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A B S T R A C T   

In this work we have developed a comprehensive modelling workflow for the quantification of photobioreactor 
performance. Computational Fluid Dynamics (CFD) modelling combined with Lagrangian particle tracking was 
used to characterise the flow field inside the reactor; this information was combined with a Monte-Carlo model of 
light attenuation and a kinetic growth model to predict the performance of the system over the duration of the 
entire batch. The CFD model was validated against measurements of the overall hold-up, local hold-up and 
mixing time for superficial velocities between 0.6 and 6 cm s− 1 in a pilot-scale bubble column photobioreactor, 
with the CFD predictions agreeing with the experimental data. Comparison was also made between the predicted 
biomass concentration and experimental measurements using the diatom Phaeodactylum tricornutum, with the 
model predictions being in good agreement with the experimental results. The model was used to investigate a 
range of operating conditions and reactor designs, with the most promising predicted to give a 40 % increase in 
the biomass productivity. Results from this work can be used for the in-silico design and optimisation of pho
tobioreactor systems, thereby enabling their wider use as a sustainable production technology.   

1. Introduction 

Photoautotrophic microorganisms (e.g., microalgae and cyanobac
teria) can be used for the sustainable production of a range of com
pounds including high-value products for the food industry (e.g., 
carotenoid pigments, omega-3 fatty acids, vitamins) [1], biofuels [2] 
and chemicals [3]. A major advantage of using photoautotrophic mi
croorganisms is their minimal nutrient requirements; light and carbon 
dioxide are the primary feedstocks. This may be advantageous from a 
sustainability perspective as there is no need for arable land, potable 
water and also no competition with food crops [4]. A major challenge in 
the commercialization of bioprocesses using photoautotrophic micro
organisms is the process economics [1]. The majority of existing pro
cesses utilize open photobioreactors (e.g., ponds and raceways), which 
have the advantage of lower capital costs than closed systems (e.g., flat- 
panel, bubble column and tubular photobioreactors) [1]. However, open 
photobioreactors are susceptible to contamination and may not be 
appropriate for all organisms (e.g., it may not be suitable to grow 
engineered organisms in an open system). 

Closed photobioreactors can generally achieve higher cell densities 
and biomass productivities than open systems, and are less susceptible to 
contamination [5]. The major challenge with such reactors is efficiently 
using the available light to achieve high cell densities. As the distance 
from the illuminated surface of the Photo Bio Reactor (PBR) increases 
the light intensity decreases in an exponential fashion due to absorption 
and scattering of light by the cells [6]. This can lead to a situation where 
the central volume of the reactor is essentially ‘dark’, with the cells 
located in this volume receiving insufficient light for photosynthesis. 
Under conditions of high illumination (e.g., near the walls of the reactor) 
the capacity of the electron transport chain (the biochemical pathway 
involved in absorbing energy from light) can become saturated, which 
can lead to the production of reactive oxygen species and in turn damage 
to the cells [7]. In practice, cells will alternate between zones of high and 
low light intensity due to transport by the liquid. The extent to which 
this occurs will depend on the reactor design and operating conditions 
[8,9]. By optimizing the frequency at which cells move between zones of 
light and dark it may be possible to improve the utilization of the inci
dent light (the flashing light effect). Numerous authors [10–15] have 
examined this problem, reporting that light–dark frequencies of the 
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order 10–100 Hz are needed to make maximum use of the flashing light 
effect [11,12,16], while some benefits may be obtained at frequencies of 
the order 0.08 Hz [17]. Understanding the light intensity experienced by 
cells within a PBR, the light–dark cycle frequency and how these vari
ables are affected by the reactor design and operating conditions is key 
in PBR design and optimization. 

As previously noted, a major challenge in PBR design is making 
effective use of the supplied light to achieve high cell densities. One way 
in which this can be achieved is to simply reduce the thickness of the 
reactor, thereby reducing the optical path length and hence the amount 
of light attenuation. However, this has the significant drawback of 
requiring a higher surface area for the same liquid volume, thereby 
increasing the capital cost. Another potentially promising direction is 
the use of internal structures (e.g., baffles, static mixers, etc.) which 
promote mixing within a PBR and hence potentially increase the light
–dark cycle frequency. It is hypothesized that by promoting mixing be
tween the central ‘dark’ region of the PBR and the illuminated wall 
region cells will experience higher light intensities and this in turn will 
lead to higher cell densities. Recent work has found this to be the case, 
for example installation of baffles was found to increase the biomass 
productivity of Chlorella cultures by 60–90 % [18–22]. Similarly, Ryu 
et al. demonstrated that the use of horizontal sieve baffles and slanted 
baffles led to approximately 40 % increases in the biomass concentration 
of Chlorella sp. in 4 cm diameter cylindrical bubble column PBRs [23]. 
Merchuk et al. showed that the installation of helical flow promoter in 
cylindrical PBRs lowered the air flow rate required to achieve the 
maximum cell density of Porphyridium sp. cultures and thereby reduced 
the energy expenditure in air compression [24]. Such results demon
strate the potential of modified reactor designs, while also highlighting 
the need for tools to better understand the hydrodynamics of PBRs in 
order to facilitate the development of optimised reactor designs. 

Computational Fluid Dynamics (CFD) models are increasingly [25] 
being used as tools to model bioprocesses, including photobioreactors 
[26–30]. In the case of photobioreactors Lagrangian particle tracking is 
a particularly useful approach [31]. Particles having the same density 
and size as cells are included in the model which tracks their position in 
the reactor as a function of time. Using this information it is possible to 
construct the ‘history’ or ‘lifeline’ of a given cell as it moves throughout 
the reactor. As the light intensity experienced by a cell is largely a 
function of its location it is possible to determine the light intensity 
experienced by a cell as a function of time by coupling the particle 
tracking approach with a model of light attenuation. From this it is 

possible to then determine key information like the light–dark cycle 
frequency and the average light intensity. By including a large number 
of cells in the model it is also possible to calculate population-averaged 
values. Such an approach based on Lagrangian particle tracking has the 
advantage that it is likely to be the most representative of the behavior 
occurring within the photobioreactor, and as such may offer the most 
accurate way of quantifying reactor performance. 

CFD models have the advantages of providing a high degree of 
spatial and temporal resolution, and allowing for multiple reactor con
figurations to be evaluated in silico, thereby minimizing the need for 
experimental work. Another key advantage is that models can be used to 
generate information which is very difficult to obtain experimentally (e. 
g., simulating the movement of cells throughout a PBR). A disadvantage 
of CFD models is that their high computational demand means that it is 
only feasible to simulate a relatively short length of time (typically 
hundreds of seconds), while a typical growth cycle in a PBR would last 
several days/weeks. Hence, it is not possible to use CFD to simulate an 
algal cultivation from start to finish. To circumvent this limitation, re
sults from simulations of the fluid dynamics can be combined with light 
and growth models to give an overall model which can predict the 
overall process performance [32,33]. Such models can be used to un
derstand the reactor performance and develop optimized designs; 
however, relatively little work has been done in this area looking at 
bubble column photobioreactors. 

Use of a CFD model to quantify the performance of PBRs obviously 
relies on having accurate predictions of the hydrodynamics in order to 
correctly predict the trajectory of the cells. Hence, before any CFD model 
can be used to quantify the performance of the PBR it should be vali
dated against experimental data to ensure it offers accurate predictions 
of the hydrodynamics. Our previous work [34,35] has focused largely on 
the modelling of large-scale aerobic bioprocesses, which typically 
operate at higher superficial velocities (>0.1 m s− 1) than PBRs (which 
typically operate at superficial velocities below 0.05 m s− 1). Therefore, 
before the model can be used as a tool to quantify PBR performance 
there is a need to validate its predictions at conditions found in PBRs. 

The aim of this work is to develop and validate a modelling workflow 
which can be used to quantify the effect of PBR design and operating 
conditions on performance, and to use such a model to identify 
improved reactor designs. To do this it is firstly necessary to validate the 
CFD methodology used, and secondly to integrate the CFD model with 
models of light attenuation and growth and determine whether the 
combined workflow provides accurate predictions of algal growth. Once 

Nomenclature 

Symbol Units, Description 
F [s− 1], Light/dark cycle frequency 
g [-], Scattering constant 
HL [m], Liquid height 
HG+L [m], Height of two-phase mixture 
I [µmol photons m− 2 s− 1], Light intensity 
I0 [µmol photons m− 2 s− 1], Initial light intensity 
In [µmol photons m− 2 s− 1], Light intensity at point n for a 

photon 
Ip [µmol photons m− 2 s− 1], Time-averaged light intensity for 

photon p 
k [-], Constant in growth model 
Ka [m2 kg− 1], Attenuation constant 
KF [s− 1], Constant in growth model 
KI [µmol photons m− 2 s− 1], Half saturation constant 
n [-], Constant in volume fraction correction term model 
ntotal [-], Total number of time points used in averaging 

procedure 

p [-], Number of cells 
P [-], Random number 
R [m], Photobioreactor radius 
x [m], Distance in x direction 
X [kg m− 3], Cell density 
y [m], Distance in y direction 
z [m], Distance in z direction 
α [-], Gas volume fraction 
Γmax [-], Constant in growth model 
Δl [m], Propagation distance of photon 
θ [radians], Scattering angle for photon 
µ [s− 1], Specific growth rate 
μ [s− 1], Population-averaged specific growth rate 
μfull [s− 1], Specific growth rate with full light integration 
μmax [s− 1], Maximum specific growth rate 
μno [s− 1], Specific growth rate with no light integration 
ρG [kg m− 3], Gas density 
ρL [kg m− 3], Liquid density 
σ [kg s− 2], Surface tension  
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the modelling workflow has been validated it can then be used as a tool 
to examine different designs with the aim of identifying those which will 
provide improved performance. 

2. Method 

2.1. Experimental measurements 

Experimental measurements used to validate the CFD model were 
performed using the bubble column configuration without any internals. 
The bubble column used in this work was 190 mm in diameter, 2000 mm 
in height and it was fabricated from clear acrylic. Air was introduced 

through an L-shaped stainless-steel perforated tube sparger. The sparger 
had three rows of 10 × 2 mm diameter holes. There was a 10 mm spacing 
between hole centres. A detailed schematic of the sparger is shown in 
Fig. 1. 

Compressed air was sourced from the building supply. The flow rate 
was measured using a RM series rotameter (Dwyer) and corrected to the 
flow rate at standard conditions (298 K and 101325 Pa) using mea
surements of the pressure at the rotameter outlet (typically 14–17 kPa as 
measured using a Dwyer LPG3 series pressure gauge). Volumetric flow 
rates were converted to the superficial velocity by dividing the flow rate 
at standard conditions by the cross-sectional area of the column. 

Measurements of the liquid height (HL) and the height of the two- 

Fig. 1. Schematic of bubble column photo-bioreactor, as well as the mesh used in the CFD modelling.  
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phase mixture (HG+L) were made using a ruler attached to the side of the 
column and these values were used to calculate the overall hold-up (α): 

α = 1 −
HL

HG+L
(1)  

Three measurements of the hold-up were made at each superficial ve
locity. Reported results are the average of these three measurements. 
Error bars denote one standard deviation about the mean or the error as 
calculated using error propagation methodology, whichever was larger. 

The bubble size distribution (BSD) was measured using two-point 
needle probes, details of the probe design are described in detail else
where [36]. The measured chord-length distribution was converted to 
the BSD using the non-parametric transform developed by Liu et al. [37], 
here it was assumed that the bubbles were ellipsoidal in shape with a 
fixed aspect ratio of 0.6. Probes were positioned on the column center
line, facing down at heights of 800 and 1200 mm above the base of the 
column. Measurements of the BSD were made at superficial velocities of 
0.6, 1.6, 3.2 and 6.0 cm s− 1. Three measurements each 180 s in duration 
were made at each condition, these data were combined for analysis. 
The error in the reported mean bubble sizes is of the order ± 20 %, as 
determined in our previous work [36]. 

Local hold-up measurements were made using single-point needle 
probes as detailed elsewhere [36]. Probes were located at heights of 840 
and 1240 mm above the base of the column and at radial locations of 0, 
± 30, ± 60 and 90 mm. Measurements made at a location of − 90 mm 
generally did not result in a signal, most likely due to the small (5 mm) 
gap between the column wall and the probe tip (meaning no bubbles 
were able to pass through the gap), similar behavior being observed in 
our previous work [38]. The local volume fraction was measured for 5 ×
30 s at each point, with reported values being the average, error bars 
denote one standard deviation about the mean. It was found that area- 
averaging the local hold-up profiles gave overall hold-up values less 
than the experimentally measured overall hold-up value, suggesting that 
some bubbles were ‘missed’ by the probes. To correct for this the 
measured values were multiplied by the ratio between the overall hold- 
up and the area-averaged local hold-up, this being 1.35 for measure
ments at a height of 1240 mm above the base of the column and 1.65 for 
measurements made at a height of 840 mm above the base of the col
umn. The same correction factor was used for all superficial velocities 
examined. 

Mixing in the column was quantified by measuring the mixing time. 
This was measured by adding a salt tracer (4 M NaCl) and measuring the 
conductivity as a function of time. Conductivity probes (Real Time In
struments) were positioned at heights of 840, 1240 and 1700 mm above 
the base of the column, as shown in Fig. 1. The probes located in the 
middle of the column were positioned at the centerline. To quantify the 
effect of the tracer addition location it was added both to the top of the 
column (by pouring on to the free surface) or by injecting it into a port 
1040 mm above the base of the column. A volume of 130–150 mL of 
tracer was used. All measurements were made in triplicate, the reported 
values are the average with error bars denoting one standard deviation 
about the mean. This approach was used in order to quantify the vari
ability in the mixing time caused by the inherently transient nature of 
flow inside bubble columns. After three tracer additions the column was 
drained and refilled to minimize the effect of salt addition on the hy
drodynamics. The mixing time was defined as the time required for the 
tracer concentration to settle within ± 5 % of the final equilibrium 
value. Further details about the methodology used are presented else
where [39]. 

2.2. CFD modelling 

In this work we have applied a computational approach we devel
oped previously and validated for bubble columns [38,40]. In this work 
the Euler-Euler approach is used to model the two-phase flow. Inter- 

phase momentum transfer is modelled as the sum of drag and turbu
lent dispersion. The drag force was calculated using the Grace et al. 
model for an isolated bubble [41], combined with a volume fraction 
correction term based on our previous work [42], values of the constants 
n and b were 50 and 0.20, respectively. Bubbles had a fixed size (8 mm), 
this being the experimentally measured mean value (see Supplementary 
Fig. S6). Turbulent dispersion was modelled using the Favre-averaged 
drag approach outlined by Burns et al. [43]. Liquid phase turbulence 
was modelled using the standard k-ε approach as implemented in Ansys 
CFX, with the source terms developed by Yao and Morel [44] being 
included to account for bubble-induced turbulence. Gas-phase turbu
lence was modelled using the dispersed phase zero approach. This 
approach was used as it has been shown to provide good agreement with 
experimental data across a broad range of column designs and operating 
conditions [34,40]. 

A schematic of the mesh used is shown in Fig. 1, a hexahedral mesh 
with 58,800 elements was used. To ensure the model predictions were 
independent of the grid size simulations were also performed with 
coarse (36,120 elements) and fine (132,480 elements) meshes. As shown 
in Supplementary Fig. S1 it was found that the results did not depend on 
the grid size used. 

The sparger was modelled as an inlet boundary condition on the 
bottom face of the column 12.5 mm in width and 90 mm in length. The 
top of the column was modelled as an outlet at atmospheric pressure, the 
remaining surfaces, including the column walls and any internals, were 
modelled as walls using the no-slip condition for the liquid and free-slip 
for the gas. Baffles were spaced 200 mm apart, with the bottom baffle 
being 300 mm from the base of the column. The alternating baffles were 
125 mm wide, the disc shaped baffles had a diameter of 134 mm, while 
the cut-out in the donut baffles was also 134 mm. The baffle for the 
airlift was located on the column centerline 300 mm above the base of 
the column, the height of the baffle was 1200 mm. 

An initial liquid height of 1.70 m was used, below this height the 
liquid volume fraction was one, while above it the initial liquid volume 
fraction was zero (i.e. the headspace was full of gas as is physically 
correct). Densities of 1.2 kg m− 3 and 1000 kg m− 3 were used for the gas 
and liquid phases respectively. A value of 0.072 N m− 1 was used for the 
surface tension. The viscosities of the gas and liquid phases were 1.83 ×
10− 5 Pa s and 1 × 10− 3 Pa s, respectively. 

Ansys CFX 2021R1 was used in this work. The bubble column flow 
was modelled as a transient using small timesteps (1 × 10− 3 s) as is 
required for such two-phase flows. Each simulation was run for a period 
of 150 s before averaging, then for an additional 150 s with transient 
averaging turned on. Unless stated otherwise all reported results are 
transient averages. All runs were solved using double-precision and 
further details about the numerical methods used are available else
where [40]. 

In order to quantify the predicted mixing time tracers were intro
duced at the same locations as those used experimentally (see Fig. 1). 
Tracers were introduced at 151, 161 and 171 s, this being done to ac
count for any fluctuations in the hydrodynamics which is known [39] to 
affect the mixing time. The tracer concentration was calculated at the 
same locations as used experimentally, and like the experimental results 
the reported values are the average of the three repeats, with error bars 
denoting one standard deviation about the mean. 

2.3. Coupling of CFD with algal growth kinetics 

In this work, we have developed an approach that integrates CFD 
particle tracking with algal growth kinetics, thereby allowing simulation 
of the influence of flashing light on biomass accumulation over time. The 
workflow used for the model integration is shown in Fig. 2. 

To understand the distribution of algal cells throughout the reactor 
2,000 Lagrangian particles were introduced at one timestep (i.e. 1 ×
10− 3 s) at a simulation time of either 150 or 300 s, with their location in 
the column being tracked for 150 s. The particles (representing cells) 
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Fig. 2. Schematic showing the workflow used in the model.  
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were introduced uniformly throughout the column, using a grid with 20 
× 10 evenly spaced particles with 10 radial divisions. The particle post- 
processing was done using a custom script written in Matlab R2022. The 
particle solver in Ansys CFX uses a variable time-step [45]. To simplify 
the analysis an array having a fixed timestep (0.01 s) was generated and 
the particle x and z coordinates generated by the CFD model were 
interpolated onto this array using the one-dimensional spline interpo
lation function implemented in Matlab R2022. Any particle where the 
track ended before the designated time (150 s) was excluded from the 
analysis; this corresponded to a maximum of 3.6 % of the particles 
added. 

The distribution of local light intensity within the PBR was simulated 
by adopting a Monte Carlo type procedure that tracks the trajectories of 
numerous photons within the PBR, following the method developed by 
others [32]. This approach accounts for absorption of light, as well as 
changes in the trajectories of the photons due to scattering. Here it was 
assumed that the light intensity was uniform in the vertical (y) direction, 
meaning light attenuation was only modelled in two-dimensions (i.e., 
along the x and z coordinates). Other optical phenomena, such as the 
refraction and reflection across/by the PBR wall were omitted. When 
modelling the configurations with internals (i.e., the bubble column 
with segmented baffles, disc and donut baffles and the airlift) any effect 
of the internals on the light propagation was neglected. Additionally, it 
was assumed that the cells were distributed uniformly throughout the 
medium, and the effects of the bubbles on the light scattering were 
minimal (in line with results reported elsewhere [28]). No wavelength 
dependent behaviour was considered in this work. Furthermore, it was 
also assumed that the hydrodynamic behavior did not change 
throughout the course of a batch, something which is likely to be true 
provided the algae do not produce large quantities of extracellular 
compounds which could affect the fluid flow. Hence, the same CFD re
sults were used to represent the hydrodynamics (using the Lagrangian 
particle tracks) for the entirety of the batch. 

In modelling the trajectory of a photon, the photon enters the PBR 
from one of the illuminated surfaces of the PBR, each of which covered a 
180◦ arc. The photon propagates through the medium for a distance, Δl, 
before it is scattered, this scattering changes its direction. The photon 
then travels for another distance (Δl) before being scattered again. This 
procedure continues until the photon exits the boundary of the PBR, or 
its intensity reaches a value of 0.1 µmol photons m− 2 s− 1, at which point 
the tracking process was stopped. The position of a photon at step n is 
determined based on its position at the previous step (n − 1) :

xn = xn− 1 +Δl • cosθ (2)  

zn = zn− 1 +Δl • sinθ (3)  

The Monte Carlo sampling procedure was used to determine (a) the 
starting position of a photon, (b) the propagation distance (Δl) at each 
step and (c) the scattering angle (θ) at each step. 

As shown in Fig. 1, the PBR is illuminated by three light sources; each 
covered 180◦ of the PBR surface. In determining the starting position of 
a photon, a value was sampled from a uniform distribution across the 
interval [0, π], and the distance to the PBR centre was one PBR radius 
(R). At this starting position, the photon has an incident intensity (Io) of 
360 µmol photons m− 2 s− 1, this being the experimentally measured light 
intensity on the side of the photobioreactor [46]. 

The propagation distance for the photons (Δl) was set to be a random 
number across the uniform distribution between 0 and 1 mm. The 
scattering angle (θ) was determined using the Henyey-Greenstein phase 
function [32]: 

cos(θ) =
1

2g

{

1+ g2 −

(
1 − g2

1 + g(2P − 1)

)2
}

(4)  

where P is a random number drawn from the uniform distribution be

tween 0 and 1. The amount of forward and back-scattering is adjusted by 
the value of the parameter g, with g = 1 corresponding for forward 
scattering only, and g = 0 corresponding to isotropic scattering. Here a 
value of g = 0.95 was used, this being based on the experimental work of 
Marken et al. [47]. 

The attenuation in the light intensity between two consecutive steps 
due to absorption was accounted for using the Beer-Lambert equation. 
The local light intensity at each step (In) was expressed as: 

In = In− 1e− KaXΔl (5)  

where Ka is the attenuation constant. Here we have used a value of 
0.35 L mg− 1 m− 1 for the light attenuation constant (Ka), this value being 
based on our previous work [46]. In− 1 is the local light intensity at the 
previous step; Δl, is the propagation distance in this step; X is the 
biomass concentration. 

The output of the Monte-Carlo procedure was an array containing 
the position and intensity of photons throughout the photobioreactor for 
each of the light sources. To enable use of these data to generate a light 
profile across the PBR, the horizontal (XZ) plane of the PBR was dis
cretized onto a two-dimensional mesh containing 6078 elements, this 
was generated using the Delaunay triangulation methodology imple
mented in Matlab. Photons were allocated to a mesh element based on 
their x, z coordinates. The light intensity in each mesh element for a 
given light source was calculated by averaging the intensity of all pho
tons allocated to that element. From this the total light intensity was 
determined by taking the sum of the light intensity from each of the 
three sources. This procedure generated a two-dimensional map of the 
light intensity (see Fig. 7). Using these data, it was possible to allocate 
the particles from the CFD model to a mesh element at each time point 
(based on their x, z coordinates) and hence generate an array containing 
the light intensity for each timepoint for each particle. 

The growth rates of the cells under flashing light were determined 
following the findings by Terry for P. tricornutum [10]. At very high L/D 
cycle frequencies (i.e., those much greater than 1 Hz) the cells are 
thought to respond as though the lighting is continuous, and hence the 
growth rate (μfull) can be calculated based on the time-averaged light 
intensity for the particle (Ip) [10]: 

μfull =
μmaxIp

k

Ip
k
+ KI

k
(6)  

where the μmax is the maximum specific growth rate (2.4 day− 1), KI is the 
half-saturation constant for light (50 µmol photons m− 2 s− 1) and k is a 
constant (1.9). Values of the constants in the growth model are based on 
our previous experimental work and that of others in the literature 
[46,48]. The time-averaged light intensity for each particle Ip was 
calculated using the interpolated values: 

Ip =

∑ntotal
n=1 Ip,n

ntotal
(7)  

where Ip,n is the instantaneous light intensity experienced by particle p at 
time n and ntotal is the total number of time points (here 15,000). 

At sufficiently low L/D cycle frequencies the growth rate of the cell 
depends on the instantaneous light intensity experienced by the particle 
(Ip) meaning there is no light integration. This can be used to calculate 
the specific growth rate: 

μno =
μmaxIp

k

Ip
k + KI

k (8)  

Partial light integration will occur at L/D cycle frequencies between 
those where full and no light integration occurs; these are the fre
quencies likely to be found in industrial photobioreactors. Here the 
specific growth rate depends on the L/D cycle frequency (F): 
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μ =
ΓmaxF

KF + F
(
μfull − μno

)
+ μno (9)  

where Γmax and KF are constants; Terry [10] determined that the values 
of Γmax and KF to be 0.972 and 0.67 Hz, respectively, for P. tricornutum. 

Here we have defined a cell as being in the dark if the instantaneous 
light intensity was less than 5 µmol photons m− 2 s− 1. This value was 
selected on the basis that at this light intensity the net growth rate is zero 
(i.e., the light intensity is sufficient for cellular maintenance but not 
growth) [49]. Using the calculated values of the instantaneous light 
intensity it is possible to determine whether or not a particle is in the 
light or dark zone for each time point. From this it is possible to deter
mine the L/D cycle frequency and thus the specific growth rate (μ) for 
this cell. The specific growth rate was determined for each of the 
simulated algal cells; the mean of the specific growth rates of the cell 
population was then calculated: 

μ =
1
p
∑p

i=1
μi (10)  

where p is the number of cells evaluated. 
The Monte Carlo sampling procedure and the subsequent determi

nation of the growth rate for the algal cell population were repeated for 
biomass concentrations ranging between 5 and 2005 mg L− 1, thereby 
generating a set of datapoints providing the population averaged spe
cific growth rate (μ) for the range of cell densities examined. These data 
were integrated with our recently developed, ODE-based model for 
simulating the growth of the alga P. tricornutum [46]. Here, it was 
assumed that light was the sole growth-limiting factor. In the model the 
specific growth rate for a given cell density was found by interpolating 
onto the [X, μ] array generated using the workflow developed in this 
paper. The one-dimensional spline interpolation function implemented 
in Matlab R2022 was used to perform the interpolation. 

To ensure the results were independent of the numerical values used 
in setting up the simulation a range of conditions were investigated, with 
the full details being available in the Supplementary Material. Simula
tions were performed to investigate the effect of the number of photons 
per light source (100, 300, 500, 1000 and 10,000), the number of mesh 
elements (570, 1710, 6078 and 14,286) and the number of Lagrangian 
particles (200, 500, 1000 and 2000). Based on these results all subse
quent simulations were performed with 1000 photons per light source, a 
mesh containing 6078 elements and 1000 Lagrangian particles. 

2.4. Algal cultivation experiments 

In this work we have focused on the cultivation of Phaeodactylum 
tricornutum, a marine diatom which can be used for the production of 
valuable compounds like eicosapentaenoic acid and fucoxanthin 
[50–52]. Cultivations were performed using the bubble column config
uration as described in Section 2.1. Air (supplemented with 1 % (v/v) 
carbon dioxide) was introduced into the column at a superficial velocity 
of 1.3 cm s− 1. Here 1 % (v/v) carbon dioxide was used as this concen
tration is sufficient to maintain the pH below 8.5, hence ensuring the 
growth is not limited by the availability of carbon. 

Cultures were illuminated for 16 h per day using the LED lights 
mounted on three sides of the column (Fig. 1). The lighting consisted of 
9 W cool-white (6000 K color temperature) LED bars (Jaycar Australia), 
these were arranged in a 3 × 5 grid (vertical × horizontal) on each of the 
illuminated sides of the PBR. To quantify the biomass density samples 
(typically 50–60 mL) were taken and filtered using pre-weighed glass 
fibre filters (Advantec GA-55, Toyo Roshi Kaisha Ltd, Tokyo Japan). 
Samples were washed with three volumes of 0.5 M ammonium bicar
bonate before being dried at 105 ◦C overnight. After drying the samples 
were cooled and then weighed to determine the dry cell weight. Further 
details about the cultivation conditions and the analytical methods are 
available in our previous work [46]. 

3. Results and discussion 

3.1. CFD model validation 

As the performance of the model relies upon accurate predictions of 
the hydrodynamics within the reactor it is necessary to validate the CFD 
model against experimental data. Fig. 3 gives a comparison between the 
experimentally measured overall hold-up values and those predicted by 
the CFD model, while a more detailed comparison of the local-hold-up 
profiles is given in Fig. 4. It was found that there was good agreement 
between the experimental measurements and the model predictions, 
with the model slightly under-predicting the hold-up. Interestingly the 
maximum values for the experimentally measured hold-up values were 
found to occur at x = 30 mm and not at the column centerline (as was 
found for the CFD predictions). Such results could be because the CFD 
model over-predicts the extent to which the bubble plume becomes 
symmetrical. This could be caused by the model over-predicting the 
magnitude of the turbulent dispersion force, or over-predicting the eddy 
viscosity which would damp out oscillations. Equally such results could 
be due to the fact that the sparger is not located perfectly perpendicular 
to the measurement location, thereby introducing a degree of asym
metry into the results. While every attempt was made to ensure that the 
sparger was located on the centerline of the column it was possible that 
it could have moved by a small amount (of the order 10 mm). Inter
estingly, it appears that at higher superficial velocities the observed 
asymmetry is reduced (Fig. 4 (h)). Inclusion of the lift force, or modi
fication of the coefficient in the turbulent dispersion model may lead to 
improved agreement with the experimentally measured hold-up pro
files. However, this was not pursued as the model gives reasonable 
agreement with the overall and local hold-up, as well as the mixing time 
(Fig. 5). 

Experimentally measured bubble size distributions are shown in 
Fig. S6 in the supplementary data. It was found that the superficial ve
locity had a relatively small effect on the bubble size distribution, while 
the distance from the sparger had a larger effect. Measured mean bubble 
sizes were of the order 10–12 mm at a height of 800 mm above the base 
of the column and 8–9 mm for a height of 1200 mm above the base of the 
column. The correlation developed by Akita and Yoshida [53] predicts 

Fig. 3. Plot showing comparison between experimentally measured overall 
hold-up values and those predicted by the CFD model. 
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Fig. 4. Plot showing comparison between experimentally measured local hold-up profiles and those predicted by the CFD model. Results on the first row (a) and (b) 
are for a superficial velocity of 0.6 cm s− 1, those on the second row (c) and (d) are for a superficial velocity of 1.6 cm s− 1, those on the third row (e) and (f) are for a 
superficial velocity of 3.2 cm s− 1 and those on the final row (g) and (h) are for a superficial velocity of 6.0 cm s− 1. Plots in the first column (a), (c), (e) and (g) are for a 
height of 840 mm above the base of the column, while those in the second column, (b), (d), (f) and (h) are for a height of 1240 mm above the base of the column. 
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initial bubble sizes between 9 and 19 mm for the superficial velocities 
examined in this work. This, combined with the experimental mea
surements is consistent with the idea that the bubbles produced by the 
sparger undergo break-up as they rise through the column. 

Fig. 6 gives a comparison between the experimentally measured 
mixing times and those predicted by the CFD model. Both the experi
mental measurements and CFD predictions showed a considerable 
amount of variation, this is due to the transient nature of the flow inside 
the bubble column, where the instantaneous flow pattern at the time of 
tracer addition impacts upon the mixing time [39]. Generally speaking, 
the model predictions were in good agreement with the experimental 
measurements for the range of superficial velocities (0.6 – 6.0 cm s− 1) 
and tracer addition and measurement locations examined. It was 
observed that increasing the superficial velocity led to a reduction in the 
mixing time, as expected, with the measured values being less than those 
predicted (46 – 108 s) using correlations from the literature [54,55]. 
Interestingly, it was found that the measurement location did not have a 
large impact on the mixing time with the values being similar for the 
three points examined. However, it was found that the tracer addition 

location did have an impact on the mixing time, with the side addition 
point generally resulting in lower mixing times than when the tracer was 
introduced to the top of the column, the reduction being of the order 
40–80 %. This can be most likely be explained by the fact that when the 
tracer is added to the top of the column it has to travel a greater distance 
to be uniformly mixed throughout the column, thereby resulting in a 
longer mixing time. 

As shown in Figs. 3-5 the CFD model offers a good prediction of the 
hydrodynamics within the bubble column, at a range of superficial ve
locities and measurement locations. Hence, the CFD model is suitable to 
be used as a basis for quantifying photobioreactor performance. 

3.2. Validation of modelling workflow 

The next step in the model validation process was to compare the 
predictions of the cell growth generated by the model workflow with 
experimental data. This comparison is given in Fig. 6 for P. tricornutum. 
It was found that the model was in good agreement with the experi
mental predictions, demonstrating that the workflow developed was 

Fig. 5. Comparison between experimentally measured values of the mixing time and CFD predictions. Results are shown for two tracer addition locations and three 
measurement locations. All results are the average of three tracer additions, with error bars denoting one standard deviation about the mean. Results on the top row 
(a)-(d) are for tracer addition to the top of the column, results on the bottom row (e)-(h) are for tracer addition in the middle of the column. The first column (a) and 
(e) are for a superficial velocity of 0.6 cm s− 1, the second column (b) and (f) are for a superficial velocity of 1.6 cm s− 1, the third column (c) and (g) is for a superficial 
velocity of 3.2 cm s− 1 and the last column (d) and (h) are for a superficial velocity of 6.0 cm s− 1. 
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able to offer predictions in line with experimental measurements. 
To further understand the model behaviour, plots of the calculated 

light field for cell densities from 250 to 1500 mg L− 1 were generated and 
are shown in Fig. 7. As expected the illumination within the photo
bioreactor is not uniform due to the fact that light is being provided from 
three sides of the reactor. Similarly, it can be observed that the central 
portion of the reactor is essentially ‘dark’, while the edges are illumi
nated, and that the size of the dark zone increases with cell density (due 
to greater attenuation of the light). These results demonstrate that the 
best way to improve the growth of the algal culture would be to ensure 
cells are not ‘trapped’ in the central, ‘dark’ area of the column. 

As part of the model validation the sensitivity of the model to various 
input parameters was examined. Unsurprisingly, the chosen value of the 
attenuation coefficient (Ka) had a large impact on the model predictions, 
with this effect being most pronounced as the culture density increased 
(i.e., towards the end of the batch). Our previous work [46] had shown 
that the value of Ka changed depending on the availability of nitrate, and 
the chosen value (0.35 L mg− 1 m− 1) was representative of conditions 
from day 5 onwards. In this work we have used the Beer-Lambert law to 
model light attenuation; this approach being selected on the basis of its 
simplicity. However, it may be desirable to replace this approach with a 
more complex model of light attenuation [56,57], something which can 
be done in a relatively straightforward manner using the current 
workflow. Similarly, it may be desirable to consider wavelength 
dependent behaviour when modelling absorption and scattering within 
the culture. Such an approach would introduce considerable additional 
complexity to the model. Given it was possible to achieve good agree
ment between the model predictions and experimental results (see 
Fig. 6) without accounting for wavelength dependent behaviour it re
mains an open question as to whether the increase in model accuracy 
justifies the additional complexity. 

3.3. Evaluation of alternative PBR designs and operating conditions 

Previous work [58] using a PBR of similar size showed that 
increasing the superficial velocity led to increased biomass productivity 

for P. tricornutum. It was hypothesized that the improvement in pro
ductivity at higher superficial velocities was due to an increase in the L/
D frequency. However, this was not experimentally quantified, as pre
viously noted making such measurements is very challenging. By using 
the modelling approach developed in this work we are able to quantify 
the effect of the superficial velocity on the L/D cycle frequency, and 
hence the growth of the cultures. 

Fig. 8 shows the effect of the superficial velocity on the predicted 
performance of the bubble column PBR. It was found that increasing the 
superficial velocity led to an improvement in the predicted biomass 
concentration, particularly for a superficial velocity of 6 cm s− 1. 
Increasing the superficial velocity will lead to an increase in the liquid 
velocity within the column, and hence improved mixing (as shown in 
Fig. 5). This will also lead to the cells being transported more rapidly 
between the column walls (i.e., the ‘light’ portion of the PBR) and the 
centre of the column (the ‘dark’ portion of the PBR). Such behaviour is 
observed in Fig. 8, where increasing the superficial velocity leads to an 
increase in the L/D cycle frequency, the average light intensity and 
hence the average specific growth rate. The predicted biomass produc
tivity at a superficial velocity of 6 cm s− 1 was 144 mg L− 1 day− 1, this 
being approximately 40 % higher than the value at 1.6 cm s− 1 (104 mg 
L− 1 day− 1). These results are in line with previously published results 
[58] for a similar PBR design growing P. tricornutum. Based on these 
results increasing the superficial velocity may be an easy way to improve 
the performance of the PBR. However, there are two potential draw
backs to this approach. Firstly, there is the obvious increase in energy 
required to supply the higher flow rate of air. Secondly, the increase in 
superficial velocity may lead to damage to the cells [58] which would 
obviously make this approach unfeasible. An advantage of the modelling 
approach developed here is that it is possible to quantify the trade-off 
between the increase in biomass concentration and energy demand, 
allowing systematic process design and optimisation. 

As previously noted, a range of authors have reported that modifying 
the PBR design to include baffles or other internal structures led to in
creases in the biomass productivity [18–22]. Such increases were again 
attributed to increased mixing along the light gradient, which led to an 
increase in the L/D cycle frequency and in turn an improvement in the 
biomass productivity. Using the modelling workflow developed here it is 
possible to systematically evaluate new PBR designs in silico to deter
mine their performance. 

Fig. 9 shows the predicted performance for a range of PBR designs. 
Of the configurations examined it was found that the airlift and disc and 
donut baffles were predicted to give improved performance, while 
including the alternating baffles worsened the performance. Interest
ingly, the alternating baffles were also predicted to increase the light
–dark cycle frequency, something which is thought to lead to improved 
performance. However, this configuration also led to a substantial 
reduction in the average light intensity experienced by the cells (Fig. 9 
(c)). This is caused by the flow ‘confining’ the cells in the central portion 
of the column, away from the illuminated surface. Preliminary experi
mental work (shown in Supplementary Fig. S7) indicated that the model 
predictions agreed with the experimental data, with the performance of 
the column with the alternating baffles being similar to or worse than 
the standard bubble column without any internals. 

Of the configurations evaluated the disc and donut baffles were 
predicted to offer the most improved performance, with the predicted 
biomass productivity being 145 mg L− 1 day− 1, this being an approxi
mately 40 % improvement when compared with the bubble column 
without internals. Interestingly, the airlift configuration offered a 
similar increase in performance, while not improving the light–dark 
cycle frequency to the same extent. This may be explained by the fact 
that the baffle in the airlift confines the cells closer to the walls of the 
PBR where they are more likely to experience a higher light intensity. 
These results highlight the potential advantages of installing internals in 
PBRs, as they can lead to substantially improved performance. However, 
this must also be weighed against any increases in capital cost, as well as 

Fig. 6. Comparison between experimental results and model predictions for 
growth of P. tricornutum in 50 L bubble column bioreactors. Experiments were 
performed at a superficial velocity of 1.3 cm s− 1; the same conditions were used 
in the modelling. Results are shown for three runs, with error bars denoting one 
standard deviation about the mean. 
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Fig. 7. Plot showing calculated light profiles in the PBR. Values have been calculated at cell densities of (a) 250 mg L− 1, (b) 500 mg L− 1, (c) 750 mg L− 1, (d) 1000 mg 
L− 1, (e) 1250 mg L− 1 and (f) 1500 mg L− 1. 
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any additional operational challenges (e.g., making cleaning more 
difficult). 

The results shown in Fig. 9 suggest that the key metric in optimising 
the system is the average light intensity experienced by the cells, and 
that the light–dark cycle frequency cannot be considered in isolation. 

These results also show the advantage of the approach developed in 

this work, as it is possible to simultaneously evaluate multiple designs in- 
silico. To illustrate this point, each algal cultivation performed in this 
work took approximately two weeks, with an additional 1–2 days being 
needed for cleaning and set-up of the PBRs. In the same amount of time it 
was possible to perform all of the CFD simulations used in this work in 
parallel. This demonstrates that once the model has been set-up and 

Fig. 8. Plots showing the effect of the superficial velocity on the performance of the PBR. (a) shows the effect of the superficial velocity on the predicted dry cell 
weight for the course of the cultivation. Plots (b), (c) and (d) have been calculated for a fixed cell density of 1500 mg L− 1 and show the distribution of the specific 
growth rate (b), the time-averaged light intensity (c), and the light–dark cycle frequency (d) for the population of particles. 
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validated it can be used to examine a range of conditions, with the aim of 
identifying the most promising for experimental evaluation. 

4. Conclusions 

In this work we have developed and validated a modelling approach 
which synthesises CFD, Monte-Carlo modelling and kinetic models to 
enable the detailed characterisation of PBR performance. The approach 
developed in this work enables the effect of different reactor designs and 

operating conditions to be characterised throughout the course of an 
entire batch. This enables in-silico evaluation of different reactor con
figurations, potentially reducing the time and risk involved in the scale- 
up process. 

The CFD model used in this work was based on our previous research 
into models for bubble column bioreactors [38,40] and in this work we 
have extensively validated it against experimental data across the range 
of superficial velocities likely to be used in bubble column PBRs. Results 
from the CFD were then combined with illumination and kinetic models 

Fig. 9. Plot showing the effect of changing the PBR design on its performance. The predicted growth curves are shown in (a), while plot (b) shows the distribution of 
the specific growth rate for the modelled particle population, (c) shows the time-averaged light intensity and (d) shows the light–dark cycle frequency. Plots (b), (c) 
and (d) have been calculated for a cell density of 1500 mg L− 1. All simulations were performed at a superficial velocity of 1.6 cm s− 1. 
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to develop a workflow which can be used to characterise the effect of 
different reactor designs and operating conditions. It was found that the 
model predictions were in good agreement with the experimental data 
for the widely cultivated diatom P. tricornutum. Using the model, it was 
possible to evaluate the effect of different reactor designs and operating 
conditions. For example, increasing the superficial velocity from 1.6 cm 
s− 1 to 6 cm s− 1 was predicted to lead to an approximately 40 % increase 
in the biomass productivity. The model can also be used to examine a 
range of different internal designs, it was found that some designs led to 
worse performance, while others were predicted to improve the biomass 
productivity. Of the configurations examined, the disc and donut baffles 
were predicted to increase the biomass productivity by a factor of 
approximately 40 % at a superficial velocity of 1.6 cm s− 1. Interestingly, 
it was found the key metric in the reactor design was the average light 
intensity experienced by the cells, and not the light/dark cycle 
frequency. 

An advantage of the modelling approach used in this work is that can 
be readily extended to model any reactor design, an obvious area for 
future work would be to evaluate additional alternative internal con
figurations and then experimentally test the most promising. The aim of 
this work would be to increase the cell density/biomass productivity of 
photoautotrophic systems, a key factor in the overall process economics. 
Development of a reliable, accurate in silico method for screening reactor 
designs could potentially considerably simplify the photobioreactor 
design process, thereby facilitating scale-up. Similarly, being able to 
predict the performance of different reactor designs would be useful in 
performing techno-economic analyses. 

An advantage of the workflow developed here is that it is possible to 
change the sub-models in a relatively straightforward way. For example, 
the model of light attenuation could be modified to be wavelength 
dependent, without requiring changes in the CFD or growth models. 
Potential further avenues for investigation could include looking at the 
growth of other species, as well as modifying the light model to be 
representative of sunlight in order to model outdoor cultures. 

In conclusion, the approach outlined here can be used for the 
comprehensive characterisation of PBR performance and hence the 
development of optimised designs. This is a topic of considerable 
importance in increasing the productivity of photoautotrophic produc
tion systems and thereby enabling their wider deployment. 
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