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Abstract— Unmanned Aerial Vehicles (UAVs) are gaining 
significant scientific interest in critical infrastructure inspection due 
to their flexibility, cost-effectiveness and advanced computer vision 
capabilities. This research focuses on high-voltage powerline 
surveillance, where automatic inspection is a priority for grid 
companies to prevent power failures. To address the need for real-
time detection with limited computational power, we evaluate the 
recently developed object detection algorithm, YOLOv5. We propose 
a fine-tuned model trained on a custom dataset to detect key 
components, i.e. towers, insulators and conductors. The proposed 
method achieves an overall accuracy rate of 82.3% (mAP@0.5) and 
enables real-time detection, demonstrating its suitability for 
inspection tasks and visual-based navigation. Our model was also 
tested on a custom-built quadcopter with an Nvidia Jetson Nano 
(4GB) on board, achieving a frame rate of 33fps on live video under 
real environmental conditions. 

Keywords—Unmanned Aerial Vehicles (UAVs); high-voltage 
powerlines; computer vision; object detection; custom dataset. 

I. INTRODUCTION

The energy sector, as defined by the U.S. Presidential Policy 
Directive (PPD-21) and the European Commission directives, 
is considered uniquely critical as it provides an "enabling 
function" across all critical infrastructure sectors [1], [2]. 
Within this sector, electricity facilities play a vital role in 
supplying energy to entire countries. As such, safety and 
security through regular inspection and surveillance is a priority 
for grid companies. Safety includes the prevention of 
unexpected faults or energy loss, which could be caused by 
external factors such as extreme weather or system failure. 
Currently, the most commonly used methods for powerline 
inspection are walking patrols, helicopter-assisted inspections, 
or ground vehicle inspections. However, aerial inspection using 
unmanned aerial vehicles (UAVs) technology is rapidly gaining 
popularity as an alternative to these conventional methods, 
which are costly, time-consuming, and prone to human error. 
UAVs offer a unique combination of aircraft mobility and 
quasistatic positioning by hovering for close-up inspections, 
potentially making them versatile and very efficient means of 
inspection, especially for locations that are difficult to reach 
otherwise [3]. To achieve improved detection speed and 
accuracy, UAV applications have been combined with 
significant advancements in image classification and real-time 
object detection using deep learning methods, such as 
Convolutional Neural Networks (CNNs) [4]. While traditional 

 

visual-based methods of image classification have been used in 
powerline inspection, there has been a growing trend towards 
the use of deep learning techniques, with the majority of recent 
work being published after 2018. However, despite the 
significant progress in the field of computer vision and deep 
learning, there are still many challenges when it comes to flying 
robots. The complexity of an aerial platform, with limited 
computational capacity and restrictions in terms of size, weight 
and power source, demands a combination of different research 
fields in order to achieve a realistic result. This includes 
aerodynamics, sensors, power supply, autopilot logics, 
computational and payload capabilities, as well as 
communication links. This work is part of a project that aims at 
visual-based navigation over transmission line facilities in 
order to conduct automated inspection of high –voltage 
powerlines (>500kv). In order to reach this goal, the first crucial 
step is detecting the main components of such a powerline 
network. High-performance results can serve as a solid 
foundation for the development of a complete powerline 
inspection system that could track towers and powerlines to 
navigate autonomously. This paper examines and presents the 
performance of the object detection algorithm YOLOv5, 
developed by Ultralytics, chosen for its high accuracy and 
speed compared to other computer vision techniques. YOLO 
[5] stands for You Only Look Once, because unlike previous
regional neural networks (RCNNs), where the network made
predictions after dividing the image into several regions of
interest (ROIs) to extract features, in YOLO the input image is
passed through the network only once in order to make
predictions. This offers fast predictions achieving real –time
object detection with a video stream with less than 25ms
latency. YOLO had been under several improvements,
YOLOv2 [6], YOLOv3 [7], YOLOv4 [8], reaching YOLOv5
[9]. The main difference of the fifth version is the depth and
width of the layers and the parameters of the model. YOLOv5
is smaller and faster than previous versions, utilizing five
different-sized models that vary based on modifications in layer
width and depth. These models include the "nano," "small,"
"medium," "large," and "xlarge" variants. Using these
configurations, we train and evaluate fine-tuned models,
incorporating internal data augmentations, to predict three
object classes of high-voltage powerline facilities: towers,
insulators, and conductors. Results are evaluated on GPU
environment, as well as in real flight with a custom-built
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quadcopter equipped with a Pixhawk4 flight controller and 
Nvidia Jetson Nano (4GB) as companion computer with a web 
camera. 

II. RELATED WORK

Deep learning methods to detect electrical components and 
perform fault diagnosis attracted researchers’ interest during 
the last five years, due to computer vision technology 
advantages, such as multiple object detection with high 
accuracy and speed. Reference [10] was a pioneer work in the 
field, as CNN was used in order to classify the status of 
insulators. CNN model with multi-patch feature extraction 
method is applied to represent the status of insulators and a 
Support Vector Machine (SVM) is trained based on these 
features. Dataset included images of normal insulators and 
three types of damages. A RCNN architecture after image 
preprocessing (correction, cropping and enhancement), to 
detect cracked insulators was proposed in [11], based on 
Region-CNN approach. The same problem of identifying 
broken insulators was studied previously in [12]. The author 
combined Faster-RCNN architecture with U-Net to detect self 
–blast glass insulators. High accuracy results (>90% mAP)
proved that deep learning has the potential to achieve a fully
automated powerline inspection. Seeking to increase the speed
of the models, single-stage algorithms gained interest.
YOLOv3 for detecting and classifying distribution line poles
and YOLOv2 for detecting tower components, were proposed
in [13] and [14], respectively, comparing these models to
Faster-RCNN. YOLOv2 and YOLOv3 outperformed Faster-
RCNN in terms of mAP and detection speed in both cases. An
interesting work for deploying YOLO algorithm on a UAV was
presented in [15]. YOLOv4-tiny was tested with different
Single Board Computers (SBCs), Nvidia Jetson Nano, Nvidia
Jetson TX2, Nvidia AGX Xavier and Raspberry Pi 4, resulting
at real-time detection speed with AGX Xavier. The latest
version, YOLOv5, was fine-tuned on custom dataset and
evaluated for detecting normal and defective insulators in [16].
Regarding other small transmission line objects, such as
dampers, spacers and adjusting plates, an optimized YOLOv5
algorithm was proposed in [17]. Our work contributes to the
existing literature by extending detection to high-voltage
powerline elements, i.e. conductors and towers on a new dataset
created from scratch.

III. DATA DESCRIPTION AND METHODOLOGY

A. Dataset

For this research an original dataset of 2056 images capturing 
components of transmission lines, was developed for the neural 
networks’ training and testing (data split≈ 70%-20%-10%). 
The images consist of both aerial and ground videos/images, 
taken from a DJI Mavic 2 Zoom quadcopter (CMOS 1080p, 
30fps) and from a 64MP conventional camera, accordingly. To 
capture real flight parameters with diverse backgrounds and 
different points of view, angles and sun position of the shots 
differ (Figure 1). To further ensure diversity in terms of 
backgrounds and lightening conditions, the shooting took place 

in different locations and times during the day (before and after 
noon). 

a) Downside
up 

b) Top-down c) Side

Fig. 1: Sample images of the dataset 

Images have been cropped, rotated and resized to 512x640 
(original size 1080x1920) in order to simplify the 
computational procedure. No other preprocessing was 
conducted (eg. contrast adjustments and Gaussian filters, which 
enhance features and reduce noise), as according to literature it 
is not proved that preprocessing techniques have any added 
value to CNN models. In fact, Dodge & Karam (2018) in [18] 
showed that in some cases they affect the predictions 
negatively. However, contrast adjustments, as a data 
augmentation technique, are applied internally as part of the 
training code, along with other techniques, such as hue, 
saturation, brightness, adding noise, mosaic etc., increasing this 
way, the model’s performance and ability to generalize; which 
was our main goal.  
All objects of the above dataset where manually annotated 
using polygon shape with the open source annotation tool 
CVAT. Totally, 1756 towers, 4150 insulators, 3734 conductors 
were annotated. We extracted segmentation pixel coordinates 
and bounding box coordinates of each object which were used 
for the model training procedure. 

B. Schematic representation of methodology

In order to train, evaluate and finally select a model to be 
deployed on the UAV for in-flight testing, we followed certain 
steps. The main concept of this work is presented in Figure 2. 

Fig. 2: Schematic representation of the overall methodology 

C. Algorithm architecture

The architecture of single-stage object detectors, such as YOLO, 
consists of three parts: a Backbone, a Neck and a Head, as Figure 
3 suggests. YOLOv5 architecture includes a Cross Stage Partial 
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Network of Darknet as backbone, where the input of the image 
data takes place for feature extraction, the Path Aggregation 
Network (PANet) as neck of the network to create feature 
pyramids, where feature fusion takes place and the head of the 
network or YOLO layer, which provides three different sizes of 
feature maps for multi-scale prediction [19]. Anchor boxes are 
used to output classification predictions, objectness score and 
bounding boxes (location). In our methodology we use 
YOLOv5 pre-trained models as a starting point to build up our 
training. Transfer learning as this training methodology is 
called, takes advantage of other models, trained on large open-
source datasets, such as ImageNet, GoogleNet, MS COCO 
dataset etc. following different architectures. This method is 
more effective compared to training from scratch, in terms of 
computational efficiency. It also demonstrates better results 
when a small dataset is available. In our case we use MS COCO 
pre-trained weights; a large –scale object detection dataset 
consisted of 330K images and 80 object categories. The pre-
trained models used for our YOLOv5 models are listed in Table 
I and can be downloaded using the developers’ public 
repository1. 

Fig. 3: Single-stage object detectors’ architecture [8] 

TABLE I.  PRE-TRAINED MODELS USED FOR TRANSFER LEARNING 

Model Model 
architecture 

Pre-trained model Size 

yolov5s yolov5s.pt 14.1MB 

YOLOv5 yolov5m yolov5m.pt 40.8MB 

yolov5l yolov5l.pt 89.3MB 

yolov5x yolov5x.pt 166MB 

D. Hyperparameters’ tuning and training

Initially, we conducted training for all YOLOv5 models using 
the default hyperparameters and internal data augmentations 
provided in the original code. Based on the mean Average 
Precision (mAP) and the behavior of training and validation loss 
over the training epochs, we deemed it necessary to fine-tune 
some of the main hyperparameters of each model using a 
sequence of grid searches. To accomplish this, we first defined 
a set of hyperparameters to be optimized, i.e. initial learning rate, 
weight decay and momentum, then we created a grid of possible 
values for each hyperparameter. This grid represented all the 
possible combinations of hyperparameters that we evaluated. 
For example, for three potential values for each of the three 
hyperparameters, we had to evaluate a total of 27 combinations. 
We trained and evaluated the model for each combination, 
finding that the main hyperparameter affecting results up to 
approximately 2% in mAP, was the initial learning rate (lr0), 

1  Jocher, G. (2020). YOLOv5 by Ultralytics [Computer software]. 
https://github.com/ultralytics/yolov5 

while other hyperparameters could remain at default values. 
Amongst different values of the initial learning rate, within the 
range of [0.0001, 0.01], the value of 0.001 for medium, large and 
xlarge sizes and 0.009 for small size, produced the best accuracy 
results. A tendency of the objectness branch to overfit too early 
(<100 iterations) was also noticed in all models. This was 
prevented by setting a lower initial learning rate for medium 
large and xlarge models and by raising some augmentation 
values in the original script. Particularly, hyper-parameters for 
high augmentations script were used for all models, adding to 
default settings, image rotation degrees and up-down image-flip. 
Any additional external augmentations applied had a negative 
effect on mAP.  The final powerline (PL) models of yolov5x and 
yolov5l were trained for 150 epochs, batch size 16 and 32, 
respectively and 200 epochs for yolov5s and yolov5m with a 
batch size of 64 and 32, respectively. Information regarding the 
training environment is listed in Table II. 

TABLE II.  TRAINING ENVIRONMENT 

Model Dependencies/hardware version 

python 3.7.13 

YOLOv5 Torch 1.11.0 

CUDA 11.3 

OpenCV 4.1.3 

GPU P100 16GB (google colab) 

CPU AMD Ryzen 5 2500U 8GB RAM  

E. UAV platform

The project included the development of a UAV platform, 
based on flexibility and simplicity, thus a custom built 
quadcopter UAV was constructed for on-board object detection 
processing. A quadcopter or quadrotor UAV, as its name 
suggests, has four rotors mounted on the frame with fixed-
angled propellers. A typical quadcopter has either “x” 
configuration or “+” configuration (Figure 4) and rotors move 
clockwise (CW) and counter-clockwise (CCW) in pairs of two 
[20]. By certain acceleration on rotors it conducts motion on a 
3-axis scheme, each of them representing Pitch, Yaw, Roll. 

Fig. 4: Quadcopter configuration 
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The initial design phase was based on determining the motor’s 
thrust/power and estimating the aircrafts maximum take-off 
weight, as [21] suggests.  
In Table III the final selected parts of our quadcopter are listed 
and photos of the platform provided in Figure 5. The Autopilot 
system consists of Pixhawk 4, as flight controller and a Jetson 
Nano (4GB) Developer kit, as companion computer with on-
board communication via MAVlink protocol. Communications 
where established via Radio Frequency (RF) for telemetry and 
command link between the aircraft and the Remote Control 
(RC) transmitter (433MHz), while video streaming was 
enabled via Wifi connection (2.4GHz). Mission Planner 
software was used as Ground Control Station (GCS). 

TABLE III.  COMPONENTS OF THE QUADCOPTER MODEL WITH WEIGHTS 

component type weight 

Payload Webcamera (HD) 40gr 

Autopilot Pixhawk 4 (flight controller) and 
Jetson Nano (companion 

computer) 

185,8 gr 

Battery1 Li-ion 10000mAh for Jetson 
Nano 

165gr 

Battery2 LiPo 4S 3700mAh 372gr 

Frame S500 (composite material) and 
carbon fiber landing gear 

590gr 

MotorX4 2212 930KV 208gr 

PropellersX4 8045” carbon fiber  72gr 

Other Power Management board, ESCs 
30A, RC receiver, connectors.  

200 gr 

Total ≈1850gr 

Fig. 5: Quadcopter aerial platform with the components listed in Table III. 

IV. RESULTS

A. Metrics

The first evaluation is conducted based on the Loss Function of
the model. YOLOv5 calculates loss based on classification
scores, objectness scores and regression of bounding box
scores. Binary Cross -Entropy with Logits loss function from
Pytorch [22] is used for classification and objectness branch,
while Intersection over Unit (IoU) calculates regression branch
(bbox). IoU is defined by the area where the predicted box and
the ground truth overlaps, divided by the total area of both
bounding boxes (predicted and ground truth):

𝐼𝑜𝑈(𝑏௣௥௘ௗ , 𝑏௚௧) =
஺௥௘௔(௕೛ೝ೐೏∩௕೒೟)

஺௥௘௔(௕೛ೝ೐೏∪௕೒೟)
  (1) 

During training, loss on training set and loss on validation set 
should be reducing, otherwise the model indicates overfitting. 
In our methodology we selected training iterations based on 
validation loss behavior. The final evaluation stage of the 
trained model is defined by the mean Average Precision, Recall 
and Precision. Precision is calculated using false positives and 
true positives of the predictions, while recall relies on true 
positives in relation to false negatives: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
   (2)   

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାிே
 (3) 

Mean Average Precision is calculated by the sum of the average 
precision for each query: 

mAP =
ଵ

ே
∑ 𝐴𝑃𝑖ே

௜ୀଵ    (4) 
An IoU of 50% is the minimum acceptable to evaluate the 
accuracy for the majority of the models, indicated as mAP@.5. 
We also evaluate the average mAP of all IoUs 
(mAP@0.5:0.95). 

B. Evaluation of accuracy and speed

Table IV shows mAP score of each PL-model variation, i.e. “s”, 
“m”, “l” and “x”, as well as speed in validation dataset. Figure 
6 also provides graphs of mAP, Precision and Recall for all 
models. YOLOv5s proved the fastest and also achieved the 
highest mAP@0.5 score. Therefore, it was further optimized 
with Tensor-RT library (Pytorch), reaching 94.3% mAP score 
for towers’ detection. Inference of the optimized model on test 
images with predictions is demonstrated in Figure 7.  

TABLE IV.  YOLOV5 PERFORMANCE WITH TESLA P100 GPU (16GB) AND 
YOLOV5S MODEL OPTIMIZED WITH TENSOR-RT ACHIEVING 94.3% 

ACCURACY (MAP@0.5) FOR TOWERS DETECTION. INPUT IMAGE SIZE 

640X640. NMS TIME PER IMAGE ≈ 1-1.5MS (NOT INCLUDED). 

PL-Models Precision Recall mAP@
0.5 

mAP 

@.5:95 

FPS ms 

YOLOv5s 0.807 0.78 0.82 0.607 303 3.3 

YOLOv5m 0.8 0.78 0.819 0.597 119 8.4 

YOLOv5l 0.787 0.788 0.817 0.613 81.9 12.2 

YOLOv5x 0.825 0.763 0.818 0.635 45.4 22.0 

YOLOv5s-
TRT 

0.817 0.786 0.823 0.616 303 3.3 

Tower 0.94 0.903 0.943 0.832 

Insulator 0.787 0.909 0.889 0.634 

Conductors 0.723 0.547 0.636 0.382 
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Fig. 6: Graphical depiction of Precision, Recall and mAP results 

(a) 

(b) 

(c) 

Fig. 7: Yolov5s-RT inference on test images, indicate high confidence 
level predictions with complex background. Towers and conductors shown 

further away in (b) are not detected, however it is encouraging that the model 
did not “confuse” the wooden pole’s components with the model objects. In (c) 

the model does not detect all insulators, due to the shot angle combined with 
the complex background, however it successfully detects conductors even on 

the lower right side of the image. 

C. Flight test findings

Speed and size are crucial parameters to consider when 
choosing a model for testing in flight, taking into account 
hardware capabilities. Since we observed only small 
differences in accuracy among our PL-models, we selected the 
YOLOv5s-TRT model for the experiment. Recall was also 
taken into consideration since it indicates false negatives which 
are significant for powerline inspection. The flight took place 
in Greece, in an urban environment of eastern suburbs of Attica, 
in accordance with EASA regulations (945/2019 and 947/2019) 
and Hellenic Civil Aviation Authority guidelines. With a 
temperature of 28o C and steady north wind of 7 m/s with gusts 
up to 14 m/s, the quadcopter faced no issues experimenting with 
different powerline approaches, however stability loss and 
vibrations on throttle changes were noticed, when flying at 
>30m altitude, affecting the video stream on the ground control
station. This means that several hardware improvements need
to be made in order for the UAV to be suitable for a typical
inspection scenario, where flexibility is crucial, in terms of
different altitudes and fast direction changes. Results on the live
video and default input image size at 640x640 showed a
significant drop in speed at approximately 10-12fps which
makes it hard for the UAV to adapt in real-time applications.
Reducing the input image size of the optimized model at
288x288 we achieved real-time detection (30-33fps) with
approximately 5% drop in accuracy (mAP@0.5).  The
experiment also demonstrated the successful real-time
detection of towers, even from distances of up to 200m. This
achievement is significant as it represents the initial step
towards autonomous navigation, wherein the UAV can detect
the tower from the takeoff point and subsequently approach for
further inspection of insulators and powerlines.
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V. CONCLUSIONS AND FUTURE WORK

In this study, we fine-tuned and trained different models of 
YOLOv5 architecture for real-time object detection on high-
voltage powerline facilities, achieving an overall accuracy rate 
of 82.3% mAP@0.5, with the highest score noted in towers’ 
detection (94.3%). Our model was tested both on a GPU 
environment and in a real flight experiment, using a custom-
built quadcopter with the Jetson Nano developer kit for on 
board processing. Our work proves that the fined-tuned 
YOLOv5s model optimized with Tensor-RT and trained on an 
original custom –dataset, is capable of deployment on a mini 
quadcopter with only basic configuration, achieving real-time 
detection up to 33fps. These findings suggest that YOLOv5 
models implemented on UAVs equipped with advanced 
sensors, (i.e. FullHD optical sensors, LiDAR and thermal 
sensors) are suited for semi-autonomous navigation and 
inspection tasks over transmission line facilities, which is 
subject of future research. In addition to local inspection tasks, 
it is highly feasible to conduct large-scale inspections by using 
a number of such UAVs to cover the transmission line network. 
Furthermore, this work can provide a basis for intelligent 
powerline surveillance/ inspection tasks and paves the way for 
future research on fault detection of powerlines by combining 
computer vision and data generated from different sensors, such 
as electromagnetic detectors or thermal/UV sensors, aiming at 
minimizing human intervention during flight. 
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