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A B S T R A C T   

Accurate, repeatable and quantitative analysis of nanoscale solute clustering in atom probe tomography (APT) 
datasets is a complex challenge which is made more difficult by the positional uncertainty and lack of absolute 
resolution inherent to the technique. In this work a new method, the point excess solute, is introduced for 
quantifying solute segregation in datasets with limited spatial resolution. This new method is based on measuring 
the matrix concentration using a dataset sampling method. We show the new method can accurately reproduce 
the values expected from synthetic datasets a priori and when the dataset spatial resolution and or phase contrast 
is too low for accurate quantification this is observable. The method is then applied to naturally aged solute 
clusters in the Al-Mg-Si-Cu system. Datasets were collected with a range of natural ageing times from 8 min to 76 
weeks. The formation of the solute clusters is shown to be unaffected by the Cu content of the alloy.   

1. Introduction 

Atom probe tomography (APT) is widely used for the detection and 
characterisation of features of fine-scale chemical segregation termed 
solute clusters in a range of materials [1–5]. APT generates nano-scale 
chemical information in the form of atomic reconstructions, which are 
4 dimensional data, with each point in the 3D data having a Cartesian 
coordinate and a mass-to-charge-state ratio. From the mass-to-charge- 
state ratio a chemical identity can be assigned to each point creating a 
point cloud of data from which features of chemical segregation can be 
identified. 

In this work we will use a broad definition for a solute cluster that is 
relevant for APT data; while other definitions may be more specific and 
include structural and ordering requirements [2]. As this information is 
often absent from APT data it cannot be included as part of the defini
tion. Here we treat true solute clusters as being discrete regions in the 
APT data with a concentration of one or more elements above that of the 
concentration of these elements in a surrounding matrix. In this defi
nition, the atoms of the clustering elements in the surrounding matrix 
have no spatial correlation to themselves or other clustering elements. 

The matrix can be described as a random solid solution (RSS). Across 
previous works, different methods of selecting such regions of solute 
segregation from APT data are themselves the definition of a solute 
cluster within the study for which that method is being used. 

Methods used for extraction of features classed as solute clusters by 
this definition, include the commonly used DBSCAN algorithm (of which 
maximum separation algorithm is a specialised case) and iso
concentration surfaces, generated from de-localised concentration 
fields. Other less commonly applied methods have been based on 
Delaunay tessellations and Voronoi cells [6,7], using isolated solute ions 
[8] and radial distribution functions [9,10]. More recently more 
advanced algorithms and machine learning principles have also been 
applied to APT data [11–14]. 

A common source of complications to several solute cluster identi
fication methods is the selection of parameters which determine the cut- 
off between clustered and non-clustered regions of the dataset. These 
parameters can have large effects on the extract distribution of cluster 
properties [15]. Inconsistent parameter selection between operators can 
lead to poor repeatability and comparability of results and some pa
rameters will provide results which are inaccurate and far from the true 
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cluster characteristics [15]. As such several works have tried to deter
mine ways of automatically or semi-automatically selecting parameters 
to produce more accurate, repeatable and comparable results, 
[7,8,16–20]. 

In APT data, the atomic density of solute ions residing within the true 
clusters will cover a range of values. However, the distribution of values 
can overlap with the distribution of atomic densities of solute residing 
with the matrix. This can become problematic when selecting a single 
cut off density value to delineate clustered ions from those in the matrix. 
As such methods that select solute clusters based on global cut-offs in 
density [7,16,17,19,20] may not accurately characterise the dataset. 
Alternative methods have been suggested to extract features over a 
range of densities [12–14] and perhaps offer the best potential for 
accurately determining the number of true solute clusters a dataset. 
Some methods [12,14] do still require input of user selected parameters 
and can struggle to accurately quantify the solute clustering in a dataset 
when the solute density contrast between clusters and matrix is low. 

No matter the methods used for extracting solute clusters however, 
there are also limitations to accuracy that occur for measurements at the 
smallest length scale of solute segregation, due to the finite spatial res
olution of the APT evaporation process and reconstruction [10]. This 
leads to uncertainty in size and spatial overlap between original cluster 
and matrix ions, such that there is a loss of compositional information 
[10]. Due to this overlap in the APT reconstruction the primary matrix 
element(s) are often not considered as part of cluster composition and 
only ratios of the segregating solute species are quoted [2], although this 
ratio can still be influenced by spatial overlap if the ratio of segregating 
elements was different between the cluster and matrix. 

In this work we propose a method to extract quantitative information 
from the APT dataset when the ability to resolve solute clusters is 
limited, either due to poor spatial resolution arsing from experimental 
measurement limitations or due to the inherently small scale segregation 
and low concentration contrast nature of the clusters, or a combination 
of these factors. The method is free from user-defined parameters and is 
hence consistent and repeatable between different operators and pro
vides results which are directly comparable between different datasets 
and material treatments. The new method is validated against synthetic 
APT data, with known cluster characteristics, and a case study of the 
method applied to the early stages of solute cluster development during 
room temperature ageing of Al-Mg-Si-(Cu) alloys is presented. 

2. Point excess method 

Fig. 1a shows a theoretical schematic of the solute concentration 
profile measured across two regions, comprising 50 at.% and 10 at.% 

solute in the cluster and matrix regions respectively. The black solid line 
shows an idealised case, where there is a sharp interface. The blue dotted 
line indicates a more realistic scenario, where due to poor identification 
of which region an ion was originally from and/or interface blurring due 
to spatial aberrations in the APT reconstruction, the solute concentra
tion is no longer bimodal. In no section is the measured concentration 
the same as the original cluster solute concentration, cc. Without making 
assumptions about the nature of this blurring, the core composition of 
the cluster cannot be directly measured. In this situation what is how
ever not lost is the matrix concentration, cm, which can accurately 
measured at distances sufficiently far from the interface. In an analogous 
manner to the calculation of a Gibbsian interfacial excess [21,22], the 
number of solute ions in excess of the base matrix concentration can be 
calculated, here referred to as the point excess solute, Ψ. These excess 
solute ions may be part of a small volume of high concentration clusters, 
or a larger volume of lower concentration clusters. The parameter is 
defined such that the value of Ψ can be used as a quantification for the 
amount of solute segregation when the characteristics, cluster solute 
concentration and volume fraction, cannot be measured. 

In order to calculate Ψ, the point cloud of ions needs to be linearly 
indexed from the ions thought most likely to be part of a solute cluster, 
to the least likely to be part of a solute cluster. The choice of how to 
index the dataset will be addressed in detail below. The cumulative sum 
of solute ions, from most likely to be clustered to least likely, as a 
function of the cumulative sum of all ions can be plotted from this, as 
shown schematically in Fig. 1b. The value of Ψ is defined as the y-axis 
intercept of a linear fit to the section of this graph where the gradient, i. 
e. concentration, is constant. The measured value of Ψ is a number of 
ions, which will depend on the size of the dataset measured and the total 
dataset concentration of solute. It can be normalised by dividing by the 
total number of solute ions observed, to give the value Ψn, which leads to 
the following expressions, 

Ψn = Ψ/Ns (1)  

Ψn = 1 − cm/ct (2)  

where; Ns, is the total number of solute ions in the dataset; cm is the 
concentration of solute in the matrix and ct, is the total dataset con
centration of solute; ct = Ns/Nt. Nt is the total number of ions in the 
dataset. Eq. (2) is derived from considering that Ψ is equivalent to Ns −

cmNt, the number of solute ions above a base matrix concentration. 
If the blurring of cluster and matrix regions is sufficient that no 

section of the dataset which has the starting matrix composition can be 
identified, then this measurement also breaks down. This situation is 
demonstrated by the red dashed lines in Fig. 1. If the length scales of 
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Fig. 1. a) Solute concentration profiles moving from cluster to matrix region with theoretical compositions, cc and cm respectively. Volume is represented by 
percentage of total ions. In this example clusters take up 20% of the volume. For moderate blurring matrix concentration is still measurable, but not with severe 
blurring. b) Same situation as in a) but for cumulative sum of solute ions. The excess solute, Ψ, is measurable for moderate blurring but not severe blurring. 
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segregation are small compared to positional uncertainty, complete 
overlap between original clusters and matrix may occur. 

2.1. Dataset sampling methodology 

Whether a uniform matrix concentration can be resolved will be 
influenced by the method used to linearly index the dataset, as well as 
positional overlap and aberrations within the reconstruction. In this 
work only one method for indexing the dataset is applied, but the 
principle of calculating Ψ can be generalised to other methods. In this 
work the dataset is indexed using an adapted maximum separation 
approach. 

In the maximum separation method, the dataset is categorised into 
solute ions and non-solute ions, with a solute ion considered to be 
clustered if it is within a distance dmax of another solute ion [18,23]. 
Non-solute ions can be added to the clusters if they are within a distance 
dinc of a clustered solute ion [24]. dinc is sometimes referred to as L. Here 
we do not consider the additional step of erosion [24]. It should be noted 
that the terms solute and non-solute used here, refer to how the ion is 
categorised as an input to the maximum separation algorithm and that 
the non-solute category can contain ions which from a chemistry point 
of view would be called solute ions. 

In the new dataset sampling methodology, the data is separated such 
that some of the solute ions are used to index the dataset, while a 
random sample of them are used for the calculation of Ψ. Firstly a fixed 
fraction of the solute ions in the dataset are selected (Fig. 2). These ions 
are reassigned a new, unique mass-to-charge-state ratio and a new 
identity; Q. A sampling of the non-solute ions is also made, the sampling 
fraction being the same as the fraction of solute ions now assigned as Q. 
Among the non-solute ions each ionic species is sampled equally. The 
rest of the non-solute ions are temporarily discarded. A combined 
dataset is then made of the non-sampled solute, the Q ions i.e. the 
sampled solute, and the sampled non-solute ions (Fig. 2). The selection 
parameter dmax and alongside it the inclusion parameter dinc = dmax, are 
incrementally increased from 0. This leads to shells of Q and sampled 
non-sample ions being selected around regions of progressively lower 
solute density, as shown by the contours in Fig. 2. There is no bias for the 
selection of Q compared to the non-solute ions, as they are selected by 
the same criterion. A resulting profile of the concentration of Q in each 
shell can be produced. Fig. 3a shows that for a RSS the concentration of 
Q in each shell fluctuates around the total concentration of solute. 

The matrix concentration and hence Ψ can be calculated for a single 
dataset sampling, however the accuracy and precision is improved by 
making multiple dataset samplings and combining the results into a 
single summed concentration profile. 

The concentration profile resulting from increasing dmax and using an 
inclusion step with dinc = dmax to select solute ions and non-solute ions 
respectively from a RSS without dataset sampling and labelling solute as 
Q, is shown in Fig. 3b. There is a bias towards the selection of solute ions 
for small values of dmax and a subsequent lower concentration at larger 
dmax values. The maximum separation algorithm indexes the data from 
regions of close proximity solute ions to regions of disparate solute ions. 
It is expected that for small dmax values the concentration of solute ions is 
high as it is the high solute ion concentration regions which are selected. 
A bias exists between selection of solute ions and non-solute ions from 
the reconstruction, as the criteria for their selection are different. The 
dataset sampling method is used because a method is needed which 
indexes the dataset, from regions of high solute density to low solute 
density, but which does not bias for selection of one ionic species over 
another. 

Shells of progressively lower solute density are selected by increasing 
the selection parameters dmax and dinc, however it is desirable to have 
each shell contain a similar number of ions. Using linear steps in dmax 
leads to unevenly sized shells. By using quantiles from a histogram of 1st 
nearest neighbours distances for all ions in the dataset to the nearest 
solute ion, a sequence of dmax values can be computed which will select 
shells which contain roughly the same number of ions. The exact num
ber of ions in each shell will vary slightly due to dataset sampling. The 
concentration profile of Q in each shell can now be plotted against the 
fraction of the total ions in the dataset, f , which is more illustrative than 
the dmax parameter. 

The shell beyond which the concentration is considered to be uni
form and only due to the matrix now needs to be assessed. Here the cut- 
off point is decided by comparing the concentration of Q ions in a 
selected shell to the concentration of Q ions in the residual matrix from 
which they were selected. The residual matrix is all the sampled ions not 
selected as part of previous higher non-sampled solute density shells. 
Once the concentration of Q ions in a shell drops below that of the re
sidual matrix, this shell and the residual matrix are considered to be 
confirmed as matrix (Fig. 4). 

A confidence interval in this measurement of the matrix concentra
tion can be generated by considering the counting statistics. The number 
of ions in the confirmed matrix, Nm will be dependent on what fraction 
of the total ions in the dataset, Nt , are confirmed as matrix, 

(
1 − fc

)
, the 

sampling fraction, q, and the number of repeated samples made, n. 

Nm = nqf cNt (3) 

There will also have been a measured number of solute ions within 
the confirmed matrix, Nms, leading to an estimate of the matrix con
centration which is derived from cm = Nms/Nm. The confidence interval 

Fig. 2. Schematic representation of the process of data sampling used to remove selection bias between solute and non-solute ions. Solute ions and non-solute ions 
are randomly sampled. Sampled solute ions are re-categorised as Q. Unsampled non-solute is temporarily discarded. Q and sampled non-solute ions are then selected 
by the same inclusion method without bias around clusters defined by the unsampled solute. 
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in the estimate comes from treating cm as an estimate of a true binomial 
rate (Eq. (4)). In this work we use the Wilson-Score interval [25] method 
for estimating the confidence interval, which is more appropriate for 
small samples and skewed distributions, which are inherent to APT data 
analysis, than making a normal distribution approximation which is 
widely applied in APT data [26] and implemented in commercial soft
ware. A value of z = 1.96 leads to a 95% confidence interval, which is 
implemented here. 

(
c−m , c

+
m

)
=

cm + z2

2Nm
± z

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cm(1− cm)

Nm
+ z2

4N2
m

√

1 + z2

Nm

(4) 

Repeated dataset samplings can improve the precision of the method; 
however the precision is limited by the original dataset size, and as such 
the product, nq, takes a maximum value of 1 in the calculation of Nm for 
Eq. (4). This confidence interval captures the statistical confidence 
based on the number of observations, and does not consider systematic 
influences. Potential systematic error could include, inclusion of con
centration profile peak tail or APT artefacts arising from factors such as 
preferential evaporation, among other effects. These factors will be 
discussed further in later sections. 

So far only a binary solute and non-solute system has been consid
ered. The point excess of different ions which make up the non-solute 
can also be calculated via this method. Similarly, more than one ionic 
species can be used to define the solute. Cross-correlation of the point 
excess of a species where multiple different chemical species are sepa
rately used to define the solute clusters could provide interesting in
sights into data to investigate cases where it is suspected more than one 
type of solute cluster is forming. 

3. Application to synthetic datasets 

3.1. Creation of synthetic datasets 

Synthetic data, simulating that typically generated by an APT 
experiment, where the characteristics of the solute clusters are known 
and can be controlled, were used to test the calculation of point excess 
solute. Synthetic datasets were created using the open source software 
posgen [27]. The synthetic clusters are spheres containing spatially 

Fig. 3. Concentration profiles with and without the use of dataset sampling and recategorising of solute ions as Q ions. a) Concentration of Q (sampled solute ions; 
Fig. 2) selected from a RSS. Both Q and non-solute ions selected with dinc = dmax. Concentration matches expected, with no selection bias. Concentration plotted on a 
linear scale. b) Concentration of solute selected from a RSS in shells produced by increasing dmax by increments. Non-solute ions selected with dinc = dmax. Con
centration plotted on a logarithmic scale. Error bars shown for the total concentration of the RSS, ct , are a 95% confidence interval for binomial selection, with a fixed 
rate ct and sample size equal to the number of ions selected in that shell. 
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only matrix. The expected matrix solute concentration, cm is also shown. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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random solute and non-solute ions, where there is no correlation be
tween the spatial positions of the ions. These are then placed within a 
spatially random matrix; Fig. 5. The target concentration for each cluster 
and the matrix is set beforehand, though the actual composition will 
vary about this target value. Clusters are placed such that they do not 
overlap with another cluster before the application of positional noise, 
but are otherwise positioned randomly. Additionally in some datasets 
clusters where placed so that they did not overlap with the dataset edge 
before application of noise (A.1). The positional noise applied is a 
Gaussian blur of equal amount for each direction. 

The synthetic datasets contain 4 types of ion before the selection of Q 
ions: cluster solute; matrix solute; cluster non-solute; matrix non-solute 
(Fig. 5). Cluster solute and non-solute are contained within the spherical 
cluster regions before the application of positional noise. The number of 
these ions is used to calculate the synthetic matrix concentration, syn
thetic cluster concentration, synthetic dataset concentration and ex
pected point excess; there is no consideration of the ions position after 
the application of positional noise. 

Ψn expected = 1 −
synthetic matrix concentration
synthetic dataset concentration

(5)  

3.2. Effect of different cluster characteristics 

Fig. 6 shows the measured value of Ψn against the expected value for 
a range of synthetic data conditions, which are summarised in Table A.1. 
For these datasets a sampling fraction of 0.1 was used, with 10 repeats of 
sampling per dataset and 50 shells per dataset. Error bars are a 95% 
confidence interval in Ψn measured, which is derived from the same 
confidence interval in cm (Eq. (4)). 

In general the value of Ψn is recovered well and where a parameter is 
varied such that it changes the expected value of Ψn the same trend is 

Fig. 5. 2 nm thick slices from atom maps of two synthetic datasets containing solute clusters with different cluster characteristics. For each dataset the left hand 
panel shows all atoms from the synthetic clusters and synthetic matrix, both solute and non-solute atoms. The right hand panel shows only solute, with no distinction 
between cluster solute and matrix solute. 
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observed in the measured data. For the datasets where cluster solute 
concentration was varied (red squares) the error bars are narrower, due 
to the larger dataset size used and greater counting statistics. When a 
high number density of low solute concentration clusters are added, 
there is an underestimation of Ψn, as can be seen for one of the datasets 
in the insert in Fig. 6. This comes from insufficient ability to resolve the 
original matrix concentration, even without the application of positional 
noise, as was the case for this dataset. The peak tail from the shell 
concentration profile is selected as being part of the confirmed matrix 
and cluster solute ions are found in even the lowest solute density shells. 
The impact of this scenario can is discussed further in the next section. 

3.3. Effect of positional uncertainty 

In an actual APT experiment the degree of blurring of the matrix- 
cluster interface, coming from the imperfect reconstruction of atomic 
positions, is likely to be unknown. It may also vary between different 
datasets of the same material and analysis conditions, or within a dataset 
if the electric field changes. A Gaussian blur on the position of every ion 
in the synthetic dataset has been used to simulate the uncertainty in the 
reconstructed ion positions. Gaussian blurs with different standard de
viations, σ, were applied to two conditions, high and low solute con
centration clusters and the results shown in Fig. 7. 

For the high solute concentration clusters the measured value of Ψn is 
consistent with the expected value for positional uncertainty where σ is 
less than or equal to half the cluster radius. For standard deviations 
greater than half the cluster radius, the positional uncertainty leads to an 
underestimation of Ψ. For the low solute concentration clusters, much 
less positional uncertainty is required to prevent the correct identifica
tion of clusters due to the lower original contrast. 

The concentration profiles produced for the datasets with σ = 1.5 nm 
and 3 nm with the 50 at.% solute clusters are shown in Fig. 8. It is clear 
from these figures why the value of Ψ is underestimated and cm over
estimated. With σ = 1.5 nm, there is overlap between solute atoms 
originally from different clusters and with the original matrix, and the 
expected original matrix concentration is not resolved. This is the 

situation shown by the red dashed lines in Fig. 1, where inhomogeneity 
of solute is still observed, but cannot be quantified by the point excess. 
Further blurring makes separation of the original regions impossible and 
the dataset appears to be a RSS (Fig. 7). The precise level of positional 
uncertainty needed to cause the matrix to not be resolved and under
estimation of Ψ will depend on the solute cluster characteristics; the 
concentration contrast and number density. 

From these observations it is concluded that the measurement of 
point excess solute provides an accurate quantitative result when there 
are sufficient regions in the datasets which have the original matrix 
composition and when there is enough concentration contrast and 
spatial separation between the two regions for the maximum separation 
method to identify these regions. This has been tested on synthetic data 
down to a contrast difference of 5 at.% solute clusters in a 1 at.% solute 
matrix, which is a much lower contrast than is often considered in APT 
analysis. 

In the instance where the dataset appears to be close to a RSS, with 
no measured point excess solute, this could be due to poor resolution and 
identification of features by the maximum separation algorithm, due to 
low contrast and/or spatial aberrations, or a genuine lack of segregation 
in the dataset. Detection of zero excess does not preclude segregation 
below the detection limit. The other case when Ψ is underestimated (and 
thus cm is overestimated) is when segregation is still identified, but no 
matrix has been resolved. This can be assessed from observing the 
produced concentration profile, and assessing if the fit of a region of 
fixed matrix concentration is reasonable, or if as seen in Fig. 8a there is a 
continually decreasing concentration profile. In such cases, the value of 
Ψ calculated can still be used as a lower bound on the true value. It 
should be noted that the ability to assess when the limit of this method 
has been reached is an important improvement provided by this method. 

It is hard for this method to overestimate the excess solute clustering, 
instead underestimation is more likely, due to the methodology not 
resolving the original matrix concentration, in a situation of high posi
tional noise and/or low original contrast. Although not discussed here 
the sampling fraction and number of shells will affect the appearance of 
the concentration profile and in particular the computation time. These 
factors are discussed in more detail in the supplementary material. 

3.4. Considerations for actual APT data 

Actual APT datasets can differ in composition between datasets due 
to artefacts introduced by the evaporation process and not genuine 
variation in material composition. For example, the total composition of 
a dataset may vary from the true composition of the sample due to 
preferential off pulse evaporation of one or more elements. A systematic 
loss of one element, such that cluster concentration, matrix concentra
tion and total concentration of that element are all decreased by the 
same factor, does not change the value of Ψn. Macro-segregation and 
micro-segregation within bulk samples can also lead to different APT 
specimens having different local solute concentration. A difference in 
local chemistry could affect the local solute partitioning behaviour. Such 
changes will be measured as a difference in the point excess and can be 
linked to local solute concentration if no systematic error in composition 
is suspected. 

Field evaporation effects can further complicate the situation. If the 
evaporation behaviour of the two regions is different, it can affect in 
what ionic species elements are evaporated (i.e. complex ion formation) 
as well as the ion charge state, which in turn affects the degree of overlap 
between peaks of same and/or similar mass-to-charge-state ratio. It 
should be noted that this problem is not limited to this technique 
however and should be a general consideration when trying to measure 
the compositions of different regions within APT datasets. Application of 
mass to charge-state overlap solving for each shell [28] has the potential 
to also be applied to point excess solute calculations and reduce these 
effects. 

Some portion of the ions ranged as solute ions will likely be due to 
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Gaussian positional uncertainty with varying standard deviation, σ, has been 
applied. There were 10 repeats per dataset, the sampling fraction was 0.1 and 
there were 50 shells used. Error bars are a 95% confidence interval based on the 
confirmed matrix. High levels of positional uncertainty lead to underestimation 
of Ψ. 
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background noise [29,30]. If these false positive ions are not associated 
with the solute in the dataset and are distributed without spatial cor
relation throughout the dataset the increase in matrix and cluster solute 
concentration will be the same. 

This will thus not change the value of Ψ but would decrease the value 
of Ψn. As different datasets may have different levels of background 
noise it is important to consider this effect. By normalising Ψ by the 
background corrected counts of solute ions, instead of the as-ranged 
value, the effect of background noise is removed. All values of Ψn 
quoted in this work for actual experimental APT data are normalised by 
the background corrected counts. Background correction is performed 
using Atom Probe Lab [31]. A global background is fitted to the mass 
spectrum based on the noise level at a lower mass than any observed 
peaks and a local background is fitted at each ranged peak to account for 
peak tails overlapping with neighbouring peaks [32]. 

There is no simple correction however if the background counts are 
not uniformly distributed in the dataset. A difference in background 
concentration between the matrix and another region can be caused by 
multiple effects. Background arising in one peak from overlap with the 
tail of another lower mass-to-charge-state ratio peak could be segregated 
to one region as the lower mass-to-charge-state ion is segregated to that 
region. High field precipitates can lead to low density regions in the 
dataset [33] which will appear to have a higher concentration of 
background if the background is of uniform density. Non-uniformity of 
noise from beginning to end of dataset can also occur due to changes in 
the ion flux rate [34]. Consideration of whether there is a strong non- 
uniformity in background is important for accurate quantitative re
sults as with other APT data analysis methods. 

It has been discussed, how for synthetic data, a uniform matrix 
concentration may not be identifiable due to a combination of low 
contrast between clusters and matrix regions and/or positional noise. In 
genuine APT datasets a uniform matrix concentration may not be 
identifiable, due to genuine solute segregation in the dataset, which does 
not lead to a region of uniform matrix concentration. Two such physical 

examples are, the early stages of a spinodal decomposition or a micro
structure of solute clusters surrounded by a matrix region with a 
gradient in solute concentration due to diffusion. In such cases the solute 
concentration profiles produced by this method may inform as to the 
nature of the solute segregation, but the calculation of the point excess 
solute does not describe the system well and other metrics are needed. 

4. Case study: naturally aged solute clusters in Al-Mg-Si 

Two Al-Mg-Si-(Cu) alloys are used as a case study to demonstrate the 
application of the point excess solute calculation. A high Cu variant, 
alloy H, and low Cu variant, alloy L, of the same alloy were used, with 
compositions shown in Table 1. The alloys were aged at room temper
ature after quenching from an above solvus heat treatment, also known 
as and referred to here as natural ageing (NA). NA times ranged from 
459 s to 76 weeks, before APT needles were prepared via standard two 
stage electropolishing techniques [35,36]. Work by Dumitraschkewitz 
et al. [37] has shown that once the nanoscale APT specimen has been 
formed, NA is halted at the apex of the specimen due the annihilation of 
quenched in excess vacancies, caused by the high surface area to volume 
ratio at the tip of the APT specimen. Hence, the amount of NA received 
by the specimens was taken to be the time between quenching and 
electropolishing. Further details of the methodology can be found in the 
supplementary material. 

NA is of interest in Al-Mg-Si-(Cu) alloys as it is known to detrimen
tally affect the alloys response to subsequent artificial ageing, which has 
been related to the formation of solute clusters during NA [38–41]. Some 
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Fig. 8. Shell concentration profiles for high solute concentration clusters dataset shown in Fig. 7, with different levels of Gaussian noise. In both cases the matrix 
concentration was overestimated. 

Table 1 
Nominal compositions of alloy H and alloy L in at.%.   

Mg Si Cu Al 

Alloy L 0.6 0.6 0.1 Bal. 
Alloy H 0.6 0.6 0.3 Bal.  
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APT studies [37,42] have shown that there is little or no formation of 
solute clusters after short amounts of NA. This work aims to build on 
these results and quantify the solute segregation over a sequence of NA 
times and investigate the effect, if any, Cu has on the solute clusters that 
form, as it has been shown that Cu can reduce the detrimental effect of 
natural ageing [43,44]. 

Previous studies on NA solute clusters in Al-Mg-Si-(Cu) alloys often 
use the maximum separation method for cluster identification [2]. As 
discussed in the introduction, this method requires user defined pa
rameters, which can greatly affect the measured results and the choice of 
parameters is non-trivial [15], particularly for the small solute clusters 
expected in these alloys no appropriate parameters may exist [10]. As 
such these alloys are a good candidate for a trial of the point excess 
methodology. 

Representative atoms maps from the low Cu alloy L, for a selection of 
ageing times and the three major solute elements, Mg, Si and Cu, are 
shown in Fig. 9. It can be observed qualitatively that there is more solute 
segregation in the dataset from the material subject to 33 weeks of NA 
than the shorter NA times. 

Solute concentration profiles were produced for both alloys using the 
dataset sampling method (Fig. 10). For both Mg-to-Mg and Si-to-Si 
concentration it can be seen that the segregation increases with NA 
time. For the Si-to-Si concentration profiles (Fig. 10c and d), in the 
majority of datasets, the concentration of Si continued to decrease as 
dmax was increased. Either, the maximum separation method has failed 

to resolve cluster and matrix regions, due to the a lack of contrast and 
blurring between clusters and matrix in the measured dataset, or the Si is 
not distributed in discrete particles contained in a uniform matrix. 
Although the Si-to-Si segregation cannot always be quantified by the 
point excess solute statistic, Ψ, the concentration profiles do show there 
is Si-to-Si segregation in all the measured datasets and the values pre
sented in Fig. 11d represent a lower bound on the point excess solute. 

The point excess solute calculation method was applied in order to 
quantify the level of segregation in both the low Cu alloy and in the high 
Cu variant. Calculations have been made with both Mg and Si as the 
target solute ion and are shown in Fig. 11 for the four Mg and Si 
combinations. 

There is little Mg-to-Mg clustering at the shortest NA times 
(Fig. 11a). In two datasets after 30–60 min, one for each alloy, there is 
zero measured point excess. The lack of clustering in these datasets was 
confirmed also by comparison of the Mg–Mg 10th nearest neighbour 
histograms of the measured data and a relabelled version of those 
datasets. These histograms can be found in the supplementary material. 
The amount of excess Mg then increases approximately logarithmically 
with ageing time. There is no evidence that the segregation of Mg rea
ches an equilibrium in natural ageing the time span measured, the 
fraction of excess Mg continues to increase after months of NA. No clear 
difference in the behaviour of Mg–Mg clustering between the low and 
high Cu variants is observed. 

The fraction of Mg in excess around Si follows very closely the 
fraction in excess around itself; Fig. 11b. The fraction of Si in the vicinity 
of Mg follows a similar trend to the Mg segregation, with very little 
excess at short NA times, increasing after 60 min, and continuing to 
increase with further ageing. For Si–Si segregation, although the value 
is a lower bound, at short NA times (under 20 ks = 6 h) the Si–Si excess 
is much greater than the excess Si around Mg (Fig. 11d and c). These 
observations imply that at NA times under 20 ks (6 h) there is Si–Si 
segregation that is not associated with Mg. Whereas the Mg–Mg 
segregation and Mg around Si segregation match so closely that all Mg 
clustering is likely associated with Si. 

Further to these observations the excess fraction of Cu around Mg 
and Si was calculated and is shown in Fig. 12. No Cu segregation to Mg is 
observed for NA times under 200 ks (56 h)(Fig. 12a), while some Cu 
segregation to Si is observed (Fig. 12b). This would suggest that the Cu is 
segregated alongside the Si–Si segregation, which is also uncorrelated 
with Mg. 

Si and Cu have been shown in other studies to segregate to 〈111〉
crystallographic poles during field evaporation [45,46]. This artefact 
was also observed here and these regions of the datasets were removed 
before clustering analysis (see supplementary material). Using a com
bined finite element and molecular dynamic simulation, Oberdorfer 
et al. [45] modelled the behaviour of Cu under field evaporation for a 
binary Al–Cu alloy. Though the Cu primarily segregated to the 〈111〉
poles, the distribution of Cu remaining in other regions of the tip was 
predicted to be non-uniform, primarily due to greater movement of Cu 
away from certain areas on the tip surface during the simulation. 

Oberdorfer et al. also performed density functional theory (DFT) 
calculations of the bond energy between Al and Cu. In their model Cu 
segregation is caused by the bond energy sequence Cu–Cu > Al–Cu >
Al–Al. This leads to retention of Cu on the surface of the tip during 
evaporation which then relaxes into the vacancies left by preferentially 
evaporated Al. The modelling was for the behaviour of Cu, however Si is 
predicted to segregate in the same manner but more strongly, as the 
bond energy differences are greater [45]. Stronger segregation of Si to 
〈111〉 poles than Cu has been observed here (supplementary material) 
and elsewhere [46]. Delayed evaporation of Si relative to Mg has also 
been observed [47]. Mg however is not expected to segregate as the 
Al–Mg and Mg–Mg bonds are weaker than the Al–Al bond, which also 
agrees with the previous observations on pole segregation. 

The major field induced clustering of Si and Cu is removed from the 
dataset by the removal of the 〈111〉 poles, however the effect may still 

Fig. 9. APT Atom maps depicting the distribution of Mg, Si and Cu at selected 
room temperature ageing times for the low Cu alloy. All maps are 50× 50× 5 
nm sections of reconstructed APT data. 
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occur on a smaller scale elsewhere on the tip surface. At least some of the 
Si–Si and Cu to Si segregation that has been measured is likely due to a 
field induced effect, particularly as it has been observed without the 
presence of Mg which is predicted for the field induced effect. The 
movement of Si on the tip surface may lead to greater blurring of the Si 
clustering and explain why the Si–Si concentration profiles are more 
blurred and do not reach a plateau, but profiles for the concentration of 
Si around Mg do. 

Models of the naturally aged clustering in Al-Mg-Si alloys have 
suggested that Si–Si clusters may be the first to form, with Mg segre
gating to these clusters after further NA [48–50]. The results presented 
here agree with these previous results. There is little to no Mg segre
gation under an hour of NA, followed by subsequent Mg association with 
itself and Si. It is inconclusive however if Mg-free Si clusters are forming 
first during NA, due to the overlay of the potential field evaporation 
induced Si and Cu co-segregation. This quantification and insight into 
the segregation behaviour is made possible by the application of the 
point excess solute method, while methods such as maximum separation 
would fail to identify such subtleties, especially if Mg and Si are used in 
conjunction as the target solute ions. It is clear that Cu is not influencing 
the rate at which NA aged solute clusters from, as the same point excess 
of Mg and Si are found for both alloys. The fraction of total detected Cu 
found in excess around the NA solute clusters is also the same between 
both alloys, though in the high Cu alloy this will correspond to a greater 
absolute concentration of Cu. 

5. Conclusions 

It has been discussed that in APT datasets it can commonly occur that 
the presence of solute segregation in the form of solute clustering can be 
identified, however the spatial resolution in the data can be such that the 
cluster characteristics; cluster concentration, volume fraction, cluster 
size and number density cannot be deconvolved without additional in
formation or assumptions. However, a uniform concentration matrix 
may still be identifiable. In such cases of limited resolution, the point 
excess has been introduced as a way of quantifying solute segregation. 

The point excess solute is a measure of the proportion of solute 
clustered in excess of the uniform matrix concentration. An adapted 
maximum separation approach, with dataset sampling, is a simple and 
effective way of indexing the dataset from ions most likely to be clus
tered to least, without any selection bias between different ionic species. 
From this a uniform concentration matrix is identified and the point 
excess solute calculated. The point excess solute was found to be 
quantitatively accurate over a range of test parameters. There is an 
underestimation of the expected value for the lowest solute concentra
tion clusters investigated (5 at.% solute clusters in a 1 at.% solute ma
trix) or when a relatively large amount of positional uncertainty was 
applied, which are more challenging datasets than are often considered 
in APT analysis. An advantage of this method is that it also enables users 
to observe when a uniform concentration matrix can not be identified in 
the dataset. In this case, the limit of the method has been reached and 
accurate quantitative analysis of the data via this method is not be 
possible. 
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Fig. 10. Concentration profiles of solute produced using the dataset sampling method described in Section 2.1. Solute segregation increases with NA time. Sampling 
fraction, q = 0.1, number of repeats, n = 10. The shell concentration of solute is subtracted by the total concentration of solute for each dataset to normalise for 
variations in total concentration between datasets. Concentration profiles displayed include datasets of alloy L and H. 
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Naturally aged solute clusters in two Al-Mg-Si-Cu alloys, which are 
difficult to reliably and repeatability identify with the commonly used 
maximum separation algorithm, were quantified via this new method. It 
was seen there is little Mg solute clustering within 1 h of NA. Si segre
gation, free of Mg co-segregation, was observed between 8 min and 1 h 
of NA, however the presence of NA Mg-free Si clusters could not be 
confirmed due to the potential that this observed segregation is induced 
by the field evaporation process. A change in Cu content of the alloy is 
not seen to influence the point excess of Si or Mg in the NA solute 
clusters or the rate at which the point excess increases with NA. 
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dependent diffusion controls natural aging in aluminium alloys, Nat. Commun. 10 
(1) (Dec. 2019) 1–6, https://doi.org/10.1038/s41467-019-12762-w. 

[38] D.W. Pashley, J. Rhodes, A. Sendorek, Delayed ageing in aluminium magnesium- 
silicon alloys - effect on structure and mechanical properties, J. Inst. Met. 94 (2) 
(1966) 41. 

[39] S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P. Uggowitzer, Mechanisms 
controlling the artificial aging of Al–Mg–Si alloys, Acta Mater. 59 (9) (May 2011) 
3352–3363, https://doi.org/10.1016/j.actamat.2011.02.010. 

[40] G.H. Tao, C.H. Liu, J.H. Chen, Y.X. Lai, P.P. Ma, L.M. Liu, The influence of Mg to Si 
ratio on the negative natural aging effect in Al–Mg–Si–Cu alloys, Mater. Sci. Eng. A 
642 (2015) 241–248, https://doi.org/10.1016/j.msea.2015.06.090. 

[41] A. Poznak, R.K. Marceau, P. Sanders, Composition dependent thermal stability and 
evolution of solute clusters in Al-Mg-Si analyzed using atom probe tomography, 
Mater. Sci. Eng. A 721 (Apr. 2018) 47–60, https://doi.org/10.1016/j. 
msea.2018.02.074. 

[42] P. Dumitraschkewitz, S.S.A. Gerstl, P.J. Uggowitzer, J.F. Löffler, S. Pogatscher, 
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