
Citation: Berchiolli, M.; Wolfram, S.;

Balachandran, W.; Gan, T.-H. Fully

Automatic Thoracic Cavity

Segmentation in Dynamic Contrast

Enhanced Breast MRI Using Deep

Convolutional Neural Networks.

Appl. Sci. 2023, 13, 10160.

https://doi.org/10.3390/

app131810160

Academic Editors: Levente Adalbert

Kovács and László Szilágyi

Received: 19 August 2023

Revised: 4 September 2023

Accepted: 7 September 2023

Published: 9 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Fully Automatic Thoracic Cavity Segmentation in Dynamic
Contrast Enhanced Breast MRI Using Deep Convolutional
Neural Networks
Marco Berchiolli 1,*, Susann Wolfram 2,3 , Wamadeva Balachandran 4 and Tat-Hean Gan 1

1 Brunel Innovation Centre, Brunel University London, Uxbridge UB8 3PH, UK; tat-hean.gan@brunel.ac.uk
2 Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK
3 School of Kinesiology, University of Michigan, Ann Arbor, MI 48109, USA
4 Electronic and Computer Engineering Department, Brunel University London, Uxbridge UB8 3PH, UK;

wamadeva.balachandran@brunel.ac.uk
* Correspondence: marco.berchiolli@brunel.ac.uk

Abstract: Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is regarded as
one of the main diagnostic tools for breast cancer. Several methodologies have been developed to
automatically localize suspected malignant breast lesions. Changes in tissue appearance in response
to the injection of the contrast agent (CA) are indicative of the presence of malignant breast lesions.
However, these changes are extremely similar to the ones of internal organs, such as the heart. Thus,
the task of chest cavity segmentation is necessary for the development of lesion detection. In this
work, a data-efficient approach is proposed, to automatically segment breast MRI data. Specifically, a
study on several UNet-like architectures (Dynamic UNet) based on ResNet is presented. Experiments
quantify the impact of several additions to baseline models of varying depth, such as self-attention
and the presence of a bottlenecked connection. The proposed methodology is demonstrated to
outperform the current state of the art both in terms of data efficiency and in terms of similarity index
when compared to manually segmented data.

Keywords: DCE-MRI; breast segmentation; deep learning

1. Introduction

Breast cancer is the most frequent cancer among females, amounting to 24% of all
cancer occurrences in 2018 [1], accounting for 684,996 deaths in 2020 worldwide [2]. The
World Health Organization indicates screening programs aimed at early detection as one
of the key factors in reducing mortality [3]. Magnetic Resonance Imaging (MRI) is an
increasingly popular procedure for the screening of high-risk groups [4] and evaluating
the response to neo-adjuvant chemotherapy [5]. MRI has several benefits over X-ray
mammography; it does not utilize ionizing radiation, generates high-resolution images and
contains dynamic information. Moreover, recent developments in MRI image processing [6]
indicate that MRI is gaining popularity even with its major drawbacks (time-consuming,
stressful and costly) and is actively being targeted by the research community.

Dynamic Contrast Enhanced MRI (DCE-MRI) outputs four-dimensional data (three
spatial dimensions + one temporal dimension), consisting of images acquired before and
after the intravenous injection of a contrast agent (CA). The change in tissue appearance in
response to the CA is tissue-specific and, therefore, indicative of the presence of malignant
breast lesions [7]. These changes in tissue appearance are extremely similar to the ones
of the internal organs such as the heart, making automatic lesion detection in breast
DCE-MRI sequences challenging. Manual delineation of the chest wall is an extremely
time-consuming activity. Therefore, the automatic removal of the internal organs from the
images by segmenting the chest cavity is instrumental to the development of an automatic

Appl. Sci. 2023, 13, 10160. https://doi.org/10.3390/app131810160 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810160
https://doi.org/10.3390/app131810160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8872-3120
https://orcid.org/0000-0002-5598-8453
https://doi.org/10.3390/app131810160
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810160?type=check_update&version=3


Appl. Sci. 2023, 13, 10160 2 of 16

lesion detection methodology. Figure 1 shows the results of an automatic lesion detection
algorithm for a properly segmented image and a poorly segmented image of a breast DCE-
MRI sequence. The algorithm is based on the statistical properties of the whole sequence
and indicates areas with a high likelihood of containing a lesion, with red indicating the
most likely candidate area. By not excluding the chest cavity, the system evaluates the
heart as an area of high likelihood. As the chest cavity is segmented, the actual lesion is
correctly highlighted.
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Figure 1. Results of an automatic lesion detection algorithm on a lesion. The original image with the
lesion is visible in (a), with the lesion highlighted in the red circle. The coloring scheme of the other
images (b,c) is based on statistical properties of the full breast volume. Red represents high likelihood
of a lesion, while green and blue represent lower likelihood. In (b), the chest cavity is incorrectly
segmented, and the lesion detection algorithm identifies the heart as an area of high likelihood to be
a lesion. In (c), the chest cavity is correctly segmented, and the area of high likelihood to contain a
lesion is correctly identified.

The current state of the art addresses the challenge by training a three-dimensional
cluster of 2D UNets [8]. We argue that implementing more recent deep learning (DL)
techniques can lead to better results and generalization performance.

In this study, a novel, DL-based methodology for the segmentation of the chest cavity
from breast DCE-MRI scans is proposed. The solution aims to address the main challenges
in chest cavity segmentation, especially sternum detection, by using a data-based approach.
To showcase the potential of the solution, the target area to segment is selected to be the
upper half of the chest cavity.

The paper is organized as follows. In Section 2, a selection of previous studies with
relative contributions is presented; in Section 3, the proposal is presented in detail; in
Section 4, the results of the experiments are presented and discussed; finally, in Section 6,
conclusions and suggestions for further work are presented.

2. Related Work

Given the importance of the task and its complexity, there have been numerous
approaches proposed in the published literature. In line with Marrone et al. [9], DL-based
approaches are also included in the following overview. While the DL category has limited
representation at present, it currently represents the state of the art. Moreover, it is expected
that the popularity of this subfield will increase due to the vast representation of DL-based
techniques in parallel fields, such as hand and brain segmentation [10]. For these reasons,
the section dedicated to DL approaches is given higher importance.

2.1. Pixel-Based Approaches

Approaches in this category rely on classifying pixels or voxels individually, or with
simple computations on the surrounding pixels [11,12]. Results are not always fully
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automatic and tend to be suboptimal, especially the boundary between the sternum and the
internal organ, which is often wrongly segmented. On the other hand, they require minimal
computational costs. For example, in the approach of Vignati et al. [13], the images are
processed using Otsu’s thresholding and a sequence of dilations and erosions. Results show
good breast parenchyma segmentation performance. However, the limitations become
apparent as the examples provided show imprecise chest wall segmentation, as specified
by the authors, and require the aid of fat-saturated images or an atlas-based segmentation.
The study demonstrates that segmentation of the outer boundary of the breast is achievable
by computationally efficient methodologies, while chest cavity segmentation would require
more complex solutions. Given the importance of minimizing the presence of internal
organs (see Figure 1), specifically the heart, chest cavity segmentation is fundamental in the
development of lesion detection systems for DCE-MRI. Future studies should then focus
on the detection of the chest wall.

2.2. Atlas-Based Approaches

The solutions in this category are generated by comparing the anatomical atlas gen-
erated by manually segmented data [12,14–17]. The approaches usually require a high
number of instances in the atlas to guarantee generalizability to different anatomical fea-
tures and acquisition protocols. The size of the atlas, however, is directly linked to an
increased computational cost. To counteract such limitations, the solutions are often re-
stricted to a specific anatomical part. An example of such an application is provided by
Fooladivanda et al. [18], in which the authors use an atlas-based approach to segment the
pectoral muscle, relying on a simpler pixel-based approach to segment the chest wall edge.

2.3. Geometrical-Based Approaches

The proposed solutions within the category revolve around constraining the segmen-
tation results to predetermined anatomical and physiological characteristics. Their most
common usage is as a refinement to pixel-based approaches [19,20]. The main criticisms
of the techniques are the extreme computational costs and extremely poor generalization
performance. Notable examples come from Wu et al. [20], in which the authors propose a
methodology to extract the chest wall line from sagittal breast MRI.

Results are based on the refinement of edge detection via enforcing geometrical
constraints and are extremely effective. The fundamental assumptions, however, highlight
the limitations in generalizability, as the methodology does not account for the edge
detection algorithm failing. This limits the potential application in a contrast-enhanced
MRI environment, as post-enhancement images usually feature high-intensity chest wall
and heart regions, as shown in Figure 2.
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2.4. Deep Learning-Based Approaches

Deep learning-based solutions allow for the creation of fully automated segmentation
methodologies by exploiting previous examples in the form of manually segmented data.
The limitations of the approaches consist in the training process, for which large quantities
of data and computational resources are needed. The techniques have been applied with
great success to an increasing amount of research problems in recent years [21].

The pioneering solution is attributable to Dalmis et al. [22], in which the authors
propose automated breast and fibroglandular tissue (FGT) segmentation using a UNet
approach [23]. They obtained considerable improvements in accuracy over the state of
the art at that time in terms of Dice Similarity Coefficient (DSC), achieving a DSC of 0.944
against 0.863 from the previous reported state of the art [12,15]. The current state of the
art is attributable to Piantadosi et al. [8], who implemented a multi-planar UNet approach,
obtaining some improvements over Dalmis et al. [23]. The methodology uses three discrete
UNets on the transverse, sagittal and coronal planes instead of a three-dimensional (3D)
UNet, to increase the computational efficiency for the solution. The 3D aspect of the
network, however, effectively triples the computational cost. Moreover, the current state
of the art [8] was trained on a dataset composed of fully labeled data from 117 patients,
well above the data available to many developers. As the labeling process is the most time-
consuming aspect of the development, solutions should aim at maximizing performance
with a minimal amount of data. To this end, novel techniques need to be employed, both
architecturally and from a data pre-processing point of view.

Given the limitations of the approaches presented and their advantages, the convo-
lutional neural network (CNN) methodologies are the most applicable for problems in
computer-aided diagnostics (CAD). However, all DL approaches available in the literature
fail to address the most limiting aspect of the issue, which is data availability. The proposed
solution aims to improve the current state of the art by focusing on data efficiency, by em-
ploying architectures that are less prone to overfitting and behave better in transfer learning
scenarios. Moreover, recent advancements in DL research, such as self-attention [24], have
the potential to further improve upon the state of the art. In addition, computational efforts
need to be compliant with the hardware that is potentially available in a hospital; hence,
the algorithms should process patient data in a two-dimensional fashion, as 3D data can be
generated if needed.

The current paper reports on improvements to the current state of the art by employing
several techniques that have been successful in parallel fields. To this end, a total of
18 configurations were evaluated, corresponding to the combination of three different
architectures and three different techniques to be applied.

3. Methodology
3.1. Introduction

The proposed automatic chest cavity segmentation algorithm is composed of two main
parts. In the first part, the volume is sliced in its transverse plane images, and it is inputted
in a Dynamic UNet (fast.ai, n.d.), inspired by [25].

Figure 3 shows the schematic of the solution, with an image being inputted in the DL
model to generate a mask. The mask is then applied to the input image.

3.2. Dataset and Labeling Strategy

A dataset consisting of breast DCE-MRI data from 44 patients was used for the training
and testing of the proposed segmentation model. Data were acquired on a 1.5 T scanner
(MAGNETOM Avanto, Siemens Healthcare GmbH, Erlangen, Germany) with the patient
positioned lying face down. The TR/TE/flip angle was 4.33 s/1.32 s/10◦ for each scan, with
a slice thickness of 1.1 mm, with no gaps between slices. The resolution of each slice was
448 × 448 pixels. Each breast DCE-MRI protocol consisted of one pre-contrast T1-weighted
sequence and seven post-contrast T1-weighted sequences collected at intervals of 1:01 min
between sequences.
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Figure 3. Schematic of the proposed solution. The input image is inputted in a deep learning model,
which outputs a generated mask. The segmentation mask is then applied to the input image. Notably,
the upper part of the internal organs is removed, as highlighted by the red circle.

A subset of the slices of each sequence was manually segmented, and the segmentation
was checked for accuracy by a breast radiologist. Before manual segmentation, the slices
were cropped to size to remove the posterior half of the thorax. In this developmental
phase of the segmentation, the bottom row of 131 pixels was removed as this gave the
best cropping result for our dataset. For manual segmentation, eleven evenly spaced slices
throughout the central 70 slices of the scan volume of the pre-contrast sequence were
selected to address anatomical variations along the upper body. To address changes in
tissue brightness because of CA injection, the six central slices of the pre-contrast sequence
were also manually segmented. The manual segmentation of these slices was repeated for
the corresponding slices in all seven post-contrast sequences. A total of 2552 slices were
manually segmented. Segmented slices from 37 patients (n = 2146 slices) were used for the
training of the model. The model was tested with segmented slices from the remaining
seven patients (n = 406 slices).

3.3. Deep Learning Model

The segmentation model is based on a Dynamic UNet with a pre-trained ResNet
encoder. A transfer learning approach was utilized with a pre-trained ResNet encoder to
address the challenge of insufficient training data. Transfer learning [26] is a widely used
technique in computer vision tasks outside of medical image segmentation [27,28]. In order
to leverage transfer learning, the technique employed in the proposed solution is the Dy-
namic UNet (fast.ai, n.d.), based on the original Unet proposed by Ronneberger et al. [23].
A UNet architecture was chosen as it is the best methodology in terms of overall perfor-
mance in medical imaging applications [21,29]. The flexibility derived from using custom
encoders provided by Dynamic UNet allows for a much greater degree of exploitation of
transfer learning.
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The original UNet architecture can be divided into an encoding part, or “downsam-
pling”, and a decoding part, or “upsampling”. The encoding side performs a similar task
to a conventional CNN, with regular downsampling steps performed through the maxpool
operation. At the same time, the decoding path follows a symmetrical structure, with
the upsampling steps performed through a fractionally strided convolution layer. The
symmetry allows for the activations of the downsampling layers to be concatenated to the
activations of the upsampling layers. This offers better retention of spatial information
throughout the upsampling path.

The Dynamic UNet architecture was originally presented by Iglovikov and Shvets [25].
It follows the same basic architecture as the original UNet but adds a pre-trained model
as the encoder. The approach not only achieves considerable improvements over the
traditional UNet, but it also allows one to experiment with a variety of pre-trained encoders.
In this study, the ResNet encoders were used, as it has been demonstrated that they reduce
the reliance on regularization techniques [30].

ResNets were first introduced in 2015 [31] to counteract the vanishing/exploding
gradient problem in deeper networks, which had been a mainstay challenge in the deep
learning research field since the inception of ConvNets [32]. The fundamental component
of a ResNet is the residual block, which incorporates a “skip connection”. The input to the
block is passed through an identity mapping and is summed to the activation of a series
of convolutional layers. ResNets can reach theoretically infinite depths, due to the self-
regularization method provided by the identity mapping [31]. The flexibility of ResNets
allows training for longer (more epochs), thus reducing the likelihood of overfitting [31].

3.4. Model Configuration

In addition to the novel application of the Dynamic UNet in this field, several archi-
tectural configurations were added to the models. These model configurations further
improve upon the current state of the art. The configurations introduced to the model were
(Figure 4).
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Figure 4. Experimental layout. Purple represents the location of the self-attention layer (here
represented in a simplified view of a ResNet18). Red represents the skip connection from the first to
last layer. Green is the bottlenecked connection.

• ResNet encoders;
• A self-attention layer as part of the upsampling path of the model;
• A blurring algorithm to avoid checkerboard artefacts;
• A bottleneck connection from input to output.
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3.4.1. ResNet Encoders

The chosen encoder architectures were ResNet18, ResNet34 and ResNet50 [31]. It was
important to convey the effect of architectural scaling on performance, and ResNets have
been demonstrated to be an excellent choice for medical imaging work [33,34]. While the
number of training parameters is considerably higher than in most other solutions, the
increased transferability of ResNets allows for improved results with lower amounts of
data, thus validating the effort that was put into increasing data efficiency. The choice of not
experimenting with larger architectures, such as ResNet101, was made due to insufficient
data for such architectures. This assumption was confirmed correct by the results.

3.4.2. Self-Attention Layer

Attention is a mechanism that was introduced by Bahdanau et al. [35] with the aim of
improving neural machine translation tasks. Attention layers have since been an integral
part of transformer-based models [24]. Attention-based models have been shown to excel
in all contexts in which capturing global dependencies is necessary, including hybrid text–
image tasks [36,37] and computer vision tasks [38]. Self-attention consists of a block of
layers that outputs the attention feature maps of an input sequence with each element of
the same sequence. Self-attention has been featured in promising research within CAD [39],
with the usage of self-attention as a region-of-interest detection tool, thus allowing one to
obtain a cropped local image in which to perform a classification. The experiments were
run with the implementation described by Zhang et al. [40], who introduced a ResNet-like
approach to self-attention by including a skip connection within the final output of a
layer yi:

yi = γoi + xi

where γ is a learnable parameter that scales the output of a self-attention layer and xi is
the input of the layer. The approach results in greater spatial awareness by the model, a
trait that is highly desirable in medical imaging, as images often present themselves with a
pseudo-symmetrical and repetitive structure.

3.4.3. Blurring

To counteract the natural occurrence of checkerboard artefacts in CNNs [41], a blurring
mechanism was introduced. An average pooling layer with 2 × 2 dimensions and the unit
stride was added after each activation in the upsampling path of the Dynamic UNet.

3.4.4. Bottlenecked Connection

The original UNet architecture did not feature any direct connection between the input
and the final layer, opting instead for a concatenation of the activation of the third layer
and the activation of the last deconvolution layer [23]. Adding an even less processed
pass-through could lead to better spatial awareness and improved performance. In this
work, a bottlenecked connection is included, aiming at forcing the model to synthetize
the input information by using a bottleneck within the residual block, which halves the
number of features in the convolutional path of the block.

3.5. Training of the Models
3.5.1. Data Augmentation

In addition to transfer learning, we further address the issue of insufficient training
data by employing a more aggressive data augmentation strategy compared to the pub-
lished literature. Data augmentation is an ensemble of techniques that are employed to
artificially increase the amount of available data with the aim of reducing overfitting and
improving generalization [42]. Specifically, in computer vision, images are slightly altered
through affine or lighting transformations. These can include rotations, cropping, contrast
and color correction. By heavily employing data augmentation, the chances of overfitting
are drastically lowered, allowing for improved performance with data being equal (by
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employing a larger architecture), or by achieving similar results with lower amounts of
data, as presented by Wong et al. [43].

We employed several augmentation strategies (summarized in Table 1), and aug-
mented images were used for all model configurations. All transformations were per-
formed with a reflection padding mode, mirroring the pixel values along the image border
to fill the shape. Examples of augmented data can be seen in Figure 5. The combined
probability of a transformation to a specific feature is

p = 1 −∏(1 − pi)

where pi is the probability of the transformations that affect the specific feature to occur. The
dataset was then composed of ~99.95% data-augmented images. The perfectly horizontal
edge of the manually segmented mask was impacted by the perspective warp and the
rotation transformation. This led to an overwhelming imbalance in the dataset, with
~93.75% of the images featuring an inclined mask as ground truth.

Table 1. Data augmentation overview. The probability column refers to the likelihood of any
transformation occurring.

Transformation Parameters Probability

Horizontal flip N/A 0.5
Rotation ±10◦ 0.75
Cropping 1.1 magnification 0.75

Contrast adjustment ±20% 0.75
Brightness adjustment ±10% 0.75

Perspective warp ±20% position of the observation plane 0.75
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3.5.2. Hyperparameters

To identify the best segmentation model for the segmentation task, a total of 18 different
segmentation models were trained, each with a different combination of the configurations
described above. The same training datasets (2146 images from 37 patients) were used
for the training of all model configurations. Every model was trained with three distinct
random seeds to ensure minimal stochastic noise in the results.

The optimizer for the training was Adam [44], with β1 of 0.9 and β2 of 0.99. The
optimal learning rate for each architecture was found as shown by Smith [45], resulting in
an optimal theorical learning rate of 1 × 10−4 for all configurations. The training phase
featured learning rate annealing, as described by the 1-cycle policy [46]. All trainings were
performed with weight decay of 0.01.

The models were trained using an NVIDIA P40 with 24 GB of VRAM. Batch sizes were
chosen empirically, with ResNet18 models having 64 (31,208,178 parameters), ResNet34
having 32 (41,316,338 parameters) and ResNet50 having 8 (341,254,226 parameters).

3.5.3. Experiments

The performance of each of the 18 different models was tested with images from seven
patients not used for training. The computational demand of each model was evaluated
by calculating inference times for segmentation. Inference times were calculated for each
individual image and for all images of the DCE-MRI sequence of each patient (n = 1260).

The segmentation result of each model was compared to 406 images (58 images per
patient) that were manually segmented. Comparisons of agreement between the model
segmentation and the manual segmentation were made using the DSC and the Jaccard
Similarity Coefficient (JSC):

DSC = 2|X∩Y|
|X|+|Y|

JSC = |X∩Y|
|X∪Y|

where X is the number of pixels inside the thoracic cavity that are part of the manual
segmentation and Y is the number of pixels inside the thoracic cavity that are part of the
model segmentation. The DSC represents the mean overlap and the JSC represents the
union overlap of pixels that are common to both the manual and automatic segmentation.
For each model, DSC and JSC were determined for each image and the mean ± standard
deviation (SD) of each coefficient was calculated for all 406 images.

4. Results

The DSC and JSC for each model are summarized in Table 2. Inference times are
summarized in Table 3. The best agreement between model segmentation and manual
segmentation was found for the ResNet34 model configuration with self-attention, the
bottlenecked connection and the blurring mechanism. It achieved a DSC of 0.9359, JSC of
0.8874 and inference times of 33.56 ms/image and 42.3 s for all 1260 images of one DCE
sequence. The worst agreement between model segmentation and manual segmentation
was found for the ResNet50 with self-attention model configuration, with a DSC of 0.9210,
JSC of 0.8670 and inference times of 194.8 ms/image and 245.2 s for all 1260 images of one
DCE sequence.

Upon visual inspection of the model segmentation results, it was found in all models
that the lower edge of the segmented area was not straight, which influenced the results of
the similarity coefficients. This phenomenon was an artefact caused by the data augmen-
tation strategy, which allowed for reduced overfitting and better training outcomes. The
training data were rarely not augmented before being inputted into the models, resulting
in the horizontal line at the bottom of the manually segmented mask being interpreted
as always inclined. A simple adjustment step was then taken to ensure the real-world
usability metrics of the methodology. The refinement algorithm consists of a simple loop
over the columns of the output of the model, forcing any pixel between the highest true
value in a column and the 131st from the bottom to be true. In other words, the generated
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masks are refined to only allow for pixels above the height of 131 from the bottom of the
image to be true. The updated schematic of the solution can be seen below in Figure 6.

Table 2. Similarity coefficients for all models. The similarity coefficients are represented as mean ±
standard deviation. The best performing model was the ResNet34 model with a self-attention layer,
bottleneck connection and blurring mechanism, which is highlighted in bold. Abbreviations: BC—
bottleneck connection, BL—blurring mechanism, DSC—DSC Similarity Coefficient, JSC—Jaccard
Similarity Coefficient, SA—self-attention layer, SD—standard deviation.

Model Configuration Mean DSC ± SD Mean JSC ± SD

Resnet18 0.9253 ± 0.1034 0.8760 ± 0.0758
ResNet18 + SA 0.9296 ± 0.1028 0.8757 ± 0.0765
ResNet18 + BL 0.9273 ± 0.1033 0.8795 ± 0.0764
ResNet18 + BC 0.9283 ± 0.1045 0.8742 ± 0.0763

ResNet18 + SA + BL 0.9348 ± 0.1045 0.8846 ± 0.0760
ResNet18 + SA +BL + BC 0.9293 ± 0.1036 0.8755 ± 0.0765

Resnet34 0.9244 ± 0.1017 0.8721 ± 0.0756
ResNet34 + SA 0.9230 ± 0.1012 0.8652 ± 0.0752
ResNet34 + BL 0.9227 ± 0.1015 0.8714 ± 0.0749
ResNet34 + BC 0.9292 ± 0.1009 0.8754 ± 0.0755

ResNet34 + SA + BL 0.9337 ± 0.1008 0.8780 ± 0.0750
ResNet34 + SA + BL + BC 0.9359 ± 0.1004 0.8874 ± 0.0748

Resnet50 0.9240 ± 0.1055 0.8717 ± 0.0781
ResNet50 + SA 0.9210 ± 0.1069 0.8670 ± 0.0790
ResNet50 + BL 0.9233 ± 0.1063 0.8708 ± 0.0777
ResNet50 + BC 0.9257 ± 0.1059 0.8730 ± 0.0775

ResNet50 + SA + BL 0.9278 ± 0.1061 0.8727 ± 0.0766
ResNet50 + SA +BL + BC 0.9289 ± 0.1053 0.8740 ± 0.0770

Table 3. Inference times for all models. Times are represented in ms/image for single image
processing, and in seconds for batch processing. The best performing model was the ResNet18
with no additions, which is highlighted in bold. Abbreviations: BC—bottleneck connection, BL—
blurring mechanism, DSC—DSC Similarity Coefficient, JSC—Jaccard Similarity Coefficient, SA—self-
attention layer.

Model Configuration Inference Time (ms/Image) Batch Inference Time
(1260 Images) (s)

Resnet18 26.83 30.0
ResNet18 + SA 33.56 42.3
ResNet18 + BL 31.88 40.2
ResNet18 + BC 27.68 34.9

ResNet18 + SA + BL 33.56 42.3
ResNet18 + SA +BL + BC 33.56 42.3

Resnet34 31.88 40.2
ResNet34 + SA 33.56 42.3
ResNet34 + BL 33.56 42.3
ResNet34 + BC 30.2 38.1

ResNet34 + SA + BL 33.56 42.3
ResNet34 + SA + BL + BC 33.56 42.3

Resnet50 179.5 226.2
ResNet50 + SA 194.6 245.2
ResNet50 + BL 196.3 247.3
ResNet50 + BC 194.6 245.2

ResNet50 + SA + BL 196.3 247.3
ResNet50 + SA +BL + BC 198 249.5

The sole purpose of the refinement algorithm is to remove the bias inserted into
the training process by the aggressive data augmentation strategy. Such an algorithm
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would not be used in a workflow for lesion detection, or in clinical practice, as it aims at
improving performance in areas that result in no additional value in CAD or diagnosis. The
performance metrics of the refined masks should then be interpreted as directly correlated
with the actual capability of models to segment the chest cavity.
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Figure 6. Schematic of the solution. The input image is inputted in a deep learning model, which
outputs a generated mask. A refinement algorithm then removes the bottom part of the mask. The
segmentation mask is then applied to the input image.

The application of the refinement algorithm led to considerable improvements in
the similarity coefficients, but with a slight increase in inference times (Tables 4 and 5).
The best agreement between model segmentation and manual segmentation was again
found for the ResNet34 model with self-attention, bottlenecked connection and blurring
mechanism model configuration. It achieved a DSC of 0.9612 and JSC of 0.9789, with
inference times of 98.99 ms/image. The worst agreement between model segmentation and
manual segmentation was found for the ResNet50 with self-attention model configuration,
with a DSC of 0.9465 and JSC of 0.9708, with inference times of 261.7 ms/image.

Table 4. Similarity coefficients for all models after refinement algorithm. The similarity coefficients
are represented as mean ± standard deviation. The best performing model was the ResNet34 model
with a self-attention layer, bottleneck connection and blurring mechanism, which is highlighted in
bold. Abbreviations: BC—bottleneck connection, BL—blurring mechanism, DSC—DSC Similarity
Coefficient, JSC—Jaccard Similarity Coefficient, SA—self-attention layer.

Model Configuration DSC ± SD (n = 406) JSC ± SD (n = 406)

Resnet18 0.9750 ± 0.0451 0.9552 ± 0.0667
ResNet18 + SA 0.9731 ± 0.0449 0.9552 ± 0.0669
ResNet18 + BL 0.9739 ± 0.0447 0.9536 ± 0.0701
ResNet18 + BC 0.9717 ± 0.0450 0.9497 ± 0.0670

ResNet18 + SA + BL 0.9751 ± 0.0448 0.9556 ± 0.0665
ResNet18 + SA +BL + BC 0.9737 ± 0.0447 0.9533 ± 0.0674

Resnet34 0.9744 ± 0.0420 0.9541 ± 0.0682
ResNet34 + SA 0.9734 ± 0.0419 0.9527 ± 0.0628
ResNet34 + BL 0.9698 ± 0.0417 0.9512 ± 0.0642
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Table 4. Cont.

Model Configuration DSC ± SD (n = 406) JSC ± SD (n = 406)

ResNet34 + BC 0.9766 ± 0.0422 0.9577 ± 0.0677
ResNet34 + SA + BL 0.9775 ± 0.0425 0.9584 ± 0.0633

ResNet34 + SA + BL + BC 0.9789 ± 0.0411 0.9612 ± 0.0621
Resnet50 0.9718 ± 0.0493 0.9541 ± 0.0627

ResNet50 + SA 0.9665 ± 0.0502 0.9538 ± 0.0721
ResNet50 + BL 0.9708 ± 0.0488 0.9465 ± 0.0704
ResNet50 + BC 0.9732 ± 0.0499 0.9526 ± 0.0706

ResNet50 + SA + BL 0.9712 ± 0.0501 0.9532 ± 0.0710
ResNet50 + SA +BL + BC 0.9766 ± 0.0497 0.9577 ± 0.0708

Table 5. Inference times for all models with subsequent refinement algorithm. Times are represented
in ms/image for single image processing, and in seconds for batch processing. The best performing
model was the ResNet18 with no additions, which is highlighted in bold. Abbreviations: BC—bottleneck
connection, BL—blurring mechanism, DSC—DSC Similarity Coefficient, JSC—Jaccard Similarity
Coefficient, SA—self-attention layer.

Model Configuration Inference Time (ms/Image) Batch Inference Time
(1260 Images) (s)

Resnet18 92.28 116.3
ResNet18 + SA 93.96 118.4
ResNet18 + BL 92.28 116.3
ResNet18 + BC 92.28 116.3

ResNet18 + SA + BL 95.64 120.5
ResNet18 + SA +BL + BC 95.64 120.5

Resnet34 90.6 114.2
ResNet34 + SA 95.64 120.5
ResNet34 + BL 95.64 120.5
ResNet34 + BC 92.28 116.3

ResNet34 + SA + BL 97.32 122.6
ResNet34 + SA + BL + BC 98.99 124.7

Resnet50 258.4 325.6
ResNet50 + SA 263.4 331.9
ResNet50 + BL 261.7 329.7
ResNet50 + BC 260.1 327.7

ResNet50 + SA + BL 261.7 329.7
ResNet50 + SA +BL + BC 266.8 336.2

5. Discussion

The main aim of this work was to develop a fully automatic methodology for the
segmentation of the chest cavity to use for the development of automatic lesion detection
systems. All 18 models showed excellent agreement with the manual segmentation, with
DSCs of over 0.92 and JSCs of over 0.86. After the introduction of a refinement algorithm to
compensate for artefacts due to the aggressive data augmentation strategy, the DSCs and
JSCs improved to over 0.95 and 0.96, respectively. The best performing model was found to
be the ResNet34 model with the self-attention layer, blurring mechanism and bottleneck
connection, resulting in very high agreement with manual segmentation, with a DSC of
0.9612 and a JSC of 0.9789.

Overall, the techniques proposed show a significant improvement over the current
state of the art [8], which features a DSC of 0.9660 on full breast segmentation. While the
tasks are not directly comparable, body–air segmentation has been shown to achieve more
than optimal results in the past [20], hence highlighting the need for novelty solely in chest
cavity segmentation. Moreover, the DSC is expected to be lower with smaller regions to
segment. Hence, it is reasonable to assume that the cost to the DSC and JSC of generating
incorrect chest wall segmentation is lower, as shown in Piantadosi et al. [8].
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The best configuration also improves inference timings, matching the previous state
of the art after post-processing on comparable hardware, but dramatically improving on it
without. As previously mentioned, the post-processing algorithm is solely used to highlight
the validity of the proposed solution and is not meant to be included in any CAD workflow.

The agreement between the model segmentation and the manual segmentation was
very good to excellent for all model configurations. The addition of each proposed im-
provement to the models provided marginal improvements for all architectures. However,
the models with all configurations added consistently resulted in higher performance.
This improvement was particularly striking for the ResNet 34 encoder, which showed an
increase in the DSC from 0.9541 (ResNet34 only) to 0.9612 (ResNet34 with self-attention
layer, blurring and bottleneck). However, adding to the complexity of the model comes
with an increased computational cost, especially when adding the self-attention layer. For
example, the inference time for the entire DCE image sequence is 114.2 s for ResNet34
only, but this increases by 6.3 s when adding the self-attention layer, while adding the
bottleneck connection causes an increase of only 2.1 s (Table 5). The best performing model
before post-processing is the ResNet34 featuring all proposed additions. The consider-
able improvement in segmentation accuracy over a standard ResNet encoder may justify
the additional computational cost. ResNet50 configurations performed worse than the
smaller ResNet34 architectures. This is likely due to underfitting, and having access to
more data would be extremely beneficial and most likely would lead to better performance
than ResNet34 on larger training datasets. The difference between the worst performing
architecture (ResNet18 with bottleneck connection) and the best performing architecture
(ResNet34 with all proposed additions) can be seen in Figure 7 below.
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Figure 7. Comparison of results. The input images to the algorithms (a); the results from the worst
performing algorithm (ResNet18 with bottleneck connection) (b); the results from the best performing
architecture (c). The generated masks are purple, while the yellow coloring represents the areas of
disagreement with the manual labeling. Abbreviations: BC—bottleneck connection, BL—blurring
mechanism, SA—self-attention layer.

In cases of limited computational resources, both at training time and at inference
time, the ResNet18 configurations would be the recommendation.
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As the refinement algorithm is applied, improvements can be uniformly observed
across all model configurations. By removing the bottom boundaries of the generated
masks, the mean JSC is increased by 0.098, and the average DSC is increased by 0.026. The
low variance of both similarity coefficients corroborates the observation that aggressive data
augmentation is one of the main causes of irregularities in the generated masks (Table 4).

6. Conclusions

In this work, a series of experiments were run on Dynamic UNet architectures to
determine their performance in chest cavity segmentation, achieving the best performance
with a ResNet34 downsampling path, a self-attention layer, a blurring mechanism and a
bottlenecked connection between the activation of the first block and the last block of the
model. The average model performance without any post-processing achieved a DSC of
0.9359 and a JSC of 0.8874. Applying a simple algorithm aimed at correcting artefacts that
were generated by aggressive data augmentation yielded an average DSC of 0.9612 and
JSC 0.9789, achieving a new state of the art.

While the results are a significant step in the direction of clinical usability, future
research should aim to expand the overall training datasets, as well as test the solution
with different acquisition protocols and/or tasks.
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