
iii. An auxiliary autoencoder NN, which reconstructs the input signals to detect in-

put anomalies during operation/testing compared to previously trained input or
environmental conditions.

To demonstrate the proposed VSN method (including self-protection) for the iden-
tification of functional integrity and to validate it on actual hardware measurements, a
remote-controlled drone is used. An unmodified drone controller is used as the reference
device providing the desired functional behaviour of the drone, whereas another hardware
controller with modified firmware simulates a controller fault or acts as a malicious test
device. It is shown that faulty output of the modified controller is successfully detected by
the proposed method. In addition, the self-protection features are applied to the outputs of
an intentionally deficient VSN model with high model errors due to insufficient training
of the underlying NN. It is demonstrated that the implemented self-protection features
successfully indicate false predictions of the deficient VSN model.

The presented methodology was initially developed by the authors of this paper in
frame of the AFWERX Microelectronics Supply Chain Provenance Challenge organised
by the US Air Force Research Labs. The team consisting of the industrial partner Supply
Dynamics and academic authors of this paper demonstrated this technology and was
declared winner of the competition at the 50th International Test Conference (ITC), which
took place in Washington, D.C., in November 2019 [9]. The contributions of the present
work can be summarized as follows:

i. A novel extension of the VSN method is introduced, which models the functional
reference behaviour of electronic hardware to validate or diagnose the functional
integrity of unknown device units.

ii. Operational measurements from a drone are gathered during nominal and mal-
functioning controller conditions and used to validate the proposed method and
illustrate its application.

iii. Three self-protection features of increasing complexity are applied and evaluated
side-by-side.



Sensors 2022, 22, 454 3 of 27

Hereafter, this paper is structured as follows: Section 2 contains a literature review,
providing context of the proposed VSN method and relevance of the foundational NN
technology. Section 3 focuses on the proposed methodology and is subdivided into sections
covering the measurement acquisition, the applied NN model and self-protection features.
This is followed by a demonstration and validation of the introduced methods on remote-
controlled drone hardware in Section 4. Finally, results from the drone experiment are
discussed and conclusions on the conducted study are drawn with an outlook on potential
future work in Sections 5 and 6, respectively.

2. Literature Review

This section investigates the origin of virtual sensing as a subtopic of digital twin (DT)
technology and the reasons for its increasing popularity in industrial and commercial use.
Related research in the field of cybersecurity is evaluated in comparison to the proposed
approach. The different methods of modelling sensors and systems are also explored and
compared and the advantages of NNs for use in this context is justified. Different types
of NNs suitable for long-term dependency learning are additionally further discussed.
Examples of the effective use of these NNs as well as their drawbacks are looked into, in
order to justify the methodology and NN model used.

2.1. Digital Twin Technology

A DT can be defined as a virtual instance of a system or process that is used to
model its operation for the purpose of inferring details relating to the system, such as
the status of its current operation or a prediction into its future operation. It has been
noted by many [10–16] that this process is integral to the automation and optimisation
of industrial processes, commonly referred to as Industry 4.0. Whilst the general concept
was introduced in a presentation in the early 2000s under a different name [13], a practical
implementation was first explored in 2012 by NASA [14], where the usage of existing
physical models and sensor data to forecast vehicle health and remaining useful life was
proposed. Subsequently, various implementations for the realisation of DTs were proposed
and successfully demonstrated in a variety of use cases. For instance, an optimisation of
the speed and efficiency of a production line using a DT model was proposed by Vachálek
et al. [11]. The researchers were able to iterate various parameters in the virtual instance of
their production line to gain insight into the dynamics of the process and using this data,
they were able to successfully reduce the production time without interfering with the
physical model during their testing.

An example of DT technology’s use on a smaller scale is demonstrated in [15], where
a DT of a physical DC-DC power converter was created for the purpose of condition moni-
toring without the addition of extra circuitry. The authors opted to use linearised versions
of the differential equations of the buck converter as opposed to calculating the eigenvalues
and eigenvectors of the differential equations, due to the heavy computational demand
of the latter. However, it was noted that this method reduces the accuracy of the model.
While the proposed method was able to successfully provide a reasonable estimation of the
parameters, as well as successfully monitor the degradation of the MOSFET and capacitor,
there was a clear issue with the accuracy of the model which could be put down to the
linearisation of the differential equation.

These papers, as well as others exploring similar methodology, exhibit the limitations
with accuracy and reliability when creating DTs using linear models as well as the compu-
tational complexity in implementing a more accurate model using traditional methods.

A detailed review of existing literature on more advanced DT research based on
AI technology is found for example in [16]. The work introduces a distinction between
three types of DTs based on the degree of data flow automation between the DT and the
represented physical system. It subdivides existing literature in the categories healthcare,
smart cities and manufacturing with further subcategories. Another review study [1]
explains the demand for DT technology for development and manufacturing from the point
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of view of a competitive market environment. It presents the state of current software tools
for virtual validation of electronic hardware related to thermal characteristics, mechanical
stress, and electromagnetic compatibility.

Electronic hardware platforms are acknowledged as integral components of Internet
of Things (IoT) systems in [16], and ref. [1] specifically focuses on validation of electronic
hardware. However, neither of these review studies consider the modelling or direct
validation of the functional behaviour of electronic hardware. This is also common to
previously mentioned research articles. The present research paper addresses this gap by
employing an LSTM-NN model and extending the VSN to a functionality model of an
electronic device.

2.2. Virtual Sensor Implementation with Neural Networks

A VSN comprises multiple virtual sensors, each of which outputs estimates of a
physical quantity based on a numerical model. This model receives inputs of other available
and related values, such as operating condition data, sensor readings of alternative physical
quantities or at alternative measurement locations. In recent works, DTs and VSNs have
implemented the usage of NNs, which has been a recent trend in this field due to the
effectiveness of the NN in identifying and modelling the non-linear behaviour in these
systems, thus creating even more robust virtual models and allowing for a simpler and
cost-effective implementation. Moreover, where there are various sources of data to be
analysed, a VSN has been shown to be effective [17] in concurrently utilising these sources
in order to infer trends and information about the system that cannot otherwise be seen with
traditional signal analysis methods and modelling techniques. One paper [18] proposes
a two-phase fault diagnosis method using deep transfer learning where a stacked sparse
autoencoder NN is initially trained on a high-fidelity virtual model during the design phase
of a manufacturing process, then further trained on the physical process upon inception
whilst retaining the information from the designed model to save time and prevent the
wasting of knowledge. The authors demonstrate that this technique provides more accuracy
than just training on the virtual data at the beginning of the design stage, overcomes any
problems with insufficient data during design and can assist in the discovery of any
potential design defects before proceeding to a physical implementation. Furthermore, the
NN also demonstrates flexibility in adapting to any changes in the working conditions
using this method of training.

The VSN method was used to reconstruct accelerometer spectra of physical sensors
on rotorcraft from operating conditions and on-board generated statistical values of the
sensor readings [19]. The motivation of the study is based on the circumstance that data
transfer and storage capabilities are limited in rotorcraft while ample raw sensor spectra
are desired for machine diagnostics with more advanced post-processing methods. For
autonomous vehicle control systems, virtual sensors provided the vehicle’s planar motion
and tyre forces from more cost-efficient physical acceleration sensors [20]. A VSN was
applied at Caterpillar in heavy duty machinery with the primary motivation of increasing
sensor reliability of degrading emission sensors [7,8]. In the case of a failing physical sensor,
the VSN counterpart served to provide backup values and could be used to detect sensor
malfunction by monitoring the error between the physical and virtual sensor output. In
an analogy with this study, the method presented here compares measured output values
against the modelled reference output to identify a faulty or malicious output and employs
self-protection features. However, unlike the previously listed studies, the VSN method
is extended in this work to not only to estimate sensor values but to model the functional
behaviour of an electronic device. Furthermore, an LSTM-NN is utilised as the model
foundation, which allows the VSN to consider potential time-dependency in the functional
behaviour of the tested electronic device.
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2.3. Wireless Sensor Network vs. Virtual Sensor Network

Another example of the effectiveness of virtual sensors is demonstrated in [21], where
a VSN was implemented as a form of data imputation to ensure that, in the case of a sensor
failure in a wireless sensor network (WSN), there would always be useable data to prevent
the system from making suboptimal decisions. One thing to note is the clear distinction
between the WSN and VSN technologies. In contrast to the VSN, a WSN is a physical
network of sensors. They are typically used to monitor environmental conditions and
are built on the concept of Internet of Things (IoT), whereby the sensors are wirelessly
interconnected and the information gathered from the sensors can be obtained and analysed
in real time. A WSN is generally configured towards a specific use case, which sometimes
can result in a lack of flexibility in terms of applications. One example of a novel application
of WSN is a flood detector system [22], where the authors employ a multi-hop WSN
consisting of ultrasonic and water flow sensors to monitor the water levels. A mamdani
fuzzy logic system is proposed to process the sensor readings and output flood warnings,
with a 96.96% accuracy achieved experimentally. Another recent work [23] implemented a
novel localization technique named C-CURVE to localize sensor nodes in a WSN, achieving
high accuracy in comparison to other state-of-the-art methods. The monitoring of WSN
systems is also a point of interest for researchers. One approach focuses on the monitoring
of photovoltaic (PV) systems powering the WSNs. The authors propose the usage of the
current and voltage readings of the PV module, battery and load to determine the battery
life of the power monitor. Another approach [24] proposes a fault detection and diagnosis
system for the sensor nodes in a WSN. An alternative fault detection approach, tailored
for use on a self powered sensor network, was proposed in [25]. An SVM-based algorithm
was applied on the acceleration and temperature data captured from a machine using the
self powered sensor network. The proposed method was able to classify shaker working
conditions to an accuracy of 83.6%.

On the other hand, a VSN is a method that can utilise multi-functional WSNs for
different use cases. In other words, different types of information can be inferred from
the physical WSN, depending on the intended use case. Some examples of VSN-based
approaches include sensor fault detection [26]. Using a soft sensing approach, the sus-
pension position of the rear stroke sensor is modelled using a soft sensor NN using a
gyroscope, velocity and linear potentiometer sensor readings. The residual of the predicted
and real sensor location prediction is then calculated, which feeds into a decision maker
that evaluates sensor condition.

A common theme encountered in WSN monitoring methods such as VSNs is the
use of machine learning (ML) algorithms for the system modelling and fault diagnosis.
One aspect of NN-based methods that is generally overlooked is the assumption of a well
trained NN on data that is fully representative of the device’s “normal” working conditions,
where normal can be defined as a system output that is expected in that specific context.
Whilst in all the aforementioned literature the system model was used to determine if the
device is operating as expected, it failed to verify the accuracy of the NN model based
on the data used for training. This gap is addressed in this paper with the proposed
self-protection tools.

While there is clear promise shown with the usage of NNs for virtual sensors, the field
of ML has advanced significantly, with the popularisation of various types of NNs due
the significant advantages that they provide in computational power and feature learning,
which is further evaluated in the following subsection.

2.4. Neural Networks

Many researchers have recently had success using recurrent neural networks (RNN)
for their effectiveness in learning the dynamic behaviour of temporal data [27,28], which
is useful for the prediction of future data as well as identifying faulty data. This type of
NN, however, faces an issue known as the vanishing gradient problem [29] which affects
the ability of the NN to train over long periods. The LSTM-NN [30] aims to overcome this
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issue using a specialised structure with gates that allow for information to be forgotten and
replaced, hence overcoming the difficulty faced with training a traditional RNN. The LSTM-
NN has been used effectively in various applications [31–33] including natural language
processing, time series forecasting and fault detection, and has generally exhibited a strong
ability to learn long term dependencies. While most of the discussed methods approach
learning in a supervised manner, it is expensive and time consuming to label data for
the purpose of training a network, especially with larger datasets. The autoencoder [34]
was proposed as a method of unsupervised learning. The general concept involves the
reconstruction of the input of the network with a dimensionality reduction so that ideally,
more features can be identified in the latent space representation. This technique has been
used successfully in the context of DTs in [35]. However, unsupervised techniques such as
autoencoders and virtual sensors are dependent on the volume of training data and the
examples present in the training data, which in many cases may not fully cover the cases
encountered by the system in its operational phase. This generally results in unreliable
predictions made by NNs, which reduces the integrity of the NN readings and hence
decreases the reliability of the NN with accurately modelling system behaviour. These
drawbacks are addressed in the proposed method.

2.5. Cybersecurity

The motivation of the present study is related to the research field of cybersecurity,
which has also embraced ML methods and has seen a steadily increasing interest over
the last few years as evidenced by recent review papers [36,37]. These surveys focus
on the detection and prevention of computer and network vulnerabilities and attacks
based on spam, malware and intrusion detection. Measures for increased security of the
software and network system act as supplementary along with the hardware-focused
methodology presented in this study, since both target separate system layers. Another
branch of cybersecurity research deals with industrial control systems (ICS) and thus puts a
stronger emphasis on physical hardware in addition to the cyberspace. A number of review
studies covers this space [38–40].

Regarding the mitigation of controller attacks, a review study [38] presents four
approaches, which concern the control architecture of a Programmable Logic Controller
(PLC). The two main distinguished methods are the Trusted Safety Verifier (TSV) [41] and
the Controller Controller (C2) [42]. The TSV requires a copy of the controller logic and
constructs a symbolic logic cycle as the foundation to detect and prevent the execution of a
potentially tampered PLC logic. This method has the advantage to detect modifications
in advance, but suffers from impractically long execution time when applied to complex
systems due to a tree structure of subsequent symbolic cycles, which is often formed in the
process. C2 is not limited by the system complexity as it relies on a set of engineered safety
features, which are used to compare the control signals with the state of the ICS. However,
this check is performed at run-time and thus lacks the ability of advance examination
provided by TSV. C2 intervenes when harmful control signals are detected by either the
denial or retry of an operation, PLC notification, or by truncating the command interval
to a safe range. These measures aim to mitigate detrimental physical consequences of
acceptance or full denial of untrusted commands but are very limited in relation to the
potential complexity of the controlled system. For example, truncating of control signals
to a safe region can still lead to disastrous consequences when applied contrary to the
operators’ instructions or during a critical operating state. This is shown with the case
study presented later in Section 4, where a malicious drone controller firmware applies
elevon and thrust control signals, which operate in the usual signal range but are designed
to provoke a crash.

The secure system simplex architecture (S3A) [43] can be considered as a compromise
between TSV and C2. S3A requires a more abstract description of the controller process flow
compared to TSV and can thus be applied to systems with higher complexity (albeit not
with arbitrary high complexity like C2). A disadvantage of S3A compared to the proposed
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VSN is that it relies on the simplex architecture [44] running a so-called safety controller,
which takes over operation upon detection of an untrusted state. Compared to the main
complex controller, the safety controller runs simplified procedures to merely ensure system
stability. However, the design of an appropriate safety controller is associated with extra
cost and, depending on the application, a more representative redundant model such as
the proposed VSN can be required.

The method of a minimal trusted computing base (TCB) provides a restricted environ-
ment, giving only predefined PLC code blocks the control access to physical machinery.
This approach is used with the aim to overcome the time constraints of TSV. In this ap-
proach, TSV can be applied to these code blocks only instead of the full PLC logic code,
increasing its efficiency.

Finally, the semantic security monitoring (SSM) [45] analyses the network traffic of
PLCs but follows a related approach to the present study. Different variables, including
control and measurement signals are extracted from the Modbus protocol of the PLCs
of two operational water treatment plants. These values are constructed into time series,
which are used to fit autoregressive (AR) models. In addition, safe control limits are derived
from the training data to trigger an alert when they are exceeded. This is done since the
AR model is not capable to detect such over range conditions by itself if the exceeding
values are reached over a slow progression. This indicates a drawback of this modelling
approach compared to the more sophisticated NN models [46]. Another impeding factor is
that the method in [45] models each channel individually. In contrast to that, the present
study employs a multivariate NN model, which considers potential interrelations between
different channels. The study reports limited success, which is attributed to the training data
not covering all relevant conditions and false data type classifications between continuous,
constant, and attribute data. However, a main benefit of the approach is its cost-effective
and straightforward implementation, since a data acquisition through physical access to
the monitored devices is replaced by a passive network tap.

Due to the NN foundation of the proposed VSN method, a real time execution similar
to C2 is achievable, which is a benefit in relation to TSV. Also similar to C2, the VSN per-
forms checks and potential interventions during run-time shortly before execution without
advance warning. However, all listed alternatives require some degree of knowledge of the
PLC logic either in the form of its program code or suitable engineered safety properties.
In contrast to that, the proposed VSN methodology constructs a functional model of the
controller without the requirement of explicit information on the internal logic. In addition,
the presented VSN methodology is not limited to PLCs (such as TSV) and, therefore, can be
applied to proprietary embedded controllers or off-the-shelf electronics, greatly increasing
its range of applications.

The main features of the discussed methods are summarized and compared to the pro-
posed VSN approach in Table 1. Another factor is the required duration or computational
cost for the LSTM-NN training, which can be regarded as a drawback of the proposed
method. Detailed evaluations of this aspect are found in [30,47]. However, in relation
to other methods, cost and time are saved elsewhere by the VSN approach due to the
automatic feature extraction instead of manual safety engineering. In addition, there is no
requirement for the development of an additional redundancy system, since it is available
from the VSN itself.
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Table 1. Comparison of related methods.

Method
Typical

Detection
Time 1

Supported
System

Complexity

Intervention
Mechanics

Automatic
Feature

Definition

Indication of
False

Positives

Detection in
Advance

S3A [43] 5.7 µs medium
Limited logic
provided by

safety controller

No(Manually
engineered) No No

C2 [42] 0.1–0.2 ms high

Limited (denial,
retry,

notification,
command

interval
truncation)

No
(Manually

engineered)
No No

TSV on
minimal TCB

[41]

0.1–120 s
(Complexity-
dependent)

medium None
(Detection only)

No
(Manually

engineered)
No Yes

SSM [45] N/A medium None
(Detection only)

Yes
(Detection from

the AR
reconstruction

error)

No No

VSN (this
paper) 0.14 ms high

Full functional
redundancy by

VSN output

Yes
(Detection from

the NN
reconstruction

error)

Yes
(By

self-protection
features)

No

1 Indicative values, since the execution time is obtained on different hardware and different case studies used in
the respective papers.

2.6. Threat to Validity

The search strings in Table 2, used on the Google Scholar and Institute of Electrical
and Electronics Engineers (IEEE) repositories, have been provided to show an overview
of how the papers for the literature review were obtained, and hence where our current
understanding of the current methods in the field was obtained from.

Table 2. Search strings and databases searched on for the literature review.

Search String Database

Virtual sensor network Google Scholar, IEEE
Virtual controller Google Scholar

Digital twin controller Google Scholar
Electronics digital twin Google Scholar

Virtual sensing Google Scholar, IEEE
Soft sensing Google Scholar, IEEE

Wireless sensor network Google Scholar
Digital twin neural network Google Scholar

Virtual Sensor Neural Network Google Scholar, IEEE
Controller Cybersecurity Google Scholar, IEEE

3. Proposed Method

This chapter describes the proposed methodology for the identification of the func-
tional integrity of an electronic test device. The first subsection provides an overview of the
proposed methodology and the relation between the involved methods. Thereafter, these
methods are presented in individual subsections, including the data acquisition, the NN
model and self-protection.
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3.1. Overview

In its original form, a VSN is used to model virtual outputs of physical sensors based on
measured outputs from other sensors or physical quantities with related information [7,8].
In the present study, the VSN is implemented with an LSTM-NN and is adapted such that
each output signal of an electronic device is assumed as a sensor reading (i.e., VSN output),
which is modelled from measurements of the control inputs to the electronic device (i.e.,
VSN inputs).

The proposed approach can be subdivided into a training and operational phase, and
is illustrated in Figure 1. During the training phase, first, the inputs and outputs of the
reference device (i.e., “reference unit” in Figure 1) with proven and trusted functionality are
recorded. Additionally, relevant environmental or hardware condition data can be acquired
in parallel as illustrated by the “conditions” data stream in Figure 1. The recorded data is
used to train a NN, which should adapt the relation between the recorded device inputs
(potentially together with the environmental/conditional data) and the desired reference
output of this device.
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At a later stage, in the operational phase, the same data signals are recorded from
an (unknown) test unit. The control input signals of the test unit are then provided as
inputs to the trained NN model from the previous step. Since the NN model provides
the expected functional reference behaviour, its output is used in a comparison with the
test unit. Deviations from this reference baseline (illustrated as “∆functional” in Figure 1)
indicate potential malfunctioning of the tested device or measurement equipment.

However, such deviations can also arise if the reference behaviour is not accurately
replicated by the reference model, e.g., due to insufficient quality or quantity of training data.
The reference might not include all input states, operating or environmental conditions.
This can lead to previously unseen characteristics of a tested device’s response, which do
not necessarily indicate malfunctioning. If the described incomplete reference model is
exposed to unknown conditions, the analysis could produce false-positive or generally not
meaningful results. To avoid these issues, three methods for self-protection of the proposed
analysis are introduced, which are symbolised by the “∆self-protection” block in Figure 1.
First, a boundary check is performed, which asserts whether the current inputs are out of
bounds compared to the multidimensional input space that is known from the reference
training. The resulting true/false statement can indicate, in case of a “false” result, that
the conclusion of the analysis should be interpreted with care. Another, more gradual,
self-protection check is based on the calculated Mahalanobis distance (MD) between the
input-space samples and the currently observed multidimensional operational sample.
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Finally, a reconstruction of the received inputs is performed by an Autoencoder LSTM-NN.
Based on the reconstruction, anomalies in the input measurements (compared to inputs
from the training data) are detected.

3.2. Data Acquisition

To ensure successful NN training, a sufficiently large data sample is required that
covers a wide input range [48]. To learn the behaviour of the device, a known good reference
unit has to be recorded in its operation to acquire the operational logs. All input and
output ports are probed with the high impedance logger device that performs non-altering
signal logging. The logger device is a real-time measurement device running low latency
optimized firmware, such that measurements are taken with maximum precision and speed.
For this application, the speed is critical to perform the most accurate measurements with
minimal time jitter and, therefore, to minimise the distortions of the recorded reference
behaviour [49].

The logger device supports measurements in both digital and analogue form. All ana-
logue ports are measured at once with constant time intervals. Digital ports are measured
individually by using internal microcontroller interrupts recording the precise time of the
digital event. Then all collected measurements are sent to the computer for storage and
further processing.

Between logger device controller and computer, there is a limited data transfer band-
width available [50]. Some of the fast digital events may overwhelm the communication
link and interfere with the measurement of the reference device. Therefore, signal com-
pression can be applied if the type of the signal is known. For example, microcontrollers
often lack analog output capability and mimic the analog behaviour by switching digital
outputs on and off frequently, modulating the duration at which the port is switched on
with constant frequency. This method is known as pulse width modulation (PWM). If
a PWM signal is detected, then the logger device performs a measurement and logs the
duration of the on and off state to calculate the PWM signal value. Similarly, servo signals
are digital, but only the duration of switched on time is important, with lower importance
set for signal frequency [51]. Servo and PWM signal values are then treated as analog
equivalent values as precise switching timing is not a part of device behaviour, unlike
discrete digital control signals.

While logging, the reference device has to be powered on and its inputs fed with
some signals. There are two possible strategies to feed inputs to the reference device. The
first is to feed an input sequence from a previously recorded operational environment,
or second, to feed automatically generated inputs. Real operational recorded inputs are
usually beneficial for complex systems that require particular input sequences to reach
certain states that can be otherwise hard to reach. However, real recorded inputs may
not cover the full possible input space during the recorded operation as some edge case
scenarios can be exceedingly rare. The automatically generated inputs usually cover most
of the input space because input generator functions can reach all boundaries of all inputs,
and these functions can do so quickly. However, the generated functions may not represent
the expected sequence of inputs and only brute forces the input space.

Acquired raw logs are in mixed raster and vector formats depending on the type of
signal. Analogue signals are logged with a constant period, a raster format. Digital signals
are logged with the time of a switching event, a vector format that takes minimal storage
needed to store the data. Finally, the NN can only accept constant time interval sequential
raster data. Therefore, the vector format has to be converted into raster format with a
chosen resolution.

3.3. Proposed Neural Network Model

The NN model being proposed for use as a VSN is a Long-Short-Term-Memory (LSTM)
autoencoder. The purpose of this architecture is to reconstruct the raw input data with a
dimensionality reduction so that new features in the latent space representation of the data
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can be identified and learnt by the NN. A visualisation of this is shown in Figure 2, and a
formal definition is provided in Equations (1) and (2), courtesy of [34].

f(x)= latent space. (1)

g(f(x))= x′ (2)
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Complete Neural Network Architecture

The proposed architecture used for reconstructing the signal is illustrated in Figure 3.
The data are first passed through an LSTM layer where the dimensionality reduction is
performed. The RepeatVector layer then reshapes the data into vector format so that the
subsequent LSTM layer can be applied to decode the information. A TimeDistributed
layer is used as the output layer to apply a dense layer to each temporal slice of its input,
which produces the final reconstruction of the input data from each signal collectively.
Tensorflow [52] was used for the compiling and training of the NN.
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3.4. Data Pre-Processing Stage

Although the data are used in its raw temporal format, Z-score normalisation is applied
to boost the efficiency and speed of training without impacting the shape and features
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of the data. This method of normalisation is advantageous in comparison to min-max
normalisation when used on data with significantly outlying samples since when anomalies
are present, min-max normalisation will result in a tight grouping of the non-outlying data,
which will impact the ability of the NN to learn the data features effectively. This operation
was performed using Equation (3):

z =
(X − µ)

σ
(3)

where X is a non-normalised data point, µ is the mean of a subset, σ is the standard
deviation of a subset and z is a normalised data point.

3.5. Network Training and Threshold Calculation

For hyperparameter selection, each variable was individually iterated with the value
giving the best validation loss and mean squared error (MSE) of accuracy on the test set
used to tune the next hyperparameter until all hyperparameters were tuned. The validation
loss was observed to ensure that the NN has optimal generalization ability, and the MSE,
which is the mean of the square of the difference between the real and predicted values,
was used to gauge the consistency of the predictions. The result of this experiment is shown
in Table 3. It is worth noting that overfitting was minimal, even before the tuning of the
hyperparameters to optimal values. This was mainly due to the simplicity of the data as
well as its consistency.

Table 3. Optimal hyperparameters found for this task.

Hyperparameter Value

The number of epochs 100
Optimiser Nadam

Loss function Huber
Learning rate 0.001

Time steps (lookback) 4
Hidden layer width 64

LSTM activation tanh
Batch size 1000

3.6. Self-Protection

If the difference between currently observed operational measurements and the pre-
dicted output of the proposed NN model exceeds a threshold, a potential change in the
input/output behaviour of the tested or monitored device or measurement equipment is
indicated. In these cases, unexpected changes, e.g., due to degrading hardware or modi-
fied firmware, can be detected and addressed in a timely manner as intendent. However,
the representation of a real-world system by a model such as the proposed NN is an
approximation and thus includes prediction errors. These modelling errors are another
potential source for a mismatch between observed and predicted data samples. Errors in
NN outputs can commonly occur due to insufficient training data [47]. Such insufficient
training data might not be representative of potentially rare operational conditions, i.e.,
the operational input/output space is not contained within the training data space. Even
when this condition is satisfied, an insufficient quantity of training data can also lead to
model errors.

To address this issue and be able to distinguish between functional changes in the
actual hardware or sensors on the one hand and model errors on the other, the proposed
methodology implements the three following indicators, i.e., self-protection features.

3.6.1. Self-Protection 1: Multidimensional Boundary Check

The first indicator is a boundary check, where the currently observed samples are
compared to the boundaries of the training data input space. If, during operation, an
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observed input feature quantity falls below the minimum or exceeds the maximum value
of that feature’s set of training samples, this operational sample Is flagged. Such multi-
dimensional out-of-boundary sample represents an operating state, which is essentially
previously unseen by the model and as such the corresponding NN should be interpreted
with care.

3.6.2. Self-Protection 2: Mahalanobis Distance

The second indicator for potential model errors is calculated as the MD between the
currently observed multidimensional input sample and the multidimensional training
input data space as per Equation (4).

DMD(x) =

√ (
x − µy

)T
K−1

yy

(
x − µy

)
, (4)

where x is the operational input sample vector, which contains a single sample of the
measured model input features, µy is the vector of training data sample means of each
feature and Kyy is the covariance matrix of the training data samples.

As the MD is given in standard deviations, it is a continuous metric in contrast to
the binary boundary-check and is also affected by the quantity of used training samples,
thus offering a deeper insight into the certainty of the model prediction. Consequentially,
for higher MD values of an operational sample the corresponding model predictions are
assumed to be less trustworthy.

3.6.3. Self-Protection 3: Input Signal Reconstruction

The third proposed self-protection tool is based on the reconstruction of each input
signal from the measured operational inputs. This is achieved by a NN, which is trained
with device input measurements both on the NN input and output for reconstruction.
The NN architecture used is otherwise identical to that presented in Section 3.3. During
operation, any reconstructed input values straying from the input space in the training set
is identified and flagged as an anomaly, where an anomaly is defined as a datapoint or set
of datapoints that do not follow the expected trend of the data based on the given inputs.
While this may not be due to a fault of the tested device, the operator will be informed so
that they can observe the subsequent outputs from the device. Any abnormalities then
detected in the output are more likely to indicate an unexpected change in the operating
conditions rather than a malfunction of the device.

An indication of an unseen input condition is determined using a threshold on the
error residual, determined from the reconstruction accuracy from the validation set. Any
reconstructed values exceeding this threshold are likely to be outside the trained input
space, which is suitable for reliable performance of the main NN introduced in Section 2.1.

4. Experimental Demonstration with a Remote-Controlled Drone

A remote-control drone (Figure 4) is chosen as an illustrative example to demonstrate
how a compromised drone’s onboard actuator mapping could cause a severe issue to the
flight ability and safety of the drone. The drone is a flying wing type drone with one motor
and two elevons. Elevons and the motor are controlled by an onboard radio receiver and a
controller with programmable actuator mappings. Usually, these controllers are benign
plug-and-play devices that come with programmed default actuator mappings suitable for
the drone. However, in the case of malicious or negligent actuator mapping, changes in the
critical modes of operation may be catastrophic and cause a crash.
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4.1. Measurement Setup

The drone’s onboard controller takes three analogue inputs of pitch Ry (input signal 1),
roll Rx (input signal 2), throttle T (input signal 3) and gives three servo outputs signals for
right elevon Er (output signal 1), left elevon El (output signal 2), motor power M1 (output
signal 3). The throttle controls the motor power. Roll input is mapped for both elevons to
actuate in opposite directions. Pitch input controls both elevons in the same direction and
controls additional power to the motor when the drone flies up.

Er =
Ry − Rx

2
(5)

El =
Ry + Rx

2
(6)

M1 = T +
Ry

2
(7)

Standard actuator mappings are known to us. However, neither the logger device nor
any part of the NN training process are concerned with the actuator mapping formulas.
This allows the system to remain impartial of the test device, and the methodology remains
valid for arbitrary test devices.

4.2. Experimental Results

Experiments were run on a computer with an Intel i7-8750H processor, NVIDIA
GeForce GTX 1070 graphics processing unit (GPU), 16 GB memory and Windows 10
Operating System.

4.2.1. Neural Network Training and Threshold Calculation

The data used for training and testing consists of: a 5-min subset of input and output
data from the reference device used as training data, a 30 s subset of input and output data
from the reference device used as validation data and a 30 s subset of input and output
data from the test device, with faults induced by malicious code, used as test data.

For the first experiment, to test the multidimensional boundary check and MD self
protection features, the NN will be trained with the full pitch, roll and throttle input data
from the reference device as the NN input and the expected output as the right elevon, left
elevon and the motor power (Section 4.2.2). The mean absolute error (MAE) of the worst
training prediction for each signal will be used as the threshold MAE values, for which
any subsequent prediction found to exceed these MAE values is defined as an anomaly
and is flagged as such. The NN and self protection features will then be tested on the same
signals on the test device with the malicious code (Section 4.2.3).
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The second experiment will reduce the training data to a 5 s subset of the full dataset
to simulate a training set that is not fully representative of the range of data in the expected
input space during device operation (Section 4.2.4). Similar to the previous experiment, the
worst training prediction MAE for each signal will be used as the threshold MAE values.
The NN will then be tested on the same test data as the previous experiment for anomalies.

The NN used for the final experiment will be trained to reconstruct the device input
data using the full reference device input dataset (Section 4.2.5). The worst training predic-
tion MAEs will be used as threshold values for the test with artificial bias faults inserted
into the data. Any datapoint exceeding the value of the threshold MAE of the respective
signal is flagged as an anomaly.

A comparison of the training results for each experiment is shown in Table 4. Table 5
shows a comparison of the threshold values calculated for each NN. For reference, the
range of encountered data for each signal is also shown in Table 6.

Table 4. Comparison of training results for the input/output mapping neural network (NN) on the
full dataset, the input/output mapping NN on the reduced dataset and the input reconstruction NN;
where avg is shorthand for average.

Experiment Trainable
Parameters

Avg Training
Loss Mean

Avg Validation
Loss Mean

Avg Prediction
Mean Squared

Error (MSE)

Avg Training
Time (s)

Experiment 1: Full input
data for output data
prediction training

50,627 0.0013 0.0018 1.19 34.7

Experiment 2: Reduced
input data for output

data prediction training
50,627 0.0138 0.0338 97.80 23.6

Experiment 3: Full input
data for input

reconstruction training
50,627 4.2598 × 10−4 5.5175 × 10−4 0.47 40.1

Table 5. Comparison of mean absolute error (MAE) threshold values used in each experiment, where
the experiments have the same labels as Table 3.

Signal Prediction MAE threshold

Experiment 1 Experiment 2 Experiment 3

Right elevon 9.26 12.81 67.64
Left elevon 10.10 15.01 10.10

Motor power 44.92 48.73 44.92

Table 6. Range of values for the input and output signals in each of the training, validation and
testing datasets respectively.

Training Data Validation Data Testing Data

sig 1 sig 2 sig 3 sig 1 sig 2 sig 3 sig 1 sig 2 sig 3

Input
Data

Minimum Value 0 0 0 0 8 97 0 0 122

Maximum Value 995 998 1003 979 927 455 994 996 998

Output
Data

Minimum Value 19 39 0 19 47 0 28 39 0

Maximum Value 119 143 173 116 138 88 112 142 181
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4.2.2. Input-Output Mapping with Residual Error Threshold

Using the optimal hyperparameters in Table 3, the model was trained on a 5-min
subset of the data from the reference device, validated on a 30 s subset from the reference
device and tested on a 30 s subset of the test device with faults inserted. The results in
Table 4, Experiment 1 show the summarised results for this case.

Using the trained model, the validation data was predicted, and the MAE of the
predictions are calculated; this is illustrated using a histogram in Figure 5. The maximum
MAE values for each signal are used as the thresholds for the anomaly detection, these are
shown in Table 5, Experiment 1. The MAE values are calculated using the normalised data
values and not the actual values, hence the magnitude of the values calculated.
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4.2.3. Virtual Sensor Network (VSN) Testing

Input data from the test device was then used to test the mapping ability of the NN.
The data from the three drone input signals were input into the NN; Figures 6–8 show the
prediction of the NN in comparison to the actual data values in the top subplot, and any
anomalies found in the data highlighted in red. The MD, MAE and boundary check are
plotted in the bottom subplot, where the blue line represents the MAE on the left-hand
scale, and the red line represents the MD on the right-hand scale. Any yellow shaded area
represents a datapoint outside the expected input space.
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4.2.4. Boundary Check and Mahalanobis Distance Self-Protection Testing

To test the effectiveness of the proposed self-protection features, the model was trained
on a 5 s subset of the training set acquired from the reference device, instead of the full
600 s. This will decrease the accuracy of the NN predictions and result in the input data
from the test device being outside the input space expected by the NN, thus causing an
unreliable NN prediction. Table 4, Experiment 2 depicts the results of the training, Figure 9
the MAE of the validation data predictions, and Table 5, Experiment 2 the calculated MAE
threshold from the validation data.
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With these threshold values, the NN was tested with the reconstruction of the input
test device data. The boundary check and MD between the training input data and the test
input data were also calculated and superimposed over the MAE plot. Figures 10–12 show
the results of the described plots. The figures follow a similar layout to Figures 6–8.
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4.2.5. Self-Protection Feature 3—Input Reconstruction

The NN model in Figure 3 with the hyperparameters shown in Table 3 was used for
the input signal self-protection. The model was trained on the same 5-min subset from
reference device previously used, validated on the same 30 s subset from the same device
and tested on the 30 s subset from the test device. The results of the training are shown
in Experiment 3. The MAE of prediction for the validation set was then calculated and
illustrated, this is shown in Figure 13. The threshold values for the anomaly detection was
determined using the maximum MAE value from the validation prediction and are shown
in Table 5, Experiment 3.
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4.2.6. Reconstruction Testing

The reconstruction ability of the NN was then tested. The results of the predictions
for each input signal are shown in Figures 14–16, where the top plot represents the real vs.
predicted input reconstruction and any anomalies highlighted in red and the bottom plot
represents the MAE on the left-hand scale and MD on the right hand scale.



Sensors 2022, 22, 454 20 of 27

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26 
 

 

Figure 12. Predicted vs. real device output for signal 3, the motor power, with anomalies labelled 
(top); MAE, MD and boundary check corresponding with the prediction (bottom). The yellow 
shaded areas represent new inputs outside expected input space. 

4.2.5. Self-Protection Feature 3—Input Reconstruction 
The NN model in Figure 3 with the hyperparameters shown in Table 3 was used for 

the input signal self-protection. The model was trained on the same 5-min subset from 
reference device previously used, validated on the same 30 s subset from the same device 
and tested on the 30 s subset from the test device. The results of the training are shown in 
Experiment 3. The MAE of prediction for the validation set was then calculated and illus-
trated, this is shown in Figure 13. The threshold values for the anomaly detection was 
determined using the maximum MAE value from the validation prediction and are shown 
in Table 5, Experiment 3. 

 
Figure 13. Histogram depicting MAE of each prediction for each input/output channel. 

4.2.6. Reconstruction Testing 
The reconstruction ability of the NN was then tested. The results of the predictions 

for each input signal are shown in Figures 14–16, where the top plot represents the real 
vs. predicted input reconstruction and any anomalies highlighted in red and the bottom 
plot represents the MAE on the left-hand scale and MD on the right hand scale. 

 
Figure 14. Predicted vs. real device input for signal 1, the right elevon, with anomalies labelled (top); 
MAE, MD and boundary check corresponding with the prediction (bottom). 

Figure 14. Predicted vs. real device input for signal 1, the right elevon, with anomalies labelled (top);
MAE, MD and boundary check corresponding with the prediction (bottom).

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 15. Predicted vs. real device input for signal 2, the left elevon, with anomalies labelled (top); 
MAE, MD and boundary check corresponding with the prediction (bottom). 

 
Figure 16. Predicted vs. real device input for signal 3, the motor power, with anomalies labelled 
(top); MAE, MD and boundary check corresponding with the prediction (bottom). 

A bias fault was then artificially inserted in each input signal in the test data from 
data point 3250 onwards, to simulate test data lying outside the expected input space of 
the device. Figures 17–19 show the NN detecting and flagging the outlying data points, 
marked in red on the top plot, and the respective MAEs, MDs and boundary checks plot-
ted on the bottom plot in each figure. 

 
Figure 17. Bias fault inserted in input signal 1, the right elevon, from data point 3250 onwards, with 
NN anomaly detection highlighted in red and inputs outside the expected input space shaded in 
yellow. 

Figure 15. Predicted vs. real device input for signal 2, the left elevon, with anomalies labelled (top);
MAE, MD and boundary check corresponding with the prediction (bottom).

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 15. Predicted vs. real device input for signal 2, the left elevon, with anomalies labelled (top); 
MAE, MD and boundary check corresponding with the prediction (bottom). 

 
Figure 16. Predicted vs. real device input for signal 3, the motor power, with anomalies labelled 
(top); MAE, MD and boundary check corresponding with the prediction (bottom). 

A bias fault was then artificially inserted in each input signal in the test data from 
data point 3250 onwards, to simulate test data lying outside the expected input space of 
the device. Figures 17–19 show the NN detecting and flagging the outlying data points, 
marked in red on the top plot, and the respective MAEs, MDs and boundary checks plot-
ted on the bottom plot in each figure. 

 
Figure 17. Bias fault inserted in input signal 1, the right elevon, from data point 3250 onwards, with 
NN anomaly detection highlighted in red and inputs outside the expected input space shaded in 
yellow. 

Figure 16. Predicted vs. real device input for signal 3, the motor power, with anomalies labelled (top);
MAE, MD and boundary check corresponding with the prediction (bottom).



Sensors 2022, 22, 454 21 of 27

A bias fault was then artificially inserted in each input signal in the test data from
data point 3250 onwards, to simulate test data lying outside the expected input space of
the device. Figures 17–19 show the NN detecting and flagging the outlying data points,
marked in red on the top plot, and the respective MAEs, MDs and boundary checks plotted
on the bottom plot in each figure.
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5. Discussion

The results in Figures 6–8 show the input-output mapping ability of the proposed
NN with sufficient testing data. In each Figure, the top subplot represents the real test
device output values of the elevons and motor power vs. the NNs predicted output based
on the drone input of the pitch, roll and throttle. Any prediction MAE exceeding the
threshold values set in Table 5 is highlighted in red and is thus outlined as an anomaly. The
results show that the NN is able to identify the anomalous data accurately and robustly
on the datapoints clearly outlying from the expected data trend, which are predetermined
anomalies induced by malicious code implanted in the drone controls. Furthermore, with
sufficient data, the self-protection features do not give any indication of an unreliable
prediction, with all the test data being in the expected input space, represented by the lack
of any yellow shaded areas and the MD staying consistently low, shown in the bottom plot
in each figure.

When training the NN with incomplete input data that was not fully representative
of the input space to be expected from the device operation, the self-protection features
were effective in highlighting the unreliable measurements. For instance, on Figure 11, data
point 1300 is highlighted as an anomaly by the NN, however when taking into account
the MD, which is at a maximum at that point in relation to the lower values experienced
with the previous experiment with the full input training data, and the boundary check,
which flags the data as being outside the input space, represented by the highlighted yellow
area, this anomalous prediction should not be trusted. On the other hand, the anomalies
flagged in the previous experiment are still labelled as anomalies with a small training set,
and with MD at a similar level to the level observed with a full training set and the input
data being inside the input space boundary represented by a lack of yellow shading, the
predictions can be regarded as more reliable and so, therefore, these anomalous datapoints
can be further investigated by the operator.

The input self-protection NN was also effective in identifying abnormal trends in the
input data. With a full training set of drone input data and no artificial faults inserted in the
data, the results in Figures 14–16 indicate the input reconstruction followed the expected
trend of the input data well, shown by the matching of both plots in the top plot in each
figure and did not flag any outlying data in red. However, with the bias fault inserted
into the data from data point 3250 onwards, the results in Figures 17–19 show the NN
clearly and effectively identifying the changepoint as well as the majority of the outlying
data in red. Furthermore, the bottom plot indicates by the out of bounds boundary check
self-protection tool in yellow that these datapoints are outside the expected input space,
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signifying to the operator that the input data is not encountered, and the MAE can be
clearly seen to increase past datapoint 3250.

The proposed methodology provides a major benefit over existing alternatives covered
in the literature review (Section 2.5) in the sense that it does not require advance knowledge
about behaviour of the target electronic device and is not limited to the application to PLCs
like TSV. This is due to the fact that the device behaviour can be modelled by the proposed
VSN approach as long as the device inputs can be driven while their values are logged
along with the resulting device outputs. In spite of the number of drawbacks of TSV, it has
the advantage over other methods (including the proposed VSN) that it is able to evaluate
the full PLC code in advance. However, since the proposed VSN model is based on an
LSTM-NN, it provides both a fast execution time (in contrast to TSV) while being capable
of representing complex functional systems with non-linearities and time-dependency.
Therefore, the VSN control model representation can act as a full fault-redundant signal
source, in contrast to the rather limited intervention measures of C2 and S3A. To the best
of the authors’ knowledge previous published studies in the domains of DT and VSN
either model a physical condition of devices and machines or infer virtual sensor values
from alternative data sources. However, they do not model and analyse the functional
behaviour of electronic devices like demonstrated in this study. Furthermore, the reviewed
body of research in these domains appears to assume correct model representations, while
the present work suggests the detection of potential model errors with the presented
self-protection methods to further increase system reliability.

5.1. Limitations

Despite a number of advantages of the proposed method listed above, there are certain
limitations associated with it. One aspect that is difficult to determine, and can therefore
be seen as a limitation, is the certainty of the functional integrity of the reference device.
Whilst there are existing techniques for determining the reliability of an electronic device,
training a NN on a reference device, which is itself faulty or exhibits undesired behaviour,
could cause major issues with the reliability of the model. Furthermore, the self-protection
features operate based on the data from the reference device, rendering them unable to
address this issue as the features would not flag any faulty or unreliable data that was seen
as normal on the faulty reference device.

NN based virtual sensing is bottlenecked by the modelling ability of the NN, which is
generally determined by the layer depth and hence the number of trainable parameters
present. When utilising this framework of functional integrity checking, the NN model
used for mapping and input reconstruction must be designed and implemented with the
complexity of the data and feature richness in mind. Failing to account for this will cause
baseline predictions to be unreliable and would reduce the overall sensitivity of the NN
with anomaly detection. This is heavily detrimental to the overall ability of the system, as
there may be some less significant anomalies that the NN would fail to spot as a result of
this issue.

For optimal performance, the full range of relevant operational conditions and input
signals of the reference device should be covered in the training phase (Figure 1). However,
this limitation is mitigated by the presented self-protection features, which aim to identify
such conditions where increased modelling errors are expected.

As discussed in the literature review (Section 2.5), the proposed method is applied
at run-time to perform potential warnings or interventions directly before a faulty or
malicious response of the monitored device is passed on to other system components. This
circumstance is less relevant in a product development and manufacturing phase. However,
when deployed in an operational setting, this requires an application-dependent fail-safe
logic to handle the triggered warning in real-time, e.g., by substituting the identified faulty
response by the virtual reference response (in case of a high fault-certainty indicated by
self-protection features) or by providing a user warning otherwise.
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Finally, the integration of the proposed VSN method into a complete system structure
for deployment is outside of the scope of this paper and has not been fully developed at this
stage. An important factor to consider for this task is the protection of the VSN software
and hardware against manipulation itself. Existing cybersecurity approaches, such as the
implementation of the proposed VSN method within separate and non-writable hardware,
can be utilized for this purpose.

6. Conclusions and Future Work

The present study introduced a methodology for the identification of the functional
integrity of electronic devices based on an NN model of a reference device unit. The
methodology was applied to actual measurements of drone hardware with desired con-
troller response on one hand and a malfunctioning controller on the other hand. The results
of this experiment demonstrate the effective application of the proposed methodology as
discussed in the previous chapter.

In addition, the scenario of an insufficiently trained NN was examined to investigate
the performance of self-protection features, aiming to distinguish false model outputs
from actual changes in the measured device behaviour compared to the reference device.
Three independent self-protection features with increasing complexity were implemented
and applied to both types of NN models (with either complete or insufficient training).
The results obtained show that the output of the self-protection tools correlates well with
the MAE of the model output in areas where the increased MAE is due to model errors.
Therefore, the self-protection methods successfully indicated modelling errors, which can
likely remain undetected otherwise.

Concrete examples for relevant application areas of the presented methodology in-
clude the monitoring, diagnosis and redundancy of electronic controller functionality of
systems such as aircraft, vehicles, industrial machinery, power plants, automated produc-
tion lines and robotics in general. On a broader scope, the presented methodology has
applications in the validation of the behaviour of tested device units during prototyping
and manufacturing. In a global economy, electronic hardware components are typically
acquired from external suppliers or as off-the-shelf products due to cost-efficiency or the
incapability of in-house production. However, the manufacturing quality, processes, and
potential changes thereof are often not transparent to the customer in these cases. Validation
of the functional integrity of electronic hardware by the proposed VSN approach combats
the risk associated with the hardware acquisition from external suppliers. During the oper-
ational phase, the methodology can be used for monitoring as a foundation for predictive
maintenance and to prevent potential consequential hardware damage, downtime and risk
of injury. Finally, the virtual model response can be used as a substitute during operation
to bypass faulty behaviour of the device, i.e., as a means of intervention by redundant
hardware or failure logic. This is especially relevant to safety-critical applications, which at
the same time demand high certainty in decision-making. The presented self-protection
features can be used to address this issue by reducing the risk of false interpretations due
to model errors. Since the self-protection methods identify specific conditions where the
used NN model shows flaws, they also aid a targeted improvement of the NN with the
identification of supplementary training data.

Although an experimental validation of the proposed methodology is given in the
present study, for future work it is suggested to evaluate the methodology in additional case
studies and in-field operational applications. While the case study in this paper presented
a case with malfunctioning firmware, subsequent research could evaluate the method
on faults originating from hardware defects. Electronic components such as resistors
or capacitors on controller hardware could be artificially removed or damaged for this
purpose. In the future, alternative NN architectures can be implemented, and the presented
self-protection methods can be compared in more detail to investigate their performance
in specific applications. Finally, the identified current limitations, which are discussed in
Section 5.1, can be addressed in future work for further development of the method.
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45. Hadžiosmanović, D.; Sommer, R.; Zambon, E.; Hartel, P.H. Through the eye of the PLC: Semantic Security Monitoring for
Industrial Processes. In Proceedings of the 30th Annual Computer Security Applications Conference, ACSAC 2014, New Orleans,
LA, USA, 8–12 December 2014; pp. 126–135. [CrossRef]

46. Henrique, B.M.; Sobreiro, V.A.; Kimura, H. Literature review: Machine learning techniques applied to financial market prediction.
Expert Syst. Appl. 2019, 124, 226–251. [CrossRef]

47. Zhang, S.; Wu, Y.; Che, T.; Lin, Z.; Memisevic, R.; Salakhutdinov, R.; Bengio, Y. Architectural Complexity Measures of Recurrent
Neural Networks. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona,
Spain, 5–10 December 2016; pp. 1822–1830.

48. Catal, C.; Diri, B. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction
problem. Inf. Sci. 2009, 179, 1040–1058. [CrossRef]

49. Ku, C.K.; Goay, C.H.; Ahmad, N.S.; Goh, P. Jitter decomposition of high-speed data signals from jitter histograms with a
pole–residue representation using multilayer perceptron neural networks. IEEE Trans. Electromagn. Compat. 2020, 62, 2227–2237.
[CrossRef]

50. Atmel Atmel SAM3X / SAM3A Series. 2015.
51. Haidar, A.M.; Benachaiba, C.; Zahir, M. Software Interfacing of Servo Motor with Microcontroller. J. Electr. Syst. 2013, 9, 84–99.
52. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

http://doi.org/10.1145/2664243.2664277
http://doi.org/10.1016/j.eswa.2019.01.012
http://doi.org/10.1016/j.ins.2008.12.001
http://doi.org/10.1109/TEMC.2019.2936000

	Introduction 
	Literature Review 
	Digital Twin Technology 
	Virtual Sensor Implementation with Neural Networks 
	Wireless Sensor Network vs. Virtual Sensor Network 
	Neural Networks 
	Cybersecurity 
	Threat to Validity 

	Proposed Method 
	Overview 
	Data Acquisition 
	Proposed Neural Network Model 
	Data Pre-Processing Stage 
	Network Training and Threshold Calculation 
	Self-Protection 
	Self-Protection 1: Multidimensional Boundary Check 
	Self-Protection 2: Mahalanobis Distance 
	Self-Protection 3: Input Signal Reconstruction 


	Experimental Demonstration with a Remote-Controlled Drone 
	Measurement Setup 
	Experimental Results 
	Neural Network Training and Threshold Calculation 
	Input-Output Mapping with Residual Error Threshold 
	Virtual Sensor Network (VSN) Testing 
	Boundary Check and Mahalanobis Distance Self-Protection Testing 
	Self-Protection Feature 3—Input Reconstruction 
	Reconstruction Testing 


	Discussion 
	Limitations 

	Conclusions and Future Work 
	References

