
Neurocomputing 597 (2024) 127903

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Posit and floating-point based Izhikevich neuron: A Comparison of arithmetic
T. Fernandez-Hart a,∗, James C. Knight b, T. Kalganova a

a Brunel University, CEDPS, Department of Electronic and Computer Engineering, Uxbridge, UB8 3PH, UK
b University of Sussex, School of Engineering and Informatics, Brighton, BN1 9QJ, UK

A R T I C L E I N F O

Communicated by Q. Zheng

Keywords:
Floating-point arithmetic
Posit arithmetic
Spiking neural network
Izhikevich neuron model

A B S T R A C T

Reduced precision number formats have become increasingly popular in various fields of computational
science, as they offer the potential to enhance energy efficiency, reduce silicon area, and improve processing
speed. However, this is often at the expense of introducing arithmetic errors that can impact the accuracy
of a system. The optimal balance must be struck, judiciously choosing a number format using as few bits as
possible, while minimising accuracy loss.

In this study, we examine one such format, posit arithmetic as a replacement for floating-point when
conducting spiking neuron simulations, specifically using the Izhikevich neuron model. This model is capable
of simulating complex neural firing behaviours, 20 of which were originally identified by Izhikevich and are
used in this study. We compare the accuracy, spike count, and spike timing of the two arithmetic systems
at different bit-depths against a 64-bit floating-point gold-standard. Additionally, we test a rescaled set of
Izhikevich equations to mitigate against arithmetic errors by taking advantage of posit arithmetic’s tapered
accuracy.

Our findings indicate that there is no difference in performance between 32-bit posit, 32-bit floating-point,
and our 64-bit reference for all but one of the tested firing types. However, at 16-bit, both arithmetic systems
diverge from the 64-bit reference, albeit in different ways. For example, 16-bit posit demonstrates an 18×
improvement in accumulated spike timing error over a 1000ms simulation compared to 16-bit floating-point
when simulating regular (tonic) spiking. This finding holds particular importance given the prevalence of this
particular firing type in specific regions of the brain. Furthermore, when we rescale the neuron equations,
this error is eliminated altogether. Although current Posit Arithmetic Units are no smaller than Floating Point
Units of the same bit-width, our results demonstrate that 64-bit floating-point can be replaced with 16-bit
posit which could enable significant area savings in future systems.
1. Introduction

Spiking Neural Networks (SNNs) are often considered the next
generation of Artificial Neural Network (ANNs) [1]. They are a closer
approximation of biological neural networks than current state-of-
the-art ANNs such as convolutional neural networks and operate by
simulating the dynamics of individual neurons. Unlike ANNs, where
neurons are usually continuously active, SNNs exhibit sparse activity
in time with neurons only generating brief output ‘spikes’ when they
receives sufficient input. These spikes serve as the means of communi-
cation between neurons and facilitate the transfer of information within
the SNN. Each spike is considered identical and information is encoded
only in the time at which they occur [2]. This sparsity means that SNNs
share many of the benefits of their biological counterparts such as low
power and noise robustness, and are an active area of research [3,4].

∗ Corresponding author.
E-mail addresses: Tim.Fernandez-Hart@brunel.ac.uk (T. Fernandez-Hart), J.C.Knight@sussex.ac.uk (J.C. Knight), Tatiana.Kalganova@brunel.ac.uk

(T. Kalganova).

While not yet mainstream, SNNs have found success in a variety of
applications such as object recognition [5], robotic control [6] and even
ChatGPT-like large language models [7].

Typically, SNNs use first-order differential equations to describe
each neuron and many sets of equations are available, varying in their
level of complexity and biological correctness. The simplest are the
phenomenological Integrate-and-Fire (IF) family [8] and, at the other
end of the spectrum are biophysically accurate neuron models like the
Hodgkin–Huxley (HH) model [9]. In the present study, we use the
Izhikevich model, which is less complex than the HH, but still able to
replicate more neuron firing behaviours than simpler IF models [10].
Furthermore, Tamura et al. [11] demonstrated that small changes can
have a large impact on the Izhikevich model. Their bifurcation analysis
of the Izhikevich system showed that, a change in the parameter 𝑏
vailable online 31 May 2024
925-2312/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.neucom.2024.127903
Received 26 June 2023; Received in revised form 15 April 2024; Accepted 19 May
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2024

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:Tim.Fernandez-Hart@brunel.ac.uk
mailto:J.C.Knight@sussex.ac.uk
mailto:Tatiana.Kalganova@brunel.ac.uk
https://doi.org/10.1016/j.neucom.2024.127903
https://doi.org/10.1016/j.neucom.2024.127903
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.127903&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.

m
O
p
t
w
c

b
e
C
n
a
a
r
s
r
r
t
a
d
u
o
t
t

n
u
s
i
l
s
o
a
l
w
s
n
P

d
t
v
i
w
i
h

w
w
r
p
a
f
c
g
b
(

t
T
m
t
s
o
d

by as little as 0.07 can change a stable system into a chaotic one
aking it an interesting testbed for numerical investigations of this sort.
nce a neuron model is chosen for the SNN, a numerical simulation
roceeds by tracking the evolution of each neuron’s state variables
hrough time. With the Izhikevich model, each neuron has a threshold,
hich if it is crossed, constitutes spike emission, followed by some reset

onditions [12].
However, the combination of these complex dynamics and spike-

ased communication leads to challenges running SNN simulations
fficiently on a CPU or GPU [13]. Some Application-Specific Integrated
ircuit (ASIC) hardware is available such as the SpiNNaker and Loihi
euromorphic systems, but these are research orientated and not widely
vailable [14,15]. Field Programmable Gate Arrays (FPGA) [16] are
nother option, but their capacity is limited compared to ASIC, which
estricts network size (although they can be linked into multi-board
ystems, such as [17]). Hence, considerable research has focused on
educing the hardware cost of these networks, while maintaining accu-
acy in the spike timing and underlying neuron equations. Specifically,
here is growing research interest in reduced precision number formats
s a system optimisation technique [18,19]. The potential benefits to
oing so are twofold. Firstly, reducing hardware complexity can free
p resources that can be redeployed to increase model complexity. Sec-
ndly, reduced bit-depth increases the speed of computation, which in
urn, can reduce energy requirements and allow long running dynamics
o be simulated.

Posit numbers represent one exciting form of reduced precision
umber format that promise the accuracy of Floating-Point (FP) while
sing fewer bits. Posits were designed to be hardware-friendly and
ome studies suggest that Posit Arithmetic Units (PAUs) are simpler to
mplement in hardware than a Floating-Point Unit (FPU) – requiring
ess silicon and enabling faster, smaller arithmetic units within proces-
ors [20–22]. However, these savings are often disputed [23,24] with
ther studies showing similar hardware and energy usage for an FPU
nd PAU of a given bit-depth [21] and others showing PAUs to be
arger [25–28]. While a few of these studies compare complete systems
ith integrated FPUs and PAUs [26,27], many others only compare

pecific operations or use non IEEE-754 compliant FPUs. Furthermore,
ew research is continuing to reduce the hardware requirements of
AUs [22,29,30].

To the best of our knowledge, only one study has been con-
ucted into the potential use of posit arithmetic for SNN implemen-
ations. Silva et al. [31] demonstrated that a single, posit-based Izhike-
ich neuron was able to replicate the dynamics of 20 different fir-
ng types that were originally identified by Izhikevich in his earlier
ork [12]. However, there are no published studies that explore the

mpact of reduced precision, posit arithmetic on SNN accuracy and
ere, we seek to do just this.

We compare the accuracy of equivalently sized posit arithmetic
ith single precision (32-bit) and half precision (16-bit) FP arithmetic
hen simulating an Izhikevich neuron while also investigating whether

escaling of the standard Izhikevich equations, to make better use of
osit arithmetic’s tapered accuracy, is a successful strategy to minimise
ccuracy loss. The results show that it is possible to simulate tonic
iring with 16-bit posit arithmetic while incurring no loss of accuracy,
ompared to a 64-bit floating-point version. This is an important result,
iven the common usage of this firing type [32], and the abundance of
iological neurons exhibiting these behaviours in certain brain areas
90%–95% of rat basal ganglia [33,34]).

The rest of this paper is organised as follows. Section 1.2 discusses
he two arithmetics and gives an example, illustrating their differences.
his includes a short introduction to decimal accuracy, which is a
easure of arithmetic precision for a given value. Section 2 outlines

he methods used, including all formulas and parameter values for both
tandard and rescaled equation types. Section 3 covers the main results
f this study as well as a discussion of possible explanations for the
2

ifferences found. This section also examines the impact of different
scaling factors and posit configurations. Then, we briefly explain some
of the issues with using reduced-precision fixed-point arithmetic to
simulate Izhikevich neurons in Section 3.4 and bfloat16 in Section 3.5.
A wider discussion of the hardware implications is given in Section 3.8.
Finally, Section 4 proposes the main conclusions and suggests future
research directions.

1.1. Contributions to science

• We not only show that posit arithmetic is capable of matching
floating-point at reduced precision, but we quantify the arithmetic
errors for both number systems for all 20 firing patterns of the
Izhikevich neuron model and we show when posits outperform
floating-point numbers.

• We demonstrate that rescaling the standard Izhikevich equations
can minimise arithmetic errors when using reduced precision
floating-point and posit arithmetic and that, with our rescaling,
regular spiking (Tonic Spiking) can be simulated using 16-bit
posit arithmetic with no loss of accuracy compared to 64-bit
floating point.

• We investigate the choice of n, es posit parameters as well as
the scaling factor and provide deeper insight into how posit
arithmetic behaves in these simulations.

1.2. Background

Currently, the predominant format for representing real numbers
within a computer is Floating-Point (FP), which is ratified in the IEEE-
754 standard [35]. As shown in Fig. 1, floating point numbers represent
numbers using sign, exponent and fraction bits. This arrangement has
a large dynamic range and it is the most widely used number format
in scientific computing. However, it is rather a complex standard,
having two representations of zero, permitting ‘subnormal’ numbers,
supporting multiple rounding modes and reserving a great many bit
patterns for Not-a-Number (NaN). These increase the format’s hardware
cost, due to the need to verify all these special conditions during run
time.

Posit arithmetic is designed to be a hardware friendly, drop-in
replacement for FP although, as it was only introduced in 2017, it is still
in its infancy [20]. As shown in Fig. 1, posits have sign and fraction bits
like FP. However, unlike FP, the fraction is scaled by two values – the
exponent and the regime – rather than just the exponent as in FP. The
regime bits are unique to posits, and act like a super-exponent, scaling
the exponent and thus the fraction. From a hardware perspective, the
main drawback of posit arithmetic is the dynamic size of the regime
bits, which alter the location of the exponent and fraction bits. Thus,
posit decoding entails extra overhead encoding and decoding values
compared to FP, required to determine the boundaries of each of these
sections, before any further operations can be performed. However,
this overhead could be potentially cancelled out by the less intricate
posit standard which only defines a single rounding mode (compared
to five for IEEE-754 FP) and two exception values: zero and NaR (Not-
a-Real, equivalent to Not-a-Number and representative of ±∞). This
not only reduces costly condition checking but additionally, liberates
bit patterns to represent values, which in turn, gives posit arithmetic a
higher precision for a given number of bits compared to FP [20].

A posit format is defined by two numbers posit<𝑛, 𝑒𝑠> where 𝑛 is
the total number of bits and es, the maximum number of those bits used
for the exponent. The first bit of a posit is always a sign bit, which
is immediately followed by the regime bits. The regime bits encode
the value 𝑟 in a run of zeros, or ones, terminated by the opposite
bit. A run of ones encodes a positive number, and a run of zeros a
negative number, as defined by [36], where 𝑘 is the number of ones
or zeros before the terminating bit. The regime bits are not present in
the floating-point standard and are of variable length. In the extreme

case, they can expand to fill the whole word, leaving no space for the

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.
Fig. 1. A comparison of 32-bit floating-point (top) and 32-bit posit (middle and bottom) number structures. 32-bit floating-point structure as defined in the IEEE-754 standard. 1
sign bit, 8 exponent bits and 23 fraction bits. A posit<32, 2> is defined as 1 sign bit, at least 2 regime bits (where 𝑘 is the run of bits before the terminating bit), a maximum
of 2 exponent bits and the remaining bits represent the fraction. The bottom diagram illustrates what happens when the regime expands. A posit loses fraction bits first, but can
also lose one or all of its exponent bits too. The dashed lines represent the dynamically positioned bits.
Fig. 2. 16-bit example of Euler’s number represented in FP16 and Posit16 arithmetic. The additional 2 fractional bits have been highlighted in green.
exponent or any part of the fraction. Following the regime bits are the
exponent bits. Unlike floating-point, the exponent bits do not have a
bias. Lastly, we have the fraction bits. These contain an implicit one and
function in the same way as in floating point. A number 𝑝 is decoded
using Eq. (1). The value useed is calculated by useed = 22𝑒𝑠 (see [20]
for more explanation).

𝑝 = (−1)𝑠useed𝑟2𝑒
(

1 +
𝑓
2fs

)

(1)

𝑟 =

{

−𝑘 if 𝑅0 = 0
(𝑘 − 1) if 𝑅0 = 1

(2)

where 𝑠 is the sign bit, 𝑒 is the unbiased exponent value, 𝑓 is the
fraction and fs is the fraction length. 𝑅0 is the first regime bit, if it is 0,
it represents a run of 0’s terminated with a 1, and if it is 1, it represents
a run of 1’s terminated with a 0.

Importantly, posits do not underflow or overflow. Instead, they
exhibit tapered precision, centred around 0 and greatest in the interval
(−1, 1). This has implications for their accuracy. For example, trying
to represent Euler’s number 𝑒 = 2.7182818284590452354 with 16-bit
Floating-Point (FP16) and 16-bit posit<16, 1> (posit16) results in the
bit patterns shown in Fig. 2. The benefit of dynamically positioned bits
means that, here, the posit’s regime bits are at their shortest (2 bits
minimum) and, when combined with fewer exponent bits, leaves more
bits to represent the fraction. These additional fraction bits can be seen
to improve the accuracy of the representation.
3

Decoding Fig. 2 into actual values gives us a posit16 value of
2.71826171875 (Eq. (4)).

𝑝 = (−1)0 × 40 × 21 ×
(

1 + 1471
212

)

(3)

= 2.71826171875 (4)

If we compare this result with the FP16 version of 𝑒, which has
2 fewer fraction bits, we can see the effect on the accuracy of its
representation. FP16 achieves 𝑒 = 2.71875.

𝑓𝑝 = (−1)𝑠 × 2𝑒−𝑏𝑖𝑎𝑠 ×
(

1 +
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

210

)

(5)

𝑓𝑝 = (−1)0 × 216−15 ×
(

1 + 368
210

)

(6)

= 2.71875 (7)

One method to quantify this difference is to calculate the decimal
accuracy between the exact representation of a number (𝑥exact) and its
representation in the arithmetic being evaluated (𝑥repr):

decimal accuracy = − log10
|

|

|

|

|

log10

(𝑥repr

𝑥exact

)

|

|

|

|

|

. (8)

This quantifies the number of correct decimal places following
rounding [18,20]. Using Euler’s number as an example gives a decimal
precision of 5.49 for posit<16, 1> and 4.13 for FP16, illustrating the
advantage of posit’s tapered accuracy.

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.

T
c
d
a
g
p

2

p

p
d
a
t
s
p

4
s
e
a
o
t
c
a
c

2

2

s
c
c
a
m

2

p
t
r

2
r
A
w
a
u
a
(
o
S
u
S
n

t
d

p
U
r
t
s

[
a
F
I

2

t
(
v
s

2

q

w

One additional aspect of the posit standard is the quire register.
his is a large (16𝑛) fixed-point register based on the FP Kulisch ac-
umulator [36] and used for minimising rounding and overflow errors
uring a series of operations. Although, due to its size, it can occupy
pproximately half the total area of a posit arithmetic unit [27], it has
arnered interest in the deep learning community, for minimising dot
roduct and sum errors [37].

. Methods

We used single-precision (FP32) and half-precision (FP16) floating-
oint numbers, along with the posit<32, 2> (posit32) and posit<16, 1>

(posit16) formats to run simulations of an Izhikevich neuron over
1000 ms using both standard equations and rescaled equations. Al-
though formally 𝑒𝑠 = 2 for all 𝑛 as defined by the Posit Working
Group [36], the previous draft standard defined a 16-bit posit as
posit<16, 1>. Hence, for comparison with previous works [24,30,38,
39], unless otherwise stated, posit16 is posit<16, 1>.

We do not use the quire register in this study as our focus is on using
osit arithmetic for reduced precision neural simulations and, unlike
eep-learning, this application does not involve long chains of multiply-
ccumulate operations. As such, we do not anticipate the inclusion of
he quire will have a large impact on our results [40]. Moreover, the
heer size of the quire register means that it is often excluded from
ractical hardware implementation [41].

Following the approach employed by several previous studies [18,
2], we used a software implementation to study the errors in numeric
imulations of reduced precision FP and posit arithmetic. Although
mulation does not give a measure of speed, it does inform us about
ccuracy of the arithmetic. To compare the membrane voltage of
ur simulations against a 64-bit floating point baseline, we measure
he Normalised Root-Mean-Square Error (NRMSE) of each test. Spike
ounts and their accumulated timing error were also recorded. We
lso tested bfloat16, different scaling factors and a variety of posit
onfigurations.

.1. Model definitions

.1.1. Standard neuron model
In 2003, Izhikevich presented a neuron model capable of complex

piking patterns, similar to those found in nature (e.g. intrinsic bursting,
hattering, low-threshold spiking, fast spiking) but with a reduced
omputational load in comparison to other models [12]. It consists of
pair of coupled differential equations, modelling the evolution of the
embrane voltage driven by an input current (𝐼):

𝑣′ = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 (9)

and of a recovery variable.

𝑢′ = 𝑎(𝑏𝑣 − 𝑢) (10)

Once the membrane voltage crosses a ‘threshold voltage’ (typically
30 mV), a spike is emitted and predefined reset conditions are applied:

𝑣 ← 𝑐 (11)

𝑢 ← 𝑢 + 𝑑 (12)

The behaviour of the model is controlled by four dimensionless vari-
ables 𝑎, 𝑏, 𝑐, 𝑑 which correspond to different model properties [10] and
are typically set to the values listed in Table 1 in order to reproduce
one of the 20 identified behaviours (See Izhikevich [12]). Three firing
patterns (Class 1, Integrator and Accommodation) also require altering
Eqs. (9) and (10) as described by Izhikevich [43]. Given its phenomeno-
logical fidelity with nature, coupled with its computational efficiency
the Izhikevich model is widely used in many SNN implementations
and has been used to compare arithmetics in previous studies [44,45].
Hence, it was also selected as the neuron type in this study.
4

t

2.1.2. Rescaled neuron model
In addition to the standard Izhikevich model, we developed a

rescaled version so that the standard operating range of the state
variables would fit within the region where posits are most accurate.
This transforms Eq. (9) into Eq. (13). Eqs. (11) and (12) which describe
the reset behaviour are unchanged, but the c and d parameters as well
as the input current, spike threshold and initial value of u and v, are
all rescaled by a factor of 0.01.

𝑣′ = 4𝑣2 + 5𝑣 + 1.4 − 𝑢 + 𝐼 (13)

.2. Testing procedure

We compared IEEE-754 FP32, FP16, posit<32, 2> (posit32) and
osit<16, 1> (posit16), against a 64-bit floating-point (FP64) ground-
ruth for all 20 firing types outlined above, using both standard and
escaled equations.

Several posit hardware implementations have been proposed [25,
7] including full processor designs based on RISC-V CVA-6 [27] and
ocket chip cores [41] which can be synthesised and run on an FPGA.
lthough, prefabricated ASIC hardware supporting posits is not yet
idely available, several open-source software simulation libraries are
vailable with the SoftPosit library being the most prominent. Here, we
se this library to test the accuracy of posit arithmetic and compare it
gainst other varieties [24,46] and the Berkeley SoftFloat library [47]
via Python wrapper [48]) to simulate FP32 and FP16 formats. We ran
ur simulations in Python 3.8, on a 64-bit machine using wrappers for
oftPosit and SoftFloat (developed by [46] and [48] respectively) and
sed the native floating-point type for the reference FP64 simulations.
imulations were run for 1000 ms using the Forward Euler method of
umerical integration with time step sizes laid out in Table 1.

Although fast, one limitation with the SoftPosit library is its restric-
ions in defining a posit’s structure. For example, posit16(1.23)
efines the value 1.23 with a posit<16, 1> structure. This configura-

tion adheres to earlier draft standards released by The Posit Working
Group. However, recently the standard was updated and now defines
16-bit posits as posit<16, 2> [36]. To compare posit<16, 2> with
osit<16, 1> and FP64, we employed a third simulation library, the
niversal Numbers Library (UNL) [49]. To verify the consistency of

esults between SoftPosit and UNL, the NRMSE of all firing types was
ested for posit<16, 1> and was zero for all firing types (results not
hown).

UNL also allows emulation of Google’s bFloat16 number format
50]. bFloat16 was introduced to ease storage, communication volumes
nd computational load of ANNs. It has the same dynamic range as
P32 and does not need any hyperparameter tuning as required by the
EEE-754 FP16 format [51].

.3. Data analysis

For each test, we recorded the voltage (mV) every time step and, if
he spike threshold was crossed, the time step at which this occurred
ms). These recorded values were used to calculate: the membrane
oltage error, spike count error, and where the spike count was the
ame, the accumulated spike timing error.

.3.1. Membrane voltage error
In line with similar studies [52,53], membrane voltage error was

uantified using the Normalised Root Mean Square Error (NRMSE):

RMSE =

√

𝛴𝑛
𝑡=1(𝑣aut(𝑡) − 𝑣fp64(𝑡))2

𝑛
(14)

NRMSE = RMSE
(𝑣max − 𝑣min)

(15)

here 𝑣aut is the membrane voltage of the arithmetic under test ; 𝑣fp64 is
he reference membrane voltage simulated using 64-bit floating-point

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.
Table 1
Izhikevich parameters and initial conditions to produce 20 different firing types. Additionally, for firing types Class 1 and Integrator, Eq. (9) becomes 𝑣′ = 0.04𝑣2 +4.1𝑣+108− 𝑢+ 𝐼
and for Accommodation, Eq. (10) becomes 𝑢′ = 𝑎(𝑏(𝑣 + 65)) [12].

Firing type a b c d dt initial 𝑢 initial 𝑣

Tonic spiking 0.02 0.2 −65.0 6.0 0.25 𝑏 × 𝑣 −70
Phasic spiking 0.02 0.25 −65.0 6.0 0.25 𝑏 × 𝑣 −64
Tonic bursting 0.02 0.2 −50.0 2.0 0.25 𝑏 × 𝑣 −70
Phasic bursting 0.02 0.25 −55.0 0.05 0.2 𝑏 × 𝑣 −64
Mixed mode 0.02 0.2 −55.0 4.0 0.25 𝑏 × 𝑣 −70
SFA 0.01 0.2 −65.0 8.0 0.25 𝑏 × 𝑣 −70
Class 1 0.02 −0.1 −55.0 6.0 0.25 𝑏 × 𝑣 −60
Class 2 0.2 0.26 −65.0 0.0 0.25 𝑏 × 𝑣 −64
Spike Latency 0.02 0.2 −65.0 6.0 0.2 𝑏 × 𝑣 −70
Subthreshold oscillation 0.05 0.26 −60.0 0.0 0.25 𝑏 × 𝑣 −62
Resonator 0.1 0.26 −60.0 −1.0 0.25 𝑏 × 𝑣 −62
Integrator 0.02 −0.1 −55.0 6.0 0.25 𝑏 × 𝑣 −60
Rebound spike 0.03 0.25 −60.0 4.0 0.2 𝑏 × 𝑣 −64
Rebound Burst 0.03 0.25 −52.0 0.0 0.2 𝑏 × 𝑣 −64
Threshold Variability 0.03 0.25 −60.0 4.0 0.25 𝑏 × 𝑣 −64
Bistability 0.1 0.26 −60.0 0.0 0.25 𝑏 × 𝑣 −61
DAP 1.0 0.2 −60.0 −21.0 0.1 𝑏 × 𝑣 −70
Accomodation 0.02 1.0 −55.0 4.0 0.5 −16 −65
Inhibition induced spiking −0.02 −1.0 −60.0 8.0 0.5 𝑏 × 𝑣 −63.8
Inhibition induced bursting −0.02 −1.0 −45.0 0.0 0.5 𝑏 × 𝑣 −63.8
f

s
f
w
2
e
F
r
n
a

v
e
c
a
a
a
c
b
t
B
f
t

o
s
t
w
c
t
r
t
d
u
t
r
t
e
b
p
l

arithmetic at time 𝑡; and 𝑣max and 𝑣min are the maximum and minimal
values of 𝑣fp64. NRMSE quantifies the error between the FP64 voltage
reference and the arithmetic under test at each time step during each
simulation. Normalising the error allows errors to be directly compared
between standardised and rescaled equation types.

2.3.2. Spike count and timing
In order to assess the effect of arithmetic error on spike count

and timing, we also counted the number of spikes and their absolute
accumulated lag/lead times. First, we determined whether each test
produced the expected number of spikes (𝑛spike). If it did, we then
looked at the timing of each spike (𝑆aut

𝑖), relative to the reference FP64
simulation (𝑆fp64

𝑖):

𝑇 =
𝑛spike
∑

𝑖
|𝑆fp64

𝑖 − 𝑆aut
𝑖 | (16)

where 𝑇 is the sum of absolute timing difference per spike, across the
whole simulation. This method differs slightly from Hopkins et al. [45],
in that the final reported result is the accumulated lead/lag, as opposed
to the difference for each spike. The main reason for this is brevity as
we tested all 20 Izhikevich neuron behaviours whereas Hopkins et al.
[45], only tested a few firing types. Moreover, accumulating the timing
errors will still allow a comparison between experiments.

3. Results and discussion

3.1. Membrane voltage error

First, we present the NRMSE results for the different arithmetics, bit
depths and equation types in Table 3; Figs. 3 and 4 show the 32-bit and
16-bit results respectively.

Considering the standard Izhikevich equations, posit32 had a lower
NRMSE than FP32 in every case with the exception of ‘Class 2’. Since
the ‘Class 2’ error was much greater than the other errors and it
was lower for FP32 it skewed the overall mean which was 0.0115 for
FP32 and 0.0119 for posit32. Indeed, with ‘Class 2’ removed from the
calculation, the overall mean for FP32 was 2.58 × 10−5 and 3.97 × 10−6

for posit32, which is an error reduction of over 6×. A broadly similar
pattern was noted for the rescaled equations. Posit32 had a lower
NRMSE in 19 of the 20 firing types. Only ‘Class 2’, had a lower error
in FP32. ‘Bistability’ did not demonstrate the expected cessation of
firing on its second input spike. This behaviour is very sensitive to
timing, and posit32 was not able to demonstrate it. However, with these

−5
5

outliers removed, the overall mean NRMSE for FP32 was 2.32 × 10 b
and 3.93 × 10−6 for posit32, which is an error reduction of 6.8× in the
iring types with expected dynamics.

The standard Izhikevich equations for all firing types need to repre-
ent a minimum value of −81.8 and a maximum of 30. Since FP32 is a
ixed format, it always uses 23 fractional bits to express these values,
hereas posit32 will use 27 fractional bits for values around 30, and
3 fractional bits to represent −81.8. Hence, when using the standard
quations, posit32 has at least the same number of fractional bits as
P32, resulting in additional precision across most of the numerical
ange encountered in these simulations. Table 2 gives a summary of the
umber of fractional bits, available for each arithmetic at these values
nd their decimal accuracy.

Next we consider 16-bit arithmetic. Aside from the ‘Class 2’ Izhike-
ich neurons – which were equally problematic at all precisions and
quation types – the NRMSE was far higher for 16-bit arithmetic
ompared to 32-bit. Fig. 4 clearly shows that some firing types such
s ‘Class 1’ (which has an NRMSE close to 0.2 for all arithmetics)
ccrue more error than others such as ‘Spike Latency’, ‘Subthreshold’
nd ‘Resonator’ whose NRMSE is below 0.05. This pattern broadly
orrelates with the number of spikes emitted in a simulation, shown
y the dotted black line in Fig. 4. However, there were exceptions to
his. Most notably, the error was far greater for FP16 with ‘Rebound
urst’ (standard equations). This was due to the neuron continuing to
ire regularly following the expected burst of spikes. This is in contrast
o the posit16 test which failed to fire the expected burst at all.

Using the standard equations, posit16 had a lower NRMSE in 11
f the 20 firing types. This is reflected in the mean error which is
lightly lower for posit16 (0.075) than FP16 (0.0799). Unlike the 32-bit
ests, there were no experiments where one arithmetic or firing type
as orders of magnitude different from the rest, requiring additional

onsideration. Rescaling improved the error for FP16 in only 5 firing
ypes and slightly increases the mean error. However, with posit16,
escaling resulted in an improvement in 13 firing types compared to
he standard equations, and a reduction in the mean error. This clearly
emonstrates the use of rescaling to improve simulation accuracy when
sing reduced precision posit arithmetic. One possible explanation for
his is the increase in the number of available fractional bits following
escaling. For example, posit16 has 10 fractional bits to represent
he value 30, the same as FP16. However, when we use the rescaled
quations, the value 30 becomes 0.3 where posit16 uses 12 fractional
its. Again, it is likely that it is these additional fractional bits that give
osit16 the advantage over FP16. A similar situation can be seen for the
ower bound number −81.8. At this value, posit16 has only 9 fractional

its compared to 10 used in FP16. However, in the rescaled equations,

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.
Fig. 3. 32-bit floating-point and posit arithmetics using both the Standard Equations (SE) and Rescaled Equations (RE). Where Inhib. Ind. Spiking is Inhibition Induced Spiking
and Inhib. Ind. Bursting is Inhibition Induced Bursting. NRMSE is displayed on a log scale to account for the magnitude of the ‘Class 2’ error.
Table 2
A table showing the number of bits used to represent the fraction for each arithmetic type and equation. The values were chosen as the
minimum and maximum values seen across all firing types. 16-bit posit is posit<16, 1>. Decimal accuracy shows the correct number of decimal
places after rounding for each value.
Equation type Value Number of bits for fraction Decimal accuracy

FP Posit FP Posit

30 23 26 Exact Exact
Standard 32-bit 0 23 0 (exception) Exact Exact

−81.8 23 26 7.79 8.99

0.3 23 27 7.76 8.97
Rescaled 32-bit 0 23 0 (exception) Exact Exact

−0.818 23 27 8.01 10.80

30 10 10 Exact Exact
Standard 16-bit 0 10 0 (exception) Exact Exact

−81.8 10 9 4.18 3.58

0.3 10 12 4.15 4.75
Rescaled 16-bit 0 10 0 (exception) Exact Exact

−0.818 10 12 4.16 5.44
t
c
s
F
r
t
a

b
s
t
c
p
p

−81.8 becomes −0.818 and posit16 provides 12 fractional bits compared
to FP16’s 10.

As well as NRMSE, we can also calculate decimal precision for each
arithmetic and equation type. Using the standard equations the thresh-
old value is 30, which is exactly representable in all arithmetics and
bit depths. However, in the rescaled equations, the threshold becomes
0.3 where FP32 has 23 fractional bits and a decimal precision of 7.76
digits, whereas posit32 has 26 fractional bits and a decimal precision
of 8.97, resulting in more than one correct additional decimal place.
Using reduced 16-bit arithmetic, FP16 has 10 bits for the fraction and
achieves a decimal precision of 4.15, whereas posit16 has 12 fractional
bits and a decimal accuracy of 4.75.

Table 2 compares the number of bits available for each test to
represent the fraction for three values. These values were the minimum
and maximum seen over all 20 tests for each equation type, plus zero.
It shows that when using 32-bits, posit arithmetic has 3 more bits to
represent each fraction, giving it a higher accuracy. However, when
6

‘

using 16-bits, FP16 and posit16 both have 10 bits to represent the
value 30, but posit16 has only 9 bits to represent −81.6, compared
o 10 bits for FP16. This could account for why fewer posit tests
ould reproduce the correct number of spikes in 16-bit tests using the
tandard equations. However, overall the NRMSE was very similar to
P. In contrast, when comparing the fraction bits available for the
escaled values, we can see that posit32 has 4 more bits of precision
han FP32 and posit16 has 2 more bits than FP16. Thus posit arithmetic
lways has a higher accuracy when using the rescaled equations.

Indeed, rescaling the equations reduced the NRMSE of posit16-
ased simulations in 13 out of the 20 firing types – dramatically in
ome cases. This is in contrast to the FP16 results, where only 5 firing
ypes had an improved NRMSE under the rescaled equations – a likely
onsequence of almost constant decimal accuracy. ‘Tonic Spiking’ in
articular appears to benefit from using the rescaled equations with
osit16 arithmetic.

To illustrate this disparity, Fig. 5 shows the FP16 simulation of

Tonic spiking’ using standard equations. If we compare this to the

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.

I

Fig. 4. 16-bit floating-point and posit arithmetics using both Standard Equations (SE) and Rescaled Equations (RE). Where Inhib. Ind. Spiking is Inhibition Induced Spiking and
nhib. Ind. Bursting is Inhibition Induced Bursting. Spike count for each simulation is overlaid with its axis on the right-hand side.
Fig. 5. A comparison of FP16 and FP64 arithmetic simulating tonic spiking over 1000 ms. (a) shows the first 100 ms of the simulation and (b) the final 50 ms. Initially in (a),
it can be seen that there is good alignment between the FP16 with the FP64 reference. However, as the simulation proceeds, the lag – caused by accumulated arithmetic error –
becomes clearly visible in (b).
posit16 simulation shown in Fig. 6, then the advantages of this arith-
metic become apparent. If we again focus on the final 50 ms, while
there is a slight error, it is much reduced compared to the error at the
same point when using floating-point arithmetic (Fig. 6(b)).

Finally, as shown in Fig. 7, this error reduces to effectively zero for
the posit16 simulation when we use the rescaled equations — with only
a small difference in voltage amplitude separating the two simulations.
However, as shown in Fig. 7(a), rescaling does not reduce the FP16
error.

3.2. Class 2

Fig. 8 shows the ‘Class 2’ firing type using FP32 and standard
equations. Izhikevich defines ‘Class 2’ as neuron types which are either
7

quiescent or have a relatively large firing rate [12]. Although Class 2
has the greatest NRMSE, it demonstrates normal firing, and the high
NRMSE are likely to be related to the high spike count, each of which
lags or leads the FP64 reference. However, if we consider the spike
count, Class 2 is very similar to the FP64 reference.

3.3. Spike count and timing

In Table 4 we show the spike count and, if we first consider 32-
bit arithmetic, we can see that when using standard equations, posit32
deviated in spike count from the reference only once for the ‘Class 2’
firing type. FP32 did not have this error and fired the correct number of
times. While this change in spike number should be a cause for concern

and we will discuss it in the next section, we should also consider

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.

d

Fig. 6. A comparison of posit16 and FP64 arithmetic simulating tonic spiking over 1000 ms. (a) shows the first 100 ms of the simulation and (b) the final 50 ms. Very little
spike timing error can be seen in either (a) or (b) meaning posit16 arithmetic has introduced very few errors during the simulation.
Fig. 7. Both (a) and (b) show the last 50 ms of simulation, where (a) employs FP16 and (b) uses posit16 arithmetic when using the rescaled equations. (a) shows that rescaling
oes not improve the accuracy in the FP16 case. However, (b) demonstrates the elimination of timing errors in posit16 when using rescaled equations.
Table 3
NRMSE for each firing pattern, arithmetic and equation type. The mean of each arithmetic and equation type is given in the bottom row.

Firing type Standard - NRMSE Rescaled - NRMSE

32-bit 16-bit 32-bit 16-bit

Float Posit Float Posit Float Posit Float Posit

Tonic Spiking 3.01E−06 2.73E−07 1.62E−01 1.05E−01 1.55E−06 1.34E−07 1.64E−01 7.66E−03
Phasic spiking 1.84E−05 2.51E−07 4.05E−02 3.20E−02 6.00E−06 5.76E−07 4.18E−02 3.50E−02
Tonic bursting 9.69E−07 2.13E−07 1.32E−02 8.05E−02 4.93E−07 4.82E−08 1.59E−01 3.42E−03
Phasic bursting 6.74E−06 7.80E−07 5.75E−02 5.24E−02 5.04E−06 4.53E−07 9.64E−02 9.68E−02
Mixed mode 2.43E−06 4.91E−07 9.68E−02 7.73E−02 1.58E−06 1.76E−07 1.22E−01 1.36E−01
SFA 1.87E−06 1.95E−07 1.51E−01 1.58E−01 2.21E−06 5.01E−08 8.46E−02 1.67E−01
Class 1 1.79E−04 1.11E−05 2.03E−01 1.87E−01 3.03E−04 7.22E−06 2.17E−01 1.82E−01
Class 2 2.30E−01 2.39E−01 2.81E−01 2.55E−01 2.70E−01 2.79E−01 2.54E−01 2.88E−01
Spike Latency 1.62E−06 1.55E−07 2.03E−02 1.76E−02 2.77E−06 1.33E−07 2.44E−02 1.11E−02
Subthreshold oscillation 3.49E−06 4.08E−07 2.80E−02 4.67E−02 3.21E−06 1.97E−07 3.38E−02 1.98E−02
Resonator 1.47E−05 3.25E−07 3.80E−02 4.50E−02 1.93E−06 7.37E−07 4.64E−02 2.20E−02
Integrator 3.36E−07 1.20E−07 2.27E−02 1.88E−02 2.42E−06 3.32E−08 2.42E−02 1.54E−02
Rebound spike 4.22E−06 1.25E−06 2.96E−02 2.30E−02 1.79E−05 2.13E−06 4.80E−02 2.15E−02
Rebound Burst 2.58E−05 5.59E−06 1.82E−01 5.82E−02 1.98E−05 2.80E−06 6.46E−02 5.84E−02
Threshold Variability 3.26E−06 4.69E−07 2.51E−02 4.24E−02 9.53E−07 1.42E−07 4.63E−02 2.85E−02
Bistability 7.96E−06 4.68E−06 1.16E−01 5.52E−02 1.20E−05 1.17E−06 1.04E−01 1.02E−01
DAP 1.08E−05 2.79E−07 7.19E−03 3.21E−02 1.43E−06 1.96E−07 1.43E−02 1.93E−02
Accomodation 6.60E−07 7.67E−08 6.18E−03 9.37E−03 4.38E−07 2.90E−08 8.43E−03 3.52E−03
Inhibition induced spiking 2.03E−04 4.85E−05 4.40E−02 1.06E−01 4.42E−05 1.57E−05 5.00E−02 3.59E−02
Inhibition induced bursting 2.52E−06 2.55E−07 7.33E−02 9.82E−02 2.86E−06 2.46E−07 6.08E−02 6.34E−02

Mean 1.15E−02 1.19E−02 7.99E−02 7.50E−02 1.35E−02 1.39E−02 8.32E−02 6.58E−02
8

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.
Fig. 8. Class 2 using FP32 and standard equations. (a) shows the first 250 ms of the simulation and (b) the final 50 ms. A slight timing lag can be seen in (b).
Table 4
Spike count deviations over 1000 ms for each firing type, equation type and arithmetic. ‘=’ signifies no difference from the 64-bit reference.

Firing type Ref Standard equation Ref Rescaled equations

64-bit 32-bit 16-bit 64-bit 32-bit 16-bit

Float Float Posit Float Posit Float Float Posit Float Posit

Tonic Spiking 38 = = = = 38 = = = =
Phasic spiking 1 = = = −1 1 = = = =
Tonic bursting 124 = = = = 124 = = −2 =
Phasic bursting 7 = = = −7 7 = = −1 −1
Mixed mode 33 = = = = 33 = = = −1
SFA 38 = = = = 38 = = = =
Class 1 115 = = = = 115 = = = =
Class 2 166 = +1 +1 +2 167 = = +1 −1
Spike Latency 1 = = = = 1 = = = =
Subthreshold oscillation 1 = = = = 1 = = = =
Resonator 1 = = = −1 1 = = +1 =
Integrator 1 = = = = 1 = = = =
Rebound spike 1 = = = −1 1 = = −1 −1
Rebound Burst 11 = = +103 −11 11 = = −11 −11
Threshold Variability 1 = = −1 −1 1 = = −1 =
Bistability 5 = = +19 −3 5 = = +19 +21
DAP 1 = = = +2 1 = = = +1
Accomodation 1 = = = = 1 = = = =
Inhibition induced spiking 4 = = = = 4 = = = =
Inhibition Induced bursting 16 = = = = 16 = = = =
spike timing. In Table 5 we show the accumulated spike timing errors
and, when using 32-bit arithmetic, this shows there were no spike
timing errors for any firing type, again with the exception of Class
2. Similarly to other results, the situation was different when 16-bit
arithmetic was used. When using standard equations, posit16 deviated
from the reference nine times whereas, FP16 deviated only four times.
This often meant that the expected dynamics were not achieved in that
test. For example, ‘Rebound Burst’ should fire 11 spikes following a
brief inhibitory input. FP16 fired a burst, but then continued firing
afterwards meaning that 114 spikes were emitted over the 1000 ms.
This is in contrast to posit16 which did not fire at all. Hence, in this
case, both arithmetics failed to produce the expected burst of spikes.
When the equations were rescaled, posit16 improved, deviating from
the FP64 only seven times whereas FP16 got worse — deviated 8 times
from FP64. Furthermore, with rescaled equations, posit16 was the only
16-bit arithmetic capable of reproducing the expected dynamics of the
‘Threshold Variability’ firing type.

Table 5 shows the mean accumulated timing error. When using 16-
bit arithmetic, posit16 had a similar mean value to FP16 across the
reproduced firing types when using the standard equations, but a much
9

lower mean error when using the rescaled equations.
3.4. Fixed-point arithmetic

While floating-point and posit arithmetic have been investigated in
this paper, fixed-point is another potential arithmetic option. Fixed-
point arithmetic is much simpler and faster than either posit or floating-
point and easier to implement. However, if care is not taken, it is
highly sensitive to potentially catastrophic underflow and overflow
errors. Although both Hopkins et al. [45] and Jin et al. [54] were
able to achieve a 16-bit fixed-point implementation of an Izhikevich
neuron, this was only managed after employing multiple error reducing
strategies, which make their implementation incompatible with this
work.

Hopkins et al. [45] used higher order ODE solvers namely, RK2,
RK3 and Chan-Tsai. While these are more accurate, they entail a
higher latency and computational overhead than the much simpler
Forward Euler used here. Moreover, they chose only a subset of neuron
firing types and a smaller time step. Using smaller time-steps generally
improves the stability and accuracy of a solution when using numer-
ical methods of integration. Indeed, the accuracy typically increases
monotonically as step size reduces, but this not only increases the
computational load, it can also interfere with the required neuron

behaviour. For example, some firing types are very sensitive to input

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.

h
e
a
p
f

3

t
u
p
t
t
P
f
s

Table 5
Absolute accumulated spike timing error over 1000 ms for each firing type using both standard and rescaled equations, comparing 32-bit and 16-bit arithmetics with the FP64
reference.

Firing type Standard equations accumulated spike timing error (ms) Rescaled equations accumulated spike timing error (ms)

32-bit 16-bit 32-bit 16-bit

Float Posit Float Posit Float Posit Float Posit

Tonic Spiking 0.00 0.00 166.50 18.50 0.00 0.00 166.50 0.00
Phasic spiking 0.00 0.00 2.50 – 0.00 0.00 0.75 2.50
Tonic bursting 0.00 0.00 0.00 14.25 0.00 0.00 – 0.00
Phasic bursting 0.00 0.00 11.80 – 0.00 0.00 – –
Mixed mode 0.00 0.00 21.75 11.00 0.00 0.00 116.25 –
SFA 0.00 0.00 132.25 140.25 0.00 0.00 8.50 140.25
Class 1 0.00 0.00 106.50 103.0 0.00 0.00 163.25 69.25
Class 2 31.00 – – – 257.50 331.50 – –
Spike Latency 0.00 0.00 0.19 0.00 0.00 0.00 0.20 0.00
Subthreshold oscillation 0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.25
Resonator 0.00 0.00 5.00 – 0.00 0.00 – 0.50
Integrator 0.00 0.00 0.75 0.50 0.00 0.00 0.75 0.25
Rebound Spike 0.00 0.00 6.20 – 0.00 0.00 – –
Rebound Burst 0.00 0.00 – – 0.00 0.00 – –
Threshold Variability 0.00 0.00 – – 0.00 0.00 – 5.00
Bistability 0.00 0.00 – – 0.00 0.00 – –
DAP 0.00 0.00 0.00 – 0.00 0.00 0.10 –
Accomodation 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Inhibition induced spiking 0.00 0.00 2.00 15.00 0.00 0.00 7.50 3.00
Inhibition Induced bursting 0.00 0.00 78.00 78.00 0.00 0.00 40.00 54.00

Mean 1.55 0.00 33.36 34.59 12.88 16.58 42.00 21.15
i
t

3

h
s
0

e
a
t
p
i

spike timing such as bistability; If there is too much lag/lead error,
bistability does not stop firing on the second input, as it should.
This behavioural dependence on the timestep size has been previously
described in Heidarpur et al. [55] and Skocik and Long [32] and also
explains why Hopkins et al. [45] and Jin et al. [54] only investigated
a subset of firing types. Hopkins et al. [45] also used mixed precision
throughout, opting for 32-bit fixed-point numbers for all constants and
pre-computed several of these to control any rounding error. They
admit that even after using all these strategies, using round-to-nearest
rounding scheme, did not produce any spiking behaviour at all. Indeed,
to reduce their errors to an acceptable level they had to employ
stochastic-rounding. Which, although relatively simple to implement in
hardware, inevitably increases the complexity of the design. Jin et al.
[54] also achieved a spiking Izhikevich neuron using only 16-bits on
the SpiNNaker system. However, in their work they needed to use two
scaling factors and to rewrite the equations (Eqs. (9) and (10)) to better
fit with the ARM instruction set. Having gone beyond simply rescaling,
it becomes difficult to make comparisons with other Izhikevich imple-
mentations. Moreover, they did not assess their results for accuracy,
making their work hard to compare against and difficult to replicate
on non-ARM hardware. Nor did they attempt to reproduce all 20 firing
patterns. Hence, while it has been previously demonstrated that 16-
bit Izhikevich models are possible using 16-bit fixed-point arithmetic, it
as not been shown that this is possible without either, changing the
quations considerably, or using a much more complicated system to
meliorate the arithmetic errors. Nor has it been shown that at reduced
recision, all firing types are possible. Hence, we have not considered
ixed-point in this work.

.5. BFloat16 arithmetic

Bfloat16 was originally conceived to reduce storage and computa-
ional load for deep learning applications. Since then, it has also been
sed to increase efficiency in both distributed and other scientific com-
uting applications [56]. The format features 8 exponent bits, mirroring
he FP32 format and 7 mantissa bits, providing enough dynamic range
o accurately represent error gradients during backpropagation [51].
revious studies have shown that for ML workloads, bfloat16 outper-
orms both posit16 and FP16 providing a better trade-off between
ilicon area and accuracy Mishra et al. [19].
10
However, despite its capabilities in other areas, bfloat16 proved
ncapable of faithfully replicating the dynamics associated with any of
he 20 firing types tested, whether in their standard or rescaled forms.

.6. Exploring 𝑛 < 16 and the effect of different 𝑒𝑠 values

Here we explore 𝑛 < 16 bit simulations in posit arithmetic. Fig. 9
uses the rescaled equations to demonstrate tonic firing for posits from
8-bit to 15-bits. For each simulation 𝑒𝑠 = 0 and the bottom right plot, in
red, is the reference FP64. Each simulation was run for 1000 ms, but for
clarity, each plot focuses on the final 100 ms of the simulation, where
firing frequency has converged. The most obvious effect of reducing bit
width is to increase the firing frequency. This is possibly a consequence
of having fewer values in-between the simulation extremes, especially
around zero where 𝑢 is particularly sensitive −0.00306 ≤ 𝑢 ≤ 0.00198.
For example, posit<15, 0> has 25 values in this interval, posit<12, 0>
as 5 and posit<8, 0> has just 3. In posit<8, 0> the smallest repre-
entable positive value minpos is 0.015625. For posit<15, 0> minpos is
.00012207. This coarseness in minpos also causes 𝑑𝑈 to be larger for

smaller values of 𝑛 and therefore 𝑢 to change more rapidly, approaching
𝑢 = −0.042, the point at which 𝑑𝑉 rapidly increases causing spike emis-
sion (See Fig. 11). Hence, as 𝑛 decreases, minpos increases which affects
how quickly 𝑢 reaches the required value to cause spike emission.

The effect of changing es is not as clear cut as that of changing
𝑛. As stated in Section 1.2 es defines exponent size. This is used
during posit decoding/encoding, controlling the value useed = 22𝑒𝑠

(Eq. (1)). If we focus on generating spiking behaviour, Fig. 10 shows
that spikes are generated with posit<8, 0> but, as soon as we add an
s bit (posit<8, 1>), no spikes are emitted at all. At first glance, this
ppears to suggest that there are not enough fraction bits remaining
o generate the required precision. However, even if we start using
osit<10, 1> the expected spiking behaviour is still not seen. Indeed,
t only recommences when we start to use posit<12, 1> for 𝑒𝑠 > 0.

An explanation can be found by considering the trajectories of
posit<12, 1> and posit<10, 1> in the phase plane of the rescaled
equations (Fig. 11). The simulation begins at 𝑢 = −0.14, with 𝑣 = −0.7
and increasing. After two spikes, the posit<10, 1> simulation appears
to stop abruptly (Fig. 11(a)). Whereas, in Fig. 11(b) using posit<12, 1>
arithmetic, the simulation enters the limit cycle of regular firing, close
to the FP64 reference. When using posit<10, 1> the dynamics cease
when 𝑣 = −0.6484375, 𝑢 = −0.01953125. At this point the next

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.

t
f

s
m
0
i

r
0
i

t
t
o

𝑒
p
s
i
m
s
a
o
m

Fig. 9. Tonic firing for various bit-depths of posits with 𝑒𝑠 = 0 for each. Time is on
he 𝑥-axis in simulation steps (𝑑𝑡 = 0.25). For clarity, we show only a section of the
ull simulation, where spike timing has converged and become regularly spaced.

Fig. 10. Here we show the effect of changing both the bit width and es values on tonic
piking with the rescaled equations. Posit<8, 𝑒𝑠> are along the top, posit<10, 𝑒𝑠> the
iddle and posit<12, 𝑒𝑠> along the bottom row. From left to right the es values are
, 1 and 2. Although at a much higher frequency, spiking behaviour occurs in all cases
f 𝑒𝑠 = 0. However, when 𝑒𝑠 > 0 spiking is only seen in 12-bit posits.

epresentable value is 𝑣 = −0.640625. The gap between these two is
.0078125, but the size of the voltage update using the forward Euler’s
ntegration method (given by 0.25 × 𝑑𝑉

𝑑𝑡) at this point is 0.000976562,
which is less than half the required distance. Hence this is rounded
away.

When using posit<12, 0>, the next representable point is
−0.65234375, a gap of 0.00390625, with 𝑑𝑉

𝑑𝑡 = −0.00390625, allowing
he simulation to proceed without stagnating. It may also be possible
o avoid this by changing the timestep size, input current, complexity
f the integration method or using stochastic rounding.

Additionally, we observed further interdependence between 𝑛 and
𝑠. For example, as shown in Fig. 12, attempting to use posit<15, 1> or
osit<15, 2> results in exact spike timing (albeit with some error in the
pike amplitude, particularly in the 𝑒𝑠 = 2 case). Subsequently, reduc-
ng 𝑛 further to 𝑛 = 13, introduces some error in spike timing which is
inimised by setting 𝑒𝑠 = 2 (Fig. 13). This result means that the fraction

ize alone should not be the only consideration when optimising such
system. Changing es and keeping n constant, changes the distribution
f representable values within a given numerical interval. These results
ake designs such as PERI [26], which can switch es values at runtime,
11
Fig. 11. Phase plots for the rescaled tonic firing equations with different arithmetics.
(a) shows posit<10, 1> and (b) shows posit<12, 1>. In both plots the reference FP64
is also shown.

an intriguing prospect and highlight the need for further research into
the use of posit arithmetic in scientific applications.

3.7. The effect of scaling

Under the assumption that the membrane voltage remained in the
interval (−100 mV, 100 mV), regardless of firing type, an initial scaling
factor of 0.01 was chosen. This served to keep the membrane voltage
of the rescaled equations in the interval (−1.0, 1.0) where, as explained
in Section 1, posits have the greatest accuracy. This region corresponds
to where the number of regime bits is minimised and thus, the bits
available to the fraction is maximised (the minimum regime length is
two bits). From Table 2 the maximum value is 30, and the minimum
value is −81.8. To keep the regime bits at their minimum, the largest
representable value 𝑥, must be 𝑥 < 𝑢𝑠𝑒𝑒𝑑 for posit<16, 1> 𝑢𝑠𝑒𝑒𝑑 = 4.

Given, −81.8 × 0.05 = −4.09 while this very upper bound value
requires a 3-bit regime, the majority of the values used during a simula-
tion will be within the minimal 2-bit regime. For this reason, the scaling
factor 0.05 is at the upper bound of the 2-bit regime length, maximising
precision. Smaller scaling factors will not gain any additional fraction
bits, and larger scaling factors will lose fraction bits. Accordingly, we
tested five scaling factors 0.005, 0.01, 0.05, 0.1 and 0.15 for four firing
types (tonic spiking, tonic bursting, phasic spiking and phasic bursting)

As can be seen in Fig. 14, the best choice of scaling factor to produce
the lowest NRMSE is firing type specific.

3.8. Implications for hardware design

In this paper, we demonstrate that it is possible to simulate Izhike-
vich neurons at reduced precision using posit arithmetic while minimis-
ing, and in some cases eradicating, any associated arithmetic errors.
The implications for hardware are, however, harder to ascertain. In
many respects, with fewer exception values, one rounding mode and
an absence of subnormal numbers, posits are simpler than FP but, due
to the dynamic sizing of the regime bits, posit decoding and encoding
is significantly more complex than in the floating-point case. Published
comparisons between Posit Arithmetic Units (PAU) and Floating-Point
Units (FPU) often assert that, for a given word size, a PAU is typically
larger than an FPU. However, such direct comparisons ignore nuances
between the two systems. While FPUs are defined solely by their size,
posits are characterised by both their size 𝑛 and their 𝑒𝑠 value, pro-

viding a wider and more versatile parameter space, but complicating

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.
Fig. 12. This figure shows the final 100 ms of a 1000 ms simulation using posit<15, 1> arithmetic compared to FP64. We can see that posit<15, 1> is capable of exact spike
timing at the end of 1000 ms simulation. Similarly to posit<16, 1> the only error is in the amplitude of the membrane voltage.
Fig. 13. This figure shows the final 100 ms of a 1000 ms simulation using posit<13, 2>
arithmetic. This posit configuration is almost capable of exact spike timing, but leads
the FP64 reference by 1.25 ms.

Fig. 14. Posit<16, 1> simulating the firing types tonic spiking, tonic bursting, phasic
spiking and phasic bursting with scaling factors 0.005, 0.01, 0.05, 0.1 and 0.15.
12

r

comparisons. Some studies investigate multiple posit configurations,
acknowledging the additional flexibility. For instance, Zhang et al. [38]
reported posit<32, 8>, posit<16, 5> and posit<8, 4>, against FP32,
FP16 and FP8.

Zhang et al. [38] synthesised their ASIC designs using the
STM−28 nm library and each PAU grew in size as 𝑛 was increased. This
is not unexpected, but only one es value was used for each n. Chaurasiya
et al. [21] gave more insight into effect on PAU size that es has,
regardless of n. They synthesised their adder and multiplier using the
90 nm-CMOS Faraday library for two values of es. They found that
for all values of n, increasing es reduces the resulting area usage.
This relationship has also been described in [39]. However, the same
correlation was not seen in FPGA designs by Chaurasiya et al. [21]
who synthesised their designs for 1 ≤ 𝑒𝑠 ≤ 4 for 𝑛 = 16 and 𝑛 = 32 for
a Zynq-7000 with Vivado 2017.4. No clear effect on PAU size for was
seen for changes in es for a given n in this case.

Further complications arise as many studies focus only on a basic
PAUs with limited functionality, such as standalone adders, multipli-
ers [25], division units, cosine units [22], or Multiply Accumulate
(MAC) units [38]. Additionally, discrepancies arise in studies with
regard to IEEE-754 compliance, with variations in the inclusion of
rounding modes, subnormal numbers, and exception values. For exam-
ple, the Xilinx FPU 7.1 IP core [57] does not support subnormal num-
bers and, similarly to posits, recognises only three exception values:
zero, infinity, and NaN. Although, several authors assert the additional
overhead of extra rounding modes and subnormal number inclusion is
minimal [58,59].

Chaurasiya et al. [21] are one of the few authors who compare a full
IEEE-754 compliant FPU with a posit equivalent for both adders and
multipliers. They report their posit<16, 1> adder required 391 LUT and
the FP16 required 356 LUT. Similarly, their posit<16, 1> multiplier
required 218 LUT compared to FP16 212 (all on a Zynq-7000 FPGA).
Although the PAU is larger in both the adder and multiplier, they are
not dissimilar. Additionally, as argued by multiple authors [20,25,38],
the increase in accuracy often seen with posit arithmetic enables the
replacement of longer word size FPU with a smaller word size PAU.

While these preliminary studies shed light on simple operations,
they lack insights into the performance of more realistic and com-
plex algorithms. To address this limitation, some studies incorporate
PAUs into complete CPUs, such as PERCIVAL [27], CLARINET [60],
PERI [26] and POSAR [41]. PERCIVAL is one of the most thorough and
includes all posit operations including fused operations and the quire

egister into a RISC-V CVA6 core [27].

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.

N
w
m
t
a

s

As discussed previously, the addition of a quire register significantly
increases the overall size of a design (approximately half the total area
in PERCIVAL). However, even when excluding the quire, [27] found
that the PAU was still 1.32× larger than a IEEE-754 compliant FPU.

evertheless, [27] found the extra cost of the quire to be justified,
hen used to reduce the Mean Square Error of the generic matrix-
atrix multiplication (GEMM) benchmark. Indeed, they show that in

his benchmark, a 32-bit posit was up to four orders of magnitude more
ccurate than FP32.

Similarly, our results show that for some firing patterns, it is pos-
ible to achieve the same accuracy using posit<16, 1> compared to

FP64. This relationship between increased accuracy while using fewer
bits, often described as exchanging an n-bit FPU for a m-bit PAU, where
𝑚 < 𝑛 has been described previously [21]. It should also be stressed that
while most studies show PAUs are larger than their FPU counterparts
some, more recent studies do not. Esmaeel et al. [22] developed a
second order IIR notch filter including a modified Booth Multiplier for
both posit32 and FP32. They report that the posit implementation was
not only more accurate, but was faster and required 35.68% less area.

This highlights that posit research is still in its early exploration
phase with many optimisations yet to be discovered. Recent advances
such as Half-Unit Biased (HUB) [61], Fixed-Posit [29], and blended
IEEE-754 floating-point/posit transprecision MAC units have recently
been proposed [62]. Moreover, innovations such as two’s complement
posit decoding which removes the need to take the two’s complement
of any negative posits by changing the significand’s MSB, simplifying
any posit implementations while being mathematically equivalent, will
likely continue to optimise future PAU implementations [63].

4. Conclusion

The objective of this study was to examine the feasibility of employ-
ing posit arithmetic as an alternative to FP for running SNN simulations
using Izhikevich neurons. Additionally, we aimed to explore the effect
on accuracy of reducing the bit depth in both posit and FP number
systems; and for posits, the effect of changing es in relation to n.
Typically, reducing the bit-depth has several advantages such as speed
and power efficiency, but is often deleterious to accuracy. Hence, the
impact of rescaling the equations, as a potential approach to mitigating
this reduced accuracy was also investigated. This is the first study to
establish quantitatively how posit arithmetic differs from FP in this
context. Our research shows that there is very little difference between
number systems at 32-bit either in terms of membrane voltage or spike
timing. However, when the bit-depth was reduced to 16-bit, while
errors become detectable, generally posit arithmetic was more accurate
than FP16. Most notably, we showed the advantage of rescaling the
Izhikevich equations when using posit arithmetic, especially for tonic
firing. These results suggest that designers of future SNN accelerators
may want to consider including a reduced precision PAU rather than an
FPU. This could allow for more efficient utilisation of silicon resources
in such systems.

While this study provides several important positive contributions,
it suffers from a number of limitations. Notably, only one neuron type
was tested. Reducing or increasing the complexity of the equations will
likely have an impact on the performance of both arithmetic systems.
A further limitation is the use of a single ODE solver and keeping
the update step size to the original values defined by Izhikevich. Both
of these variables have previously been shown to have a significant
impact on SNN accuracy [44]. Additionally, this study only explored
one mitigation technique — rescaling by a constant factor. It might be
expected that different scaling factors could affect accuracy to differing
extents, as was found in Klöwer et al. [18]. Other mitigation techniques
are also possible but were not explored here, such as using mixed
precision with a larger bit-depth for variables which require a higher
precision or intermediate results, which can be outside of the optimal
range for a particular arithmetic. This might be addressed by reordering
13
or precomputing various values, and this was not considered in this
work. Another interesting avenue for future work would be to further
explore the relationship between n, es, scaling factor and firing type. It
would also be interesting to compare these arithmetics when used in a
network context.

Nevertheless, this study offers some important contributions and
highlights posit arithmetic as an interesting avenue of future SNN
research. We therefore suggest future works attempt to establish the
importance of ODE solver choice and time-step size on accuracy while
running posit-based SNN simulations.

CRediT authorship contribution statement

T. Fernandez-Hart: Writing – review & editing, Writing – original
draft, Visualization, Software, Project administration, Methodology,
Investigation, Formal analysis, Conceptualization. James C. Knight:
Writing – review & editing, Writing – original draft, Supervision, In-
vestigation, Conceptualization. T. Kalganova: Writing – review & edit-
ing, Writing – original draft, Supervision, Resources, Methodology,
Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
T. Fernandez-Hart reports financial support was provided by Sun-
dance Multiprocessor Ltd. James C Knight reports financial support
was provided by Engineering and Physical Sciences Research Coun-
cil. Tim Fernandez-Hart reports financial support was provided by
Brunel University London. Tatiana Kalganova reports a relationship
with SUNDANCE that includes: funding grants.

Data availability

No data was used for the research described in the article.

Acknowledgements

TFH was part funded by Sundance Multiprocesssor Ltd., UK. and an
EPSRC Doctoral Training Partnerships (DTP) grant. JK was funded by
the EPSRC (grants EP/V052241/1 & EP/S030964/1)

References

[1] Q.T. Pham, T.Q. Nguyen, P.C. Hoang, Q.H. Dang, D.M. Nguyen, H.H. Nguyen,
A review of SNN implementation on FPGA, in: 2021 International Conference
on Multimedia Analysis and Pattern Recognition, MAPR, 2021, pp. 1–6, http:
//dx.doi.org/10.1109/MAPR53640.2021.9585245.

[2] W.C. Abraham, O.D. Jones, D.L. Glanzman, Is plasticity of synapses the mech-
anism of long-term memory storage? npj Sci. Learn. 4 (1) (2019) 9, http:
//dx.doi.org/10.1038/s41539-019-0048-y.

[3] W. Guo, M.E. Fouda, A.M. Eltawil, K.N. Salama, Neural Coding in Spiking
Neural Networks: A Comparative Study for Robust Neuromorphic Systems, Front.
Neurosci. 15 (2021) http://dx.doi.org/10.3389/fnins.2021.638474.

[4] C. Frenkel, M. Lefebvre, J.-D. Legat, D. Bol, A 0.086-mm2 12.7-pJ/SOP 64k-
synapse 256-neuron online-learning digital spiking neuromorphic processor in
28nm CMOS, IEEE Trans. Biomed. Circuits Syst. (2018) 1, http://dx.doi.org/10.
1109/TBCAS.2018.2880425.

[5] Y. Cao, Y. Chen, D. Khosla, Spiking deep convolutional neural networks for
energy-efficient object recognition, Int. J. Comput. Vis. 113 (1) (2015) 54–66,
http://dx.doi.org/10.1007/s11263-014-0788-3.

[6] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, A.C. Knoll, A survey of robotics
control based on learning-inspired spiking neural networks, Front. Neurorobot.
12 (2018) 35, http://dx.doi.org/10.3389/fnbot.2018.00035.

[7] R.-J. Zhu, Q. Zhao, J.K. Eshraghian, SpikeGPT: Generative Pre-trained Language
Model with Spiking Neural Networks, 2023, http://dx.doi.org/10.48550/arXiv.
2302.13939, URL https://arxiv.org/abs/2302.13939.

[8] T.P. Vogels, L.F. Abbott, Signal Propagation and Logic Gating in Networks of
Integrate-and-Fire Neurons, J. Neurosci. 25 (46) (2005) 10786–10795, http:
//dx.doi.org/10.1523/JNEUROSCI.3508-05.2005.

http://dx.doi.org/10.1109/MAPR53640.2021.9585245
http://dx.doi.org/10.1109/MAPR53640.2021.9585245
http://dx.doi.org/10.1109/MAPR53640.2021.9585245
http://dx.doi.org/10.1038/s41539-019-0048-y
http://dx.doi.org/10.1038/s41539-019-0048-y
http://dx.doi.org/10.1038/s41539-019-0048-y
http://dx.doi.org/10.3389/fnins.2021.638474
http://dx.doi.org/10.1109/TBCAS.2018.2880425
http://dx.doi.org/10.1109/TBCAS.2018.2880425
http://dx.doi.org/10.1109/TBCAS.2018.2880425
http://dx.doi.org/10.1007/s11263-014-0788-3
http://dx.doi.org/10.3389/fnbot.2018.00035
http://dx.doi.org/10.48550/arXiv.2302.13939
http://dx.doi.org/10.48550/arXiv.2302.13939
http://dx.doi.org/10.48550/arXiv.2302.13939
https://arxiv.org/abs/2302.13939
http://dx.doi.org/10.1523/JNEUROSCI.3508-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.3508-05.2005
http://dx.doi.org/10.1523/JNEUROSCI.3508-05.2005

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.
[9] L. Hodgkin, A. Huxley, A quantitative description of membrane current and its
application to conduction and excitation in nerve, J. Physiol. 117 (4) (1952)
500–544.

[10] E. Izhikevich, Simple model of spiking neurons, IEEE Trans. Neural Netw. 14 (6)
(2003) 1569–1572, http://dx.doi.org/10.1109/TNN.2003.820440.

[11] A. Tamura, T. Ueta, S. Tsuji, Bifurcation analysis of Izhikevich model, in:
International Symposium on Nonlinear Theory and its Applications, 2008, pp.
424–427.

[12] E. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans.
Neural Netw. 15 (5) (2004) 1063–1070, http://dx.doi.org/10.1109/TNN.2004.
832719.

[13] J.C. Knight, T. Nowotny, Larger GPU-accelerated brain simulations with proce-
dural connectivity, Nat. Comput. Sci. 1 (2021) 136–142, http://dx.doi.org/10.
1101/2020.04.27.063693.

[14] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P.
Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S.
McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, H.
Wang, Loihi: A neuromorphic manycore processor with on-chip learning, IEEE
Micro 38 (1) (2018) 82–99, http://dx.doi.org/10.1109/MM.2018.112130359.

[15] S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The SpiNNaker project, Proc.
IEEE 102 (5) (2014) 652–665, http://dx.doi.org/10.1109/JPROC.2014.2304638.

[16] R. Wang, A. van Schaik, Breaking Liebig’s Law: An Advanced Multipurpose
Neuromorphic Engine, Front. Neurosci. 12 (2018) http://dx.doi.org/10.3389/
fnins.2018.00593.

[17] S.W. Moore, P.J. Fox, S.J. Marsh, A.T. Markettos, A. Mujumdar, Bluehive - A
field-programable custom computing machine for extreme-scale real-time neural
network simulation, in: 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, pp. 133–140, http://dx.doi.org/10.
1109/FCCM.2012.32.

[18] M. Klöwer, P.D. Düben, T.N. Palmer, Number Formats, Error Mitigation, and
Scope for 16-Bit Arithmetics in Weather and Climate Modeling Analyzed
With a Shallow Water Model, J. Adv. Modelling Earth Syst. 12 (10) (2020)
e2020MS002246, http://dx.doi.org/10.1029/2020MS002246.

[19] S.M. Mishra, A. Tiwari, H.S. Shekhawat, P. Guha, G. Trivedi, P. Jan, Z. Nemec,
Comparison of Floating-point Representations for the Efficient Implementation of
Machine Learning Algorithms, in: 2022 32nd International Conference Radioelek-
tronika, 2022, pp. 1–6, http://dx.doi.org/10.1109/RADIOELEKTRONIKA54537.
2022.9764927, URL https://ieeexplore.ieee.org/document/9764927.

[20] J.L. Gustafson, I.T. Yonemoto, Beating Floating Point at its Own Game: Posit
Arithmetic, Supercomput. Front. Innov. 4 (2) (2017) 71–86, http://dx.doi.org/
10.14529/jsfi170206.

[21] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar, K. Niyogi,
F. Merchant, R. Leupers, Parameterized posit arithmetic hardware generator, in:
2018 IEEE 36th International Conference on Computer Design, ICCD, IEEE, 2018,
pp. 334–341, http://dx.doi.org/10.1109/ICCD.2018.00057.

[22] A.A. Esmaeel, S. Abed, B.J. Mohd, A.A. Fairouz, POSIT vs. Floating point in
implementing IIR notch filter by enhancing radix-4 modified booth multiplier,
Electronics 11 (1) (2022) 163, http://dx.doi.org/10.3390/electronics11010163.

[23] F. de Dinechin, L. Forget, J.-M. Muller, Y. Uguen, Posits: the good, the bad and
the ugly, in: Proceedings of the Conference for Next Generation Arithmetic 2019,
ACM, 2019, pp. 1–10, http://dx.doi.org/10.1145/3316279.3316285.

[24] L. Forget, Y. Uguen, Comparing posit and IEEE-754 hardware cost, 2021, p. 13,
HAL-03195756v3, URL https://hal.archives-ouvertes.fr/hal-03195756v3.

[25] M.K. Jaiswal, H.K.-H. So, PACoGen: A Hardware Posit Arithmetic Core Generator,
IEEE Access 7 (2019) 74586–74601, http://dx.doi.org/10.1109/ACCESS.2019.
2920936.

[26] S. Tiwari, N. Gala, C. Rebeiro, V. Kamakoti, PERI: A Configurable Posit Enabled
RISC-V Core, ACM Trans. Archit. Code Optim. 18 (3) (2021) 25:1–25:26, http:
//dx.doi.org/10.1145/3446210.

[27] D. Mallasén, R. Murillo, A.A.D. Barrio, G. Botella, L. Piñuel, M. Prieto-Matias,
PERCIVAL: Open-Source Posit RISC-V Core With Quire Capability, IEEE Trans.
Emerg. Top. Comput. 10 (3) (2022) 1241–1252, http://dx.doi.org/10.1109/
TETC.2022.3187199.

[28] J. Hou, Y. Zhu, S. Du, S. Song, Enhancing Accuracy and Dynamic Range of
Scientific Data Analytics by Implementing Posit Arithmetic on FPGA, J. Sign.
Process. Syst. 91 (10) (2019) 1137–1148, http://dx.doi.org/10.1007/s11265-
018-1420-5.

[29] V. Gohil, S. Walia, J. Mekie, M. Awasthi, Fixed-Posit: A Floating-Point Represen-
tation for Error-Resilient Applications, 2021, http://dx.doi.org/10.48550/arXiv.
2104.04763.

[30] R. Murillo, A.A. Del Barrio, G. Botella, M.S. Kim, H. Kim, N. Bagherzadeh, PLAM:
A Posit Logarithm-Approximate Multiplier, IEEE Trans. Emerg. Top. Comput. 10
(4) (2022) 2079–2085, http://dx.doi.org/10.1109/TETC.2021.3109127.

[31] V.H.L. Silva, J.F. Chaves, R.M. Gomes, B.A. Santos, Posit-Based Spiking Neuron
in an FPGA, Vol. 21, 2021, p. 4.

[32] M.J. Skocik, L.N. Long, On the Capabilities and Computational Costs of Neuron
Models, IEEE Trans. Neural Netw. Learn. Syst. 25 (8) (2014) 1474–1483, http:
14

//dx.doi.org/10.1109/TNNLS.2013.2294016.
[33] D.E. Oorschot, Total number of neurons in the neostriatal, pallidal, subtha-
lamic, and substantia nigral nuclei of the rat basal ganglia: A stereological
study using the cavalieri and optical disector methods, J. Comp. Neurol. 366
(4) (1996) 580–599, http://dx.doi.org/10.1002/(SICI)1096-9861(19960318)366:
4<580::AID-CNE3>3.0.CO;2-0.

[34] B. Sen-Bhattacharya, S. James, O. Rhodes, I. Sugiarto, A. Rowley, A.B. Stokes,
K. Gurney, S.B. Furber, Building a Spiking Neural Network Model of the Basal
Ganglia on SpiNNaker, IEEE Trans. Cogn. Dev. Syst. 10 (3) (2018) 823–836,
http://dx.doi.org/10.1109/TCDS.2018.2797426.

[35] IEEE standard for floating-point arithmetic, in: IEEE Std 754-2019 (Revision
of IEEE 754-2008), 2019, pp. 1–84, http://dx.doi.org/10.1109/IEEESTD.2019.
8766229.

[36] J. Gustafson, G. Bohlender, S.Y. Chung, V. Dimitrov, Standard for PositTM
Arithmetic (2022), 2022, URL https://posithub.org/docs/posit_standard-2.pdf.
(Accessed 01 February 2023).

[37] A.Y. Romanov, A.L. Stempkovsky, I.V. Lariushkin, G.E. Novoselov, R.A. Solovyev,
V.A. Starykh, I.I. Romanova, D.V. Telpukhov, I.A. Mkrtchan, Analysis of Posit
and Bfloat Arithmetic of Real Numbers for Machine Learning, IEEE Access
(ISSN: 2169-3536) 9 (2021) 82318–82324, http://dx.doi.org/10.1109/ACCESS.
2021.3086669.

[38] H. Zhang, J. He, S.-B. Ko, Efficient Posit Multiply-Accumulate Unit Generator
for Deep Learning Applications, in: 2019 IEEE International Symposium on
Circuits and Systems, ISCAS, 2019, pp. 1–5, http://dx.doi.org/10.1109/ISCAS.
2019.8702349.

[39] H. Zhang, S.-B. Ko, Design of Power Efficient Posit Multiplier, IEEE Trans.
Circuits Syst. II 67 (5) (2020) 861–865, http://dx.doi.org/10.1109/TCSII.2020.
2980531.

[40] N.-M. Ho, D.-T. Nguyen, H.D. Silva, J.L. Gustafson, W.-F. Wong, I.J. Chang, Posit
Arithmetic for the Training and Deployment of Generative Adversarial Networks,
in: 2021 Design, Automation & Test in Europe Conference & Exhibition, 2021,
pp. 1350–1355, http://dx.doi.org/10.23919/DATE51398.2021.9473933.

[41] S.D. Ciocirlan, D. Loghin, L. Ramapantulu, N. Tapus, Y.M. Teo, The accuracy
and efficiency of posit arithmetic, in: 2021 IEEE 39th International Conference
on Computer Design, ICCD, IEEE, 2021, pp. 83–87, http://dx.doi.org/10.1109/
ICCD53106.2021.00024.

[42] A. Dawson, P.D. Düben, Rpe v5: an emulator for reduced floating-point precision
in large numerical simulations, Geosci. Model Dev. 10 (6) (2017) 2221–2230,
http://dx.doi.org/10.5194/gmd-10-2221-2017.

[43] E. Izhikevich, Figure1.m, 2004, URL http://www.izhikevich.org/publications/
figure1.m. (Accessed 01 February 2023).

[44] M. Hopkins, S. Furber, Accuracy and Efficiency in Fixed-Point Neural ODE
Solvers, Neural Comput. 27 (10) (2015) 2148–2182, http://dx.doi.org/10.1162/
NECO_a_00772.

[45] M. Hopkins, M. Mikaitis, D.R. Lester, S. Furber, Stochastic rounding and reduced-
precision fixed-point arithmetic for solving neural ordinary differential equations,
Phil. Trans. R. Soc. A 378 (2166) (2020) 20190052, http://dx.doi.org/10.1098/
rsta.2019.0052.

[46] C. Leong, SoftPosit, 2022, URL https://gitlab.com/cerlane/SoftPosit. (Accessed
23 September 2022).

[47] J. Hauser, Berkeley SoftFloat, 2018, URL http://www.jhauser.us/arithmetic/
SoftFloat.html. (Accessed 21 January 2023).

[48] C. Leong, SoftFloat-Python, 2019, URL https://gitlab.com/cerlane/SoftFloat-
Python/-/tree/master. (Accessed 02 February 2023).

[49] E.T.L. Omtzigt, J. Quinlan, Universal Numbers Library: Multi-format Variable
Precision Arithmetic Library, J. Open Sour. Softw. 8 (83) (2023) 5072, http:
//dx.doi.org/10.21105/joss.05072.

[50] Google, The bfloat16 numerical format | Cloud TPU | Google Cloud, 2023, URL
https://cloud.google.com/tpu/docs/bfloat16. (Accessed 18 April 2023).

[51] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha, D.T.
Vooturi, N. Jammalamadaka, J. Huang, H. Yuen, J. Yang, J. Park, A. Heinecke,
E. Georganas, S. Srinivasan, A. Kundu, M. Smelyanskiy, B. Kaul, P. Dubey, A
Study of BFLOAT16 for Deep Learning Training, 2019, http://dx.doi.org/10.
48550/arXiv.1905.12322, URL http://arxiv.org/abs/1905.12322. (Accessed 14
December 2023).

[52] M. Heidarpur, A. Ahmadi, M. Ahmadi, M. Rahimi Azghadi, CORDIC-SNN: On-
FPGA STDP Learning With Izhikevich Neurons, IEEE Trans. Circuits Syst. I. Regul.
Pap. 66 (7) (2019) 2651–2661, http://dx.doi.org/10.1109/TCSI.2019.2899356.

[53] M. Hayati, M. Nouri, S. Haghiri, D. Abbott, Digital Multiplierless Realization of
Two Coupled Biological Morris-Lecar Neuron Model, IEEE Trans. Circuits Syst.
I. Regul. Pap. 62 (7) (2015) 1805–1814, http://dx.doi.org/10.1109/TCSI.2015.
2423794.

[54] X. Jin, S.B. Furber, J.V. Woods, Efficient modelling of spiking neural networks
on a scalable chip multiprocessor, in: 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelligence), 2008,

pp. 2812–2819, http://dx.doi.org/10.1109/IJCNN.2008.4634194.

http://refhub.elsevier.com/S0925-2312(24)00674-X/sb9
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb9
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb9
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb9
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb9
http://dx.doi.org/10.1109/TNN.2003.820440
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb11
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb11
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb11
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb11
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb11
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.1101/2020.04.27.063693
http://dx.doi.org/10.1101/2020.04.27.063693
http://dx.doi.org/10.1101/2020.04.27.063693
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/JPROC.2014.2304638
http://dx.doi.org/10.3389/fnins.2018.00593
http://dx.doi.org/10.3389/fnins.2018.00593
http://dx.doi.org/10.3389/fnins.2018.00593
http://dx.doi.org/10.1109/FCCM.2012.32
http://dx.doi.org/10.1109/FCCM.2012.32
http://dx.doi.org/10.1109/FCCM.2012.32
http://dx.doi.org/10.1029/2020MS002246
http://dx.doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764927
http://dx.doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764927
http://dx.doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764927
https://ieeexplore.ieee.org/document/9764927
http://dx.doi.org/10.14529/jsfi170206
http://dx.doi.org/10.14529/jsfi170206
http://dx.doi.org/10.14529/jsfi170206
http://dx.doi.org/10.1109/ICCD.2018.00057
http://dx.doi.org/10.3390/electronics11010163
http://dx.doi.org/10.1145/3316279.3316285
https://hal.archives-ouvertes.fr/hal-03195756v3
http://dx.doi.org/10.1109/ACCESS.2019.2920936
http://dx.doi.org/10.1109/ACCESS.2019.2920936
http://dx.doi.org/10.1109/ACCESS.2019.2920936
http://dx.doi.org/10.1145/3446210
http://dx.doi.org/10.1145/3446210
http://dx.doi.org/10.1145/3446210
http://dx.doi.org/10.1109/TETC.2022.3187199
http://dx.doi.org/10.1109/TETC.2022.3187199
http://dx.doi.org/10.1109/TETC.2022.3187199
http://dx.doi.org/10.1007/s11265-018-1420-5
http://dx.doi.org/10.1007/s11265-018-1420-5
http://dx.doi.org/10.1007/s11265-018-1420-5
http://dx.doi.org/10.48550/arXiv.2104.04763
http://dx.doi.org/10.48550/arXiv.2104.04763
http://dx.doi.org/10.48550/arXiv.2104.04763
http://dx.doi.org/10.1109/TETC.2021.3109127
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb31
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb31
http://refhub.elsevier.com/S0925-2312(24)00674-X/sb31
http://dx.doi.org/10.1109/TNNLS.2013.2294016
http://dx.doi.org/10.1109/TNNLS.2013.2294016
http://dx.doi.org/10.1109/TNNLS.2013.2294016
http://dx.doi.org/10.1002/(SICI)1096-9861(19960318)366:4<580::AID-CNE3>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1096-9861(19960318)366:4<580::AID-CNE3>3.0.CO;2-0
http://dx.doi.org/10.1002/(SICI)1096-9861(19960318)366:4<580::AID-CNE3>3.0.CO;2-0
http://dx.doi.org/10.1109/TCDS.2018.2797426
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
https://posithub.org/docs/posit_standard-2.pdf
http://dx.doi.org/10.1109/ACCESS.2021.3086669
http://dx.doi.org/10.1109/ACCESS.2021.3086669
http://dx.doi.org/10.1109/ACCESS.2021.3086669
http://dx.doi.org/10.1109/ISCAS.2019.8702349
http://dx.doi.org/10.1109/ISCAS.2019.8702349
http://dx.doi.org/10.1109/ISCAS.2019.8702349
http://dx.doi.org/10.1109/TCSII.2020.2980531
http://dx.doi.org/10.1109/TCSII.2020.2980531
http://dx.doi.org/10.1109/TCSII.2020.2980531
http://dx.doi.org/10.23919/DATE51398.2021.9473933
http://dx.doi.org/10.1109/ICCD53106.2021.00024
http://dx.doi.org/10.1109/ICCD53106.2021.00024
http://dx.doi.org/10.1109/ICCD53106.2021.00024
http://dx.doi.org/10.5194/gmd-10-2221-2017
http://www.izhikevich.org/publications/figure1.m
http://www.izhikevich.org/publications/figure1.m
http://www.izhikevich.org/publications/figure1.m
http://dx.doi.org/10.1162/NECO_a_00772
http://dx.doi.org/10.1162/NECO_a_00772
http://dx.doi.org/10.1162/NECO_a_00772
http://dx.doi.org/10.1098/rsta.2019.0052
http://dx.doi.org/10.1098/rsta.2019.0052
http://dx.doi.org/10.1098/rsta.2019.0052
https://gitlab.com/cerlane/SoftPosit
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html
https://gitlab.com/cerlane/SoftFloat-Python/-/tree/master
https://gitlab.com/cerlane/SoftFloat-Python/-/tree/master
https://gitlab.com/cerlane/SoftFloat-Python/-/tree/master
http://dx.doi.org/10.21105/joss.05072
http://dx.doi.org/10.21105/joss.05072
http://dx.doi.org/10.21105/joss.05072
https://cloud.google.com/tpu/docs/bfloat16
http://dx.doi.org/10.48550/arXiv.1905.12322
http://dx.doi.org/10.48550/arXiv.1905.12322
http://dx.doi.org/10.48550/arXiv.1905.12322
http://arxiv.org/abs/1905.12322
http://dx.doi.org/10.1109/TCSI.2019.2899356
http://dx.doi.org/10.1109/TCSI.2015.2423794
http://dx.doi.org/10.1109/TCSI.2015.2423794
http://dx.doi.org/10.1109/TCSI.2015.2423794
http://dx.doi.org/10.1109/IJCNN.2008.4634194

Neurocomputing 597 (2024) 127903T. Fernandez-Hart et al.
[55] M. Heidarpur, A. Ahmadi, M. Ahmadi, Time Step Impact on Performance and
Accuracy of Izhikevich Neuron: Software Simulation and Hardware Implemen-
tation, in: 2020 IEEE International Symposium on Circuits and Systems, ISCAS,
2020, pp. 1–5, http://dx.doi.org/10.1109/ISCAS45731.2020.9180632.

[56] J. White, K. Adámek, J. Roy, S. Dimoudi, S.M. Ransom, W. Armour, Bits Missing:
Finding Exotic Pulsars Using bfloat16 on NVIDIA GPUs, Astrophys. J. Suppl. Ser.
265 (1) (2023) 13, http://dx.doi.org/10.3847/1538-4365/acb351.

[57] Xilinx, Floating-Point Operator v7.1 LogiCORE IP Product Guide, 2020, URL
https://docs.xilinx.com/v/u/en-US/pg060-floating-point. (Accessed 21 Novem-
ber 2023).

[58] F. De Dinechin, B. Pasca, Designing custom arithmetic data paths with FloPoCo,
IEEE Des. Test Comput. 28 (4) (2011) 18–27, http://dx.doi.org/10.1109/MDT.
2011.44.

[59] J.-M. Muller, N. Brisebarre, F. Dinechin, C.-P. Jeannerod, V. Lefèvre, G.
Melquiond, N. Revol, D. Stehlé, S. Torres, Handbook of Floating-Point Arithmetic,
ISBN: 978-0-8176-4704-9, 2010, http://dx.doi.org/10.1007/978-0-8176-4705-6.

[60] N.N. Sharma, R. Jain, M.M. Pokkuluri, S.B. Patkar, R. Leupers, R.S. Nikhil,
F. Merchant, CLARINET: A quire-enabled RISC-V-based framework for posit
arithmetic empiricism, J. Syst. Archit. 135 (2023) 102801, http://dx.doi.org/
10.1016/j.sysarc.2022.102801.

[61] R. Murillo, J. Hormigo, A.A.D. Barrio, G. Botella, HUB Meets Posit: Arithmetic
Units Implementation, IEEE Trans. Circuits Syst. II (2023) 1, http://dx.doi.org/
10.1109/TCSII.2023.3307488.

[62] L. Crespo, P. Tomás, N. Roma, N. Neves, Unified posit/IEEE-754 Vector MAC
Unit for transprecision computing, IEEE Trans. Circuits Syst. II 69 (5) (2022)
2478–2482, http://dx.doi.org/10.1109/TCSII.2022.3160191.

[63] R. Murillo, D. Mallasén, A.A. Del Barrio, G. Botella, Comparing Different Decod-
ings for Posit Arithmetic, in: J. Gustafson, V. Dimitrov (Eds.), Next Generation
Arithmetic, in: Lecture Notes in Computer Science, Springer International Pub-
lishing, Cham, 2022, pp. 84–99, http://dx.doi.org/10.1007/978-3-031-09779-
9_6.
15
Tim Fernandez-Hart has a B.Sc. (Hons) in Genetics, an
M.Sc. in Industrial Biotechnology, a M.Sc. in Medical Ul-
trasound and received a B.Sc. with first-class honours in
Mathematics and Statistics from The Open University, UK in
2021. He is currently working towards a Ph.D. in Computer
Systems Research at Brunel University, London, UK. His
research interests include AI, neuromorphic engineering,
spiking neural networks, event-based sensors and computer
arithmetic.

James Knight received his BEng degree in Electronic En-
gineering from the University of Warwick in 2006. After
working in industry for several years, in 2013, he received
an MPhil in Advanced Computer Science from the University
of Cambridge and, in 2016, a Ph.D. in Computer Sci-
ence from the University of Manchester. His doctoral work
focussed on using the SpiNNaker neuromorphic supercom-
puter to simulate large-scale computational neuroscience
models with synaptic plasticity. James has worked at the
University of Sussex since 2017, first as a PostDoctoral
researcher and now as a EPSRC Research Software Engineer-
ing fellow, focussing on using GPU hardware to accelerate
brain-inspired AI.

Tatiana Kalganova received the B.Sc. (Hons.) and Ph.D.
degrees. She is currently a Professor in intelligent systems
and the Electronic and Computer Engineering Postgraduate
Research Director with Brunel University London, Uxbridge,
U.K. She has over 30 years of experience in the design and
implementation of applied intelligent systems.

http://dx.doi.org/10.1109/ISCAS45731.2020.9180632
http://dx.doi.org/10.3847/1538-4365/acb351
https://docs.xilinx.com/v/u/en-US/pg060-floating-point
http://dx.doi.org/10.1109/MDT.2011.44
http://dx.doi.org/10.1109/MDT.2011.44
http://dx.doi.org/10.1109/MDT.2011.44
http://dx.doi.org/10.1007/978-0-8176-4705-6
http://dx.doi.org/10.1016/j.sysarc.2022.102801
http://dx.doi.org/10.1016/j.sysarc.2022.102801
http://dx.doi.org/10.1016/j.sysarc.2022.102801
http://dx.doi.org/10.1109/TCSII.2023.3307488
http://dx.doi.org/10.1109/TCSII.2023.3307488
http://dx.doi.org/10.1109/TCSII.2023.3307488
http://dx.doi.org/10.1109/TCSII.2022.3160191
http://dx.doi.org/10.1007/978-3-031-09779-9_6
http://dx.doi.org/10.1007/978-3-031-09779-9_6
http://dx.doi.org/10.1007/978-3-031-09779-9_6

	Posit and floating-point based Izhikevich neuron: A Comparison of arithmetic
	Introduction
	Contributions to Science
	Background

	Methods
	Model Definitions
	Standard Neuron Model
	Rescaled Neuron Model

	Testing Procedure
	Data Analysis
	Membrane Voltage Error
	Spike Count and Timing

	Results and Discussion
	Membrane Voltage Error
	Class 2
	Spike Count and Timing
	Fixed-Point Arithmetic
	BFloat16 Arithmetic
	Exploring n<16 and the Effect of Different es Values
	The Effect of Scaling
	Implications for Hardware Design

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

