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A B S T R A C T   

A key factor in improving the performance of large-scale bioreactors is understanding the conditions experienced 
by the cells inside the reactor. This can be challenging due to the practical difficulties involved, hence there is 
increasing use of simulation to quantify the environmental conditions found in large-scale bioreactors. In this 
work we have used the particle lifeline approach to quantify the effect of the reactor design on the conditions 
experienced by two very commonly used industrial organisms (Escherichia coli and Saccharomyces cerevisiae). It 
was found that the cells in the stirred tank reactor tended to experience longer fluctuations of both starvation and 
overflow metabolism when compared with those in the bubble column, this behaviour being caused by differ
ences in mixing between the two reactor designs. It was found that a significant (60%) fraction of the population 
in the stirred tank reactors experienced starvation conditions for a large fraction (>70%) of the time, with 
exposure to such conditions being likely to affect the cellular metabolism. Results from this work provide a 
detailed insight into the conditions experienced inside industrial-scale bioreactors operated at realistic condi
tions. Such data can be leveraged to optimise large-scale reactor designs as well as for the development of scale- 
down systems.   

1. Introduction 

Understanding the performance of industrial scale bioreactors is a 
topic of considerable importance, particularly given the increasing in
terest in and need for sustainable production technologies [1–4]. From 
an industrial perspective the aim is to minimize the cost of production. 
This can be done by ensuring the process is reliable and reproducible, 
ensuring efficient conversion of substrate to product (i.e., maximizing 
the yield), minimizing downstream processing costs (this can be done by 
maximizing the product concentration) and ensuring efficient equip
ment utilization (i.e., maximizing the productivity of the system) [5]. 
The performance of large-scale reactors is determined by the hydrody
namics of the system (as this governs mixing and mass transfer), the 
operating conditions (e.g., feed rates, stirrer speeds and superficial gas 
velocities), as well as the characteristics of the microorganism used [1, 
6–8]. Understanding the behavior of industrial scale reactors is chal
lenging due to the need to accurately model both the hydrodynamics of 

the system as well as the growth and uptake kinetics of the 
microorganism. 

Large-scale bioreactors are typically either bubble columns or stirred 
tanks, with the reactor design having an obvious influence on the hy
drodynamics. Due to the challenges involved with performing experi
mental work at the industrial-scale, Computational Fluid Dynamics 
(CFD) has been increasingly [2,9–13] used as a tool to model large-scale 
bioreactors. Such models have the advantage of offering a high degree of 
spatial and temporal resolution. However, they have the disadvantage in 
that it is not possible to simulate the entirety of an industrial fermen
tation due to the computational demand involved. For this reason, CFD 
models are typically used to model ‘snapshots’ of a fermentation, with 
each snapshot typically being up to several minutes in length [9,14,15]. 
A consequence of this approach is that the biomass concentration is 
assumed to be fixed in such a CFD model, as the timescale for growth is 
less than the simulation time. The performance of the system can then be 
quantified by calculating the relevant process metrics using instanta
neous results, and/or transient averages over the duration of the 
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simulation. Using this approach, it is possible to visualize the concen
tration of key components (e.g., glucose), something which is very 
challenging to do experimentally. This information can then be used to 
calculate key process metrics (e.g., the yield or productivity), thereby 
allowing different reactor configurations or operating conditions to be 
compared. 

A related approach makes use of Lagrangian particle tracking. Here, 
particles representing the cells are introduced into the simulation 
domain and their progress is tracked as they move throughout the 
reactor [10]. From this it is possible to construct the history of the 
particle (often called its ‘lifeline’) [16]. Such an approach may be the 
most realistic representation of the processes occurring inside bio
reactors, however, the tradeoff is the increased computational demand, 
and the need for more complex post-processing. Use of particle-tracking 
type approaches can provide statistical information about the conditions 
experienced by the microorganisms, for example the frequency at which 
they alternate between zones of high and low substrate concentration, as 
well as information about the length of these oscillations. This approach 
has been applied to a range of microorganisms, including Clostridium 
ljungdahlii [14], Pseudomonas putida [15], Penicillium chrysogenum [17] 
and Saccharomyces cerevisiae [9,12]. Both bubble column and stirred 
tank reactors have been examined, however little comparison between 
the two reactor types on the conditions experienced by the microor
ganisms has been provided in the open literature. 

A major advantage of approaches based on Lagrangian particle 
tracking is that they may be the most meaningful from the perspective of 
understanding the conditions experienced by the cells as they move 
through the reactor. Another advantage of these type of approaches is 
that they provide information about the distribution of conditions 
experienced by the cells, unlike approaches based on the Eulerian 
framework which typically provide conditions averaged over the 
simulation volume and/or time. Exposure to heterogenous environ
mental conditions can drive population heterogeneity [18] which may 
have a negative effect on the overall process performance [19]. Hence 
there is a need to understand what conditions microorganisms are likely 
to experience in industrial bioreactors operated under representative 

conditions. Similarly, detailed knowledge about the variety of condi
tions experienced in large-scale reactors is obviously useful in the design 
of scale-down systems [12]. Hence a key aim of this paper is to generate 
a dataset describing the conditions experienced in large-scale bio
reactors for industrially representative microorganisms (i.e., Escherichia 
coli and Saccharomyces cerevisiae). 

2. Methods 

In this paper two industrially relevant configurations (a bubble col
umn and a stirred tank with four six bladed Rushton impellers) have 
been investigated. Both configurations had a total volume of 90 m3. This 
was selected as being broadly representative of large-scale bioreactors. 
The liquid volume was less in the bubble column reactor (64 m3) than in 
the STR (73 m3). This is due to the fact that the bubble column was 
operated at a higher gas volume fraction. These volumes were selected 
in order to represent an industrial fed-batch fermentation towards the 
end of the batch (i.e., when gradients are most likely to exist). In all cases 
the substrate was introduced at the top of the reactor. A schematic 
showing the two reactor configurations is given in Fig. 1. 

Ansys CFX 19.2 was used to model the different reactor configura
tions. In all cases the Euler-Euler method was used to model the two- 
phase flow. All simulations were run in transient mode; unless stated 
otherwise reported results are transient averages. A single bubble size 
which was adjusted for the effect of static pressure was used in all 
simulations. This approach was used because the surface active com
pounds found in fermentation medium tend to favor a relatively narrow 
bubble size distribution [20]. Additionally, use of more complex models 
which account for a distribution of bubble sizes lead to substantially 
increased computational demand without marked increases in predic
tive performance [21]. Liquid-phase turbulence was modelled using the 
k-ε model, while the dispersed-phase zero model was used to model gas 
phase turbulence. Simulations of the stirred tank configurations were 
performed using the transient rotor stator method where the time step 
was set to 6 × 10-3 s to ensure that the impeller rotation was less than 5◦

per time step. A fixed time step of 1 × 10-3 s was used for the bubble 

Nomenclature 

BP By-product concentration [kg m-3]. 
FO Fraction of time spent by a particle in overflow conditions 

[-]. 
FS Fraction of time spent by a particle in starvation conditions 

[-]. 
G Glucose concentration [kg m-3]. 
G Time-averaged glucose concentration [kg m-3]. 
KBP Affinity constant of by-product [kg m-3]. 
KG Affinity constant of glucose [kg m-3]. 
KG

IBP Inhibition constant of by-product on glucose uptake [kg m- 

3]. 
KG

IG Inhibition constant of glucose on glucose uptake [kg m-3]. 
mBP Maintenance coefficient for by-product [kg kg-1 h-1]. 
mG Maintenance coefficient for glucose [kg kg-1 h-1]. 
mO Maintenance coefficient for oxygen [kg kg-1 h-1]. 
n Number of timesteps [-]. 
O Dissolved oxygen concentration [kg m-3]. 
O∗ Oxygen concentration at saturation [kg m-3]. 
OTR Oxygen transfer rate [kg m-3 h-1]. 
qBP Specific by-product uptake and formation rate [kg kg-1 h- 

1]. 
qG Specific glucose uptake rate [kg kg-1 h-1]. 
qG,crit Critical specific glucose uptake rate at which overflow 

metabolism starts [kg kg-1 h-1]. 
qO Specific oxygen uptake rate [kg kg-1 h-1]. 
ts Time step size [s]. 
X Biomass concentration [kg m-3]. 
YOf

XBP Yield coefficient of biomass on by-product under overflow 
conditions [kg kg-1]. 

YOx
XBP Yield coefficient of biomass on by-product under oxidation 

conditions [kg kg-1]. 
YOf

XG Yield coefficient of biomass on glucose under overflow 
conditions [kg kg-1]. 

YOx
XG Yield coefficient of biomass on glucose under oxidation 

conditions [kg kg-1]. 
YBP

XO Yield coefficient of biomass on oxygen when growth is on 
by-product [kg kg-1]. 

YG
XO Yield coefficient of biomass on oxygen when growth is on 

glucose [kg kg-1]. 
μ Specific growth rate [h-1]. 
μBP Specific growth rate on by-product [h-1]. 
μBP,max Maximum specific growth rate on by-product [h-1]. 
μComp Specific growth rate in each compartment [h-1]. 
μcrit Critical specific growth rate at which overflow metabolism 

starts [h-1]. 
μG Specific growth rate on glucose [h-1]. 
μG,max Maximum specific growth rate on glucose [h-1].  
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Fig. 1. Plot showing the different bioreactor configurations used in this work. Red arrows indicate the location where the feed was added, this point was located at a 
distance of 1.23 m from the centreline of the reactor, and a height of 9.9 m for the STR and 9 m for the bubble column. 

G. Nadal-Rey et al.                                                                                                                                                                                                                             



Biochemical Engineering Journal 198 (2023) 108989

4

column simulations. Detailed information about the meshes used, se
lection of inter-phase transfer models, boundary conditions and solution 
methods is presented elsewhere [22]. 

A total of 5000 particles were introduced to the system, these had a 
diameter of 1 µm in order to mimic cells. These were introduced uni
formly throughout the simulation domain. One-way coupling between 
the liquid and particle phases was used to reduce the computational 
demand. Such an approach is reasonable given the very small Stokes 
number of the particles. Particles were tracked for a total of 270 s for the 
bubble column and 150 s for the stirred tank. 

In this work we have chosen to model two well characterized mi
croorganisms with industrial applications, Escherichia coli and Saccha
romyces cerevisiae. Scalars were introduced to the model to quantify the 
concentration of glucose, dissolved oxygen, ethanol and acetate. Source 
and sink terms were added to the scalar equation to account for con
sumption, production or addition of these components as appropriate. 

In order to model the system, it is necessary to calculate the specific 
growth rate of the microorganism (µ), the specific rate of glucose uptake 
(qG), the specific rate of oxygen uptake (qO), as well as the rate at which 
the byproduct (ethanol or acetate) is produced or consumed (qBP). Here 
Monod kinetics have been used to calculate the specific growth rate. The 
specific growth rate varies depending on whether the substrate is 
glucose (µG) or the by-product (µBP). For S. cerevisiae the specific growth 
rate using glucose as the substrate is: 

μG =
μG,maxG
KG + G

(1)  

where µG,max is the maximum specific growth rate on glucose, G is the 
glucose concentration and KG is the affinity constant for glucose. The 
effect of both substrate inhibition and by-product (acetate) inhibition 
were accounted for when calculating the growth rate of E. coli [23–25]: 

μG =
μG,maxG

(KG + G)
(

1 + BP
KG

IBP

) exp
(

−
G

KG
IG

)

(2)  

where KG
IBP is the inhibition constant of by-product on glucose uptake 

and KG
IGis the inhibition constant of glucose on glucose uptake. For both 

S. cerevisiae and E. coli the growth on by-product was modelled using: 

μBP =
μBP,maxBP
KBP + BP

(3)  

where µBP,max is the maximum specific growth rate where the by-product 
is used as the substrate, BP is the concentration of the byproduct and KBP 
is the affinity constant for the by-product. Values used for these con
stants were obtained from the literature and are listed in Table 1. 

In the approach used in this work five different metabolic regimes 
were considered, these being glucose starvation, oxidation, overflow, 
oxygen limitation and oxygen limitation and glucose starvation. The 
boundaries for these regimes depend on the physiology of the 
microorganism. 

Glucose starvation occurs when the concentration of dissolved oxy
gen (O) is sufficient to meet the maintenance requirements of the 
microorganism (mO), but the concentration of glucose (G) is below that 
required to meet the maintenance requirements (mG). Expressed math
ematically this is: 

G
tsX

< mG and
O

tsX
> mO (4)  

where X is the concentration of biomass and ts is the timestep used in the 
simulation. Under these conditions it is assumed that any glucose in the 
medium is taken up, i.e.: 

qG = −
G

tsX
(5)  

The specific byproduct uptake rate is: 

qBP = − min

⎛

⎜
⎜
⎝

μBP

YOx
XBP

+ mBP,

BP
tsX

⎞

⎟
⎟
⎠ (6)  

where mBP is the maintenance requirement where the byproduct is used 
as a substrate and YOx

XBP is the oxidative biomass yield on by-product. The 
specific oxygen uptake rate is: 

qO = − min

⎛

⎜
⎜
⎝

μG

YG
XO

+
μBP

YBP
XO

+ mO,

μcrit

YXO
+ mO

⎞

⎟
⎟
⎠ (7)  

where YBP
XO is the yield coefficient of biomass on oxygen where by- 

product is used as the substrate. In this regime growth only occurs due 
to by-product consumption: 

μ = μBP (8) 

Oxygen limitation occurs when the concentration of dissolved oxy
gen is too low to meet maintenance requirements and the concentration 
of glucose is sufficient for maintenance: 

G
tsX

> mG and
O

tsX
< mO (9) 

Under these conditions the rate of glucose uptake is given by: 

qG = −

(
μG

YOf
XG

+ mG

)

(10)  

where YOf
XGis the yield coefficient of biomass on glucose under overflow 

conditions. When oxygen is limited by-product formation will occur, the 
specific rate being: 

Table 1 – 
Values of parameters used in kinetic models. Parameters marked with an * have 
been calculated based on information provided in the references.    

S. cerevisiae E. coli 

Parameter Units Value Reference Value Reference 
μBP,max h-1 0.13 

[27] 
0.22 

[28] 
μcrit h-1 0.25 

[27] 
0.35 

[29] 
μG,max h-1 0.44 

[27] 
0.55 

[23] 
KBP kg m-3 0.10 

[30] 
0.05 

[28] 
KG kg m-3 0.15 

[31] 
0.05 

[23] 

KG
IBP kg m-3 -  5 

[23] 

KG
IG kg m-3 -  46.9 

[24] 
mBP kg kg-1 h- 

1 
0.01 * 

[32] 
0.04 * 

[32,33] 

mG kg kg-1 h- 

1 
0.02 

[31] 
0.04 

[33] 

mO kg kg-1 h- 

1 
0.02 

[31] 
0.01 

[31] 

YOf
XBP 

kg kg-1 0.11 90% of theoretical 
yield 

0.22 
[23] 

YOx
XBP kg kg-1 0.72 

[30] 
0.4 

[23] 

YOf
XG 

kg kg-1 0.05 
[30] 

0.15 
[23] 

YOx
XG kg kg-1 0.49 

[30] 
0.51 

[23] 

YBP
XO kg kg-1 0.58 * 

[32] 
0.45 * 

[31,32] 

YG
XO kg kg-1 1.54 * 

[32] 
0.45 

[31]  
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qBP =
μG

YOf
XBP

(11)  

where YOf
XBPis the yield of biomass on by-product under overflow con

ditions. Under oxygen limitation it is assumed that any dissolved oxygen 
is taken up to meet maintenance requirements, i.e.: 

qO = −
O

tsX
(12) 

As the by-product can only be used under conditions where there is 
sufficient oxidative capacity the specific growth rate is: 

μ = μG (13) 

Glucose starvation and oxygen limitation occur when the concen
trations of both glucose and dissolved oxygen are insufficient to meet the 
maintenance requirements: 

G
tsX

< mG and
O

tsX
< mO (14) 

Here it is assumed that any glucose and dissolved oxygen present is 
consumed, meaning that Eq. (5) is used to determine the specific glucose 
uptake rate and Eq. (12) is used to determine the specific oxygen uptake 
rate. Under these conditions the specific growth rate and the rate of by- 
product consumption/uptake are both zero. 

Oxidation occurs when the concentrations of both glucose and oxy
gen are sufficient to meet maintenance requirements, and the specific 
glucose uptake rate is less than the value (qG,crit) which will lead to 
overflow metabolism: 

G
tsX

> mG ,
O

tsX
> mO and qG < qG,crit (15) 

The specific rate of glucose uptake is: 

qG = −

(
μG

YOx
XG

+ mG

)

(16)  

where YOx
XG is the yield coefficient of biomass on glucose under oxidative 

conditions. The rate of by-product consumption is given by: 

qBP = −
μBP

YOx
XBP

(17)  

where YOx
XBP is the yield of biomass on by-product under oxidative con

ditions. Eq. (7) is used to determine the specific oxygen uptake rate. The 
specific growth rate is: 

μ = μG + μBP (18) 

Overflow conditions occur when the concentrations of dissolved 
oxygen and glucose are sufficient to meet maintenance requirements 
and the rate of glucose is above the critical value: 

G
tsX

> mG ,
O

tsX
> mO and qG > qG,crit (19) 

The specific rate of glucose uptake is: 

qG = −

(
μcrit

YOx
XG

+
μG − μcrit

YOf
XG

+ mG

)

(20)  

where µcrit is the specific growth rate that corresponds to the critical rate 
of glucose uptake. The rate of by-product production is: 

qBP =
μG − μcrit

YOf
XBP

(21) 

Under overflow conditions Eq. (7) is used to determine the specific 
oxygen uptake rate, and the specific growth rate is determined using Eq. 
(13). 

When modelling the STR using CFD the biomass concentration of 

E. coli was 133 kg m-3, while it was 92.6 kg m-3 for S. cerevisiae. Values 
for the bubble column were 102 and 75.6 kg m-3 for E. coli and 
S. cerevisiae, respectively. Given the relatively short time scale of the 
simulations it was assumed that the biomass concentrations were fixed. 
Glucose feed rates in the STR were 674 kg h-1 for E. coli and 1030 kg h-1 

for S. cerevisiae, while values in the bubble column were 327 kg h-1 for 
E. coli and 312 kg h-1 for S. cerevisiae. Values of feed rates and biomass 
concentrations were obtained using a modelling approach described in 
our previous work [26]. In this approach it was assumed that the bio
reactors were ideally mixed, and a PI controller was implemented with 
the aim of varying the feed rate such that the concentration of dissolved 
oxygen was 20% of saturation. Such an approach was used to mimic a 
common industrial strategy for the control of large-scale aerobic 
fermentations. 

The bubble column was operated at a superficial velocity of 0.16 m s- 

1, the STR was operated at a superficial velocity of 0.07 m s-1 and a 
stirring rate of 140 rpm. Volumetric power inputs were of the order 1-2 
kW m-3 for the bubble column and 5-6 kW m-3 for the STR. 

The particle tracks containing the particle time, location as well as 
the concentrations were exported to a text file. A custom script written in 
Matlab was used to process the file containing the particle data. As CFX 
uses a variable timestep for the particle integration the one-dimensional 
interpolation function (interp1) in Matlab was used to interpolate the 
results onto a regularly spaced (1 × 10-4 s) vector using spline interpo
lation. This was done to simplify the subsequent calculations as per
forming the interpolation eliminates the need to account for different 
sampling times. Average values of the substrate and byproduct con
centrations for each particle were calculated using the arithmetic mean. 
For example, the average glucose concentration (Ḡ) is defined as: 

G =
1
n
∑n

i=1
Gi (22)  

where n is the number of time steps. The specific growth rate (µ) was 
calculated using the instantaneous glucose and byproduct concentra
tions using Eq. (1) for S. cerevisiae and Eq. (2) for E. coli. Results were 
then averaged over the particle time using the same approach as used for 
the substrate concentrations. The percentage of time spent by a particle 
in overflow conditions (FO) was found by: 

FO =

∑n
i=1xi

n
, xi =

{
1, qG > qG,crit

0, qG ≤ qG,crit
(23) 

The fraction of time spent in starvation conditions (FS) was calcu
lated in a similar fashion: 

FS =

∑n
i=1xi

n
, xi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1,
G

tsX
< mG

0,
G

tsX
≥ mG

(24) 

The length of each fluctuation was also determined using the particle 
track data. 

3. Results 

Plots showing the transient average glucose, acetate/ethanol and 
dissolved oxygen concentrations for the two reactor configurations are 
shown in Fig. 2 for E. coli and in Fig. 3 for S. cerevisiae. It was found that 
there was a ‘hotspot’ of high glucose concentration near the feed-point, 
this occurred for both reactor configurations and microorganisms 
examined. As discussed in our previous work [22] the hydrodynamics in 
the STR gives rise to higher mixing times (approximately 200 s, 
compared with ~30 s for the bubble column). This is apparent when 
examining the concentrations of ethanol and dissolved oxygen, with the 
STR having more pronounced axial gradients. Such results are unsur
prising, as the use of multiple radial impellers (e.g. Rushton turbines) is 
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Fig. 2. – Plot showing the transient average concentrations of glucose (a-b), 
acetate (c-d) and dissolved oxygen (e-f) for growth of E. coli. Results in the first 
column (i.e. (a), (c) and (e)) are for the bubble column, while those in the 
second column (i.e. (b), (d) and (f)) are for the STR. Results for the STR have 
only been shown for the tank domain. 

Fig. 3. Plot showing the transient average concentrations of glucose (a-b), 
ethanol (c-d) and dissolved oxygen (e-f) for growth of S. cerevisiae. Results in 
the first column (i.e. (a), (c) and (e)) are for the bubble column, while those in 
the second column (i.e. (b), (d) and (f)) are for the STR. Results for the STR have 
only been shown for the tank domain. 
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likely to lead to a degree of compartmentalization. Here it must also be 
noted that our previous work examined mixing in a system with three 
axial flow (A310) and one radial impeller; mixing in this case was 
slightly better than the case with four Rushton impellers, but still not as 
good as the bubble column [22]. 

As would be expected the differences in mixing behaviour give rise to 
different metabolic regimes experienced by the microorganisms, and 
this is shown in Fig. 4. It was found in all cases that the zone of high 
substrate concentration at the feed point led to a volume of the reactor 
where overflow metabolism occurred, and that this zone was larger by a 
factor of 3–6 for the stirred tank cases. Another major difference be
tween the reactor configurations was the volume experiencing glucose 
starvation, this was between 6% and 50% for the bubble column and 

approximately 90% for the stirred tank reactor. These results suggest 
that the glucose introduced into the reactor is being consumed in the 
zone near the top impeller (see Fig. 2 and Fig. 3) before it can be mixed 
throughout the vessel. In the case of the bubble column the glucose is 
transported more evenly throughout the reactor, which reduces the 
volume experiencing starvation. Interestingly, a large difference be
tween the organisms was observed for the bubble column case (as shown 
in Fig. 4). This may be due to the fact that the maintenance requirements 
for E. coli are double that of S. cerevisiae, meaning that it is much more 
likely that the glucose starvation regime will be experienced. 

Knowledge of the metabolic regimes experienced within the reactor 
is obviously relevant to key process parameters. For example, in the 
production of baker’s yeast a key objective is maximising the biomass 
yield on substrate. To achieve this objective, it is important to avoid 
overflow metabolism, as this leads to ethanol production and hence a 
reduction in the overall yield. Using the CFD model it is possible to 
determine the proportion of feed which is diverted to overflow meta
bolism, this was 12% of the glucose added for the STR case and 3% for 
the bubble column (percentages have been calculated on a mass basis). 
Understanding how the feedstock is converted to different products or 
metabolites is key in quantifying the overall process performance. This is 
more complex in the case of E. coli which is often used to produce re
combinant proteins. The availability of substrate within the reactor will 
clearly affect the ability of the cell to correctly synthesise the desired 
protein product, however, this relationship is more complex than the 
production of biomass, as it is necessary to account for the synthesis of 
the recombinant protein in addition to the normal cellular processes. 
Process performance in this case can be complicated by other factors (e. 
g. the choice of expression system, the protein being produced and its 
metabolic burden, etc.) [19]. 

It is also possible to quantify the performance of the bioreactors using 
particle tracking methods. These give an insight into the conditions 
experienced by the cells as they travel throughout the reactor and hence 
may offer the most representative methodology of quantifying reactor 
performance. Fig. 5 shows a plot of the average glucose concentrations 
experienced by the particles for the reactor configurations examined. It 
was found that on average most of the particles experienced low glucose 
concentrations, this being in line with the results shown in Figs. 2–4. 
Using the kinetic model, it is possible to calculate the glucose concen
tration which will lead to the organism growing at the critical growth 
rate, this is 0.0875 kg m-3 for E. coli (neglecting substrate and acetate 
inhibition) and 0.197 kg m-3 for S. cerevisiae. As shown in Fig. 5 the 
average conditions experienced by the microorganisms in the reactor are 
typically below this value (except for a small fraction of the E. coli 
population). It is also possible to generate similar plots for the dissolved 
oxygen concentration, however these results have not been shown as 
oxygen limitation was not found to be significant in the cases examined. 
This is because the values of the cell density and glucose feed rate were 
obtained from a model where the control objective was to maintain a 
fixed level of dissolved oxygen (20% of saturation), meaning oxygen 
limitation is unlikely to occur. An obvious interesting avenue for future 
work would be to explore the performance if alternative control stra
tegies are used (e.g., if the aim is to maximise the biomass productivity). 

Data about the glucose concentrations found in the bioreactor can 
also be used to calculate the metabolic regimes experienced by the mi
croorganisms. Results are shown in Fig. 6 for overflow and in Fig. 7 for 
starvation. Results from Fig. 6 show that approximately 1% of the par
ticles spend more than 10% of the time in overflow conditions. This is 
unsurprising given the fluid flow patterns found in the reactor, where 
particles are likely to move quickly through the zone of high substrate 
concentration near the feed. This behaviour was similar for both reactor 
configurations and microorganisms examined. A major difference be
tween the reactor configurations was found when analysing the fraction 
of time the particles spent in starvation conditions (Fig. 7). It was 
observed that the population distribution in the STRs was essentially 
bimodal, with approximately 40% of the population not experiencing 

Fig. 4. Plot showing the different metabolic regimes experienced in the bubble 
column bioreactors (a) and (c) and in the STRs (b) and (d). Results in the first 
row (a-b) are for E. coli, results in the second row (c-d) are for S. cerevisiae. The 
oxidation regime has not been coloured, if the reactor volume is not in one of 
the other four metabolic regimes then it is in oxidative metabolism. Results for 
the bubble columns have been clipped at the gas-liquid interface. 
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starvation to a significant extent, with the remaining 60% of the popu
lation spending a relatively large (> 70%) fraction of time exposed to 
starvation conditions. In contrast, 90% of the population of particles in 
the bubble column spent less than a third of the time exposed to star
vation conditions. The differences between the two reactor configura
tions are most likely explained by the differences in mixing behaviour; as 
previously discussed the flow in the STR is much more stratified, 
meaning that it is more likely for the particles to be ‘trapped’ in a zone of 
low substrate concentration. Exposure to starvation conditions for a 
significant length of time is likely to trigger a stress response in the 
microorganisms and this will have an impact on the process 
performance. 

Fig. 8 shows the distribution of the average specific growth rates 
calculated for the cases examined. Unsurprisingly for the STRs it was 
found that the majority cells are growing at a relatively small fraction of 
the maximum value; 98% of the S. cerevisiae cells and 99% of the E. coli 
cells were determined to be growing at or less than 7.5% of the 
maximum rate. Specific growth rates were found to be higher in the 
bubble column, this again is most likely due to the more homogenous 
distribution of substrate due to differences in mixing behaviour. 

An advantage of using the particle tracking approach is that it is 
possible to quantify the length of the fluctuations. Cumulative distri
butions showing the fraction of the total fluctuations as a function of the 

Fig. 5. Plot showing the average glucose concentrations calculated based on 
the particle tracks. Results are shown for the bubble column (a) and the STR (b). 
Note the logarithmic scale on the y-axis. 

Fig. 6. Plot showing the percentage of time spent in overflow conditions for the 
bubble column and STR. Note the logarithmic scale on the y-axis. 

Fig. 7. Plot showing the percentage of time each particle spends in starvation 
conditions for the bubble column and STR configurations examined. 
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length are plotted for overflow conditions in Fig. 9 and starvation con
ditions in Fig. 10. Once again differences between the reactor designs 
are apparent, with the fluctuations in the bubble column tending to be 
smaller in duration. For example, 99% of the fluctuations (i.e., exposure 
to starvation or overflow conditions) in the bubble column are predicted 
to be 2 s or less in duration. This contrasts with the STR where a larger 
fraction of the particles is exposed to longer duration fluctuations. 

A key consideration in analysing the results shown in Fig. 9 and 
Fig. 10 is understanding what duration of fluctuations are likely to lead 
to a response from the cells. For example, a large fraction of the fluc
tuations in the bubble column are less than 0.1 s in length; such short 

exposures to changing conditions may not lead to any changes in cellular 
physiology. Contrastingly, as the length of the fluctuation increases (i.e., 
cells are exposed to starvation or overflow conditions for a longer time) 
it is more likely that they will respond to this in some way. It has been 
shown [34] that E. coli is able to rapidly (< 100 s) modulate its meta
bolism in response to environmental changes, and that exposure to 
glucose starvation for periods of 30–70 s leads to changes in the 
metabolome [35]. On this basis it would be reasonable to think that the 
conditions found in the STRs are likely to lead to a physiological change 
for at least some part of the population. Such conditions can impose a 
significant metabolic burden on the cells (reported to be a 40–50% in
crease in ATP maintenance demands), as they involve large changes in 
gene regulation [35]. This can lead to an increase in the maintenance 
requirement for cells exposed to fluctuating conditions; it has also been 
shown that deletion of selected genes can both reduce the maintenance 
requirements and increase the yield of the product [36]. 

When examining these results, it is important to note that they 
depend on the selection of suitable metabolic models, and that the 
choice of model will have a significant impact upon the results. It is also 
important to note that the values used to determine whether or not 
starvation or overflow metabolism occurs are not likely to be fixed, as 
was the case in this manuscript. Microorganisms are capable of regu
lating the uptake rate of nutrients based on their concentration in the 
environment [37]. Hence, the values of key constants (e.g., KG, mG) will 
change based on the history of the cell, and there may exist a distribution 
of cells with different adaptations to the environment. An area for future 
work could be to explore the effect of this on the predicted extent of 
starvation and overflow within the reactor. One way in which this could 
be done is to make the current uptake rates a function of both the local 
concentrations as well as the history of the particle. This would involve 
having a detailed biological understanding of how the history of a cell 
affects its current and future behaviour, as well as developing compu
tational tools by which this can be implemented. 

In designing a scale-down system it is important to know what 
conditions the cells will be exposed to, as well as the amount of time they 
will be exposed to these conditions. This information can then be used to 
determine the residence time in vessels (e.g. in two-tank set-ups) [38,39] 
or the oscillating feed supply in other systems [40]. Such information 
can be obtained from the particle track data. The length of both 

Fig. 8. Plot showing the distribution of average specific growth rates calculated 
for the particle populations in the two bioreactor configurations examined. To 
enable comparison the growth rates have been normalised as a fraction of the 
maximum; note the logarithmic y-axis. 

Fig. 9. Plot showing the cumulative fraction of fluctuations as a function of the 
fluctuation length for overflow conditions. 

Fig. 10. Plot showing the cumulative fraction of all fluctuations as a function of 
their length for starvation conditions. 
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starvation and overflow fluctuations was discretised into one second 
intervals, and the number of each of these oscillations has been plotted 
in Fig. 11 for overflow and in Fig. 12 for starvation. The dataset used to 
generate these figures is provided in the Supplementary Material. These 
data can be combined with the information shown in Fig. 6 and Fig. 7 to 
generate industrially representative data for scale-down systems. 

4. Conclusions 

In this work CFD models of large-scale bubble columns and stirred 
tank bioreactors were combined with the growth kinetics for E. coli and 
S. cerevisiae, two widely used microorganisms in industrial biotech
nology. The effect of the reactor design on the process performance was 
quantified using volume-averaged data from the CFD, as well as using a 
Lagrangian particle tracking approach, where cells are tracked as they 
move through the vessel. It was found that the bubble column generally 
offered better performance, and this is thought to be due to its improved 
mixing characteristics when compared with the STR. 

Use of the Lagrangian particle tracking approach can provide 
detailed information about the conditions experienced by the cells in the 
reactor. For example, it is possible to quantify the duration and fre
quency of any fluctuations in conditions. Such data can then be used in 
the construction of representative scale-down systems. This work pro
vides a detailed dataset for industrially representative reactor configu
rations which can be used for this goal. 
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G. Nadal-Rey et al.                                                                                                                                                                                                                             



Biochemical Engineering Journal 198 (2023) 108989

11

Data Availability 

Data have been made available in a repository, details are in the data 
availability statement. 

Acknowledgements 

This work was supported by the Technical University of Denmark 
and Novozymes A/S. The authors acknowledge the DTU Computing 
Centre, the Sydney Informatics Hub and the University of Sydney’s high- 
performance computing cluster, Artemis, for providing the computing 
resources that have contributed to the results reported herein. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.bej.2023.108989. 

References 

[1] G. Larsson, M. Törnkvist, E.S. Wernersson, C. Trägårdh, H. Noorman, S.O. Enfors, 
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[35] M. Löffler, J.D. Simen, G. Jäger, K. Schäferhoff, A. Freund, R. Takors, Engineering 
E. coli for large-scale production – Strategies considering ATP expenses and 
transcriptional responses, Metab. Eng. 38 (2016) 73–85. 
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