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Abstract: Micro-milling has found extensive applications in machining components with thin-walled
microstructures, such as terahertz slow-wave structures, microfluidic chips, and micro-molds. Due to
the influence of size effects, micro-milling exhibits higher specific energy consumption compared
with traditional milling, implying that more energy is consumed to remove a unit volume of material,
particularly in challenging-to-machine materials like Ti-6Al-4V. Historically, research on parameter
optimization for micro-milling has predominantly focused on enhancing machining quality and
efficiency, with limited attention given to energy efficiency. However, in the context of the “double
carbon” strategy, energy conservation and emissions reduction have garnered significant attention in
the manufacturing industry. Therefore, this paper proposes a micro-milling parameter-based power
consumption model. Based on this, a specific energy consumption model can be obtained. Moreover,
evolutionary algorithms are utilized for the optimization of micro-milling parameters, which aims to
achieve comprehensive enhancements in both machinability and sustainability. The optimization
objectives encompass improving surface quality, dimensional accuracy, material removal rate, and
specific energy consumption during the micro-milling process for thin-walled micro-structures.
Among them, NSGA-III achieves the best optimization results. Under conditions in which cutting
energy consumption and processing efficiency are very close, the optimization outcomes based
on NSGA-III lead to the best machining quality, including the minimum surface roughness and
dimensional errors, and the largest surface fractal dimension. The optimal combination of micro-
milling parameters is n = 28,800 rpm, f; = 2.6 um/t, and 4, = 62 um.

Keywords: thin-walled micro parts; micro-milling; machinability; sustainability; multi-objective

optimization

1. Introduction

The optimization of process parameters is regarded as a crucial means to improve
machining performance, the results of which are dependent on the optimization objectives
and methods. In prior research, optimization objectives have mainly focused on technical
requirements and production efficiency, while energy consumption and environmental
degradation have often been neglected [1]. Sustainable manufacturing technology presents
new challenges for researchers in the context of carbon peaking and carbon neutrality.

As some of the main energy-consuming pieces of equipment in the manufacturing
industry, the primary form of energy consumption for machine tools is electricity. There
are approximately 8 million units of machine tools in China, indicating significant potential
for energy saving. Therefore, balancing machining quality and efficiency while reducing
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the energy consumption of machine tools has gradually become a prominent research
focus in the manufacturing industry [2]. Hu et al. employed the simulated annealing
algorithm to optimize the spindle speed and feed rate in the single-point turning process,
focusing on machining energy consumption while considering cutting force, cutting power,
and surface roughness as constraints. The optimized process parameters resulted in a
19.28% reduction in energy consumption [3]. Feng et al. conducted simultaneous optimiza-
tion of toolpaths and process parameters during the drilling process using NSGA-II, with
energy consumption, machining time, and surface roughness as the optimization objectives.
The experimental results demonstrated that this approach reduced the energy consumption
and machining time by 57.7% and 66.4%, respectively, while significantly improving the
surface quality [4]. In order to achieve a balance between milling sustainability, production
efficiency, and machining quality, Yan et al. employed the response surface methodology
in combination with the grey relational analysis method to optimize the spindle speed,
feed rate, cutting depth, and cutting width in the milling process. The optimized process
parameters were found to enhance both the material removal rate and surface quality while
reducing energy consumption by 18.1% [5]. Zhang et al. conducted an optimization study
on micro-milling process parameters, including spindle speed, feed per tooth, and cutting
depth, with the objective of minimizing power consumption, extending tool life, improving
surface roughness, and enhancing tool holder strength. The cuckoo search algorithm and
grey wolf optimization algorithm were used to enhance global search capabilities. As a
result, a 7.89% reduction in energy consumption was achieved [6]. Wang et al. conducted
optimizations of the energy consumption and machining time in milling processes. The
results indicated that the optimization outcomes based on the improved ant colony algo-
rithm surpassed those obtained with NSGA-II, yielding higher productivity at the same
energy consumption level [7]. Rational parameter selection can lead to comprehensive
improvements in machinability and sustainability at lower costs. The current research has
mostly focused on conventional machine tools, with limited studies on micro-milling.

The established energy consumption model is the basis for analyzing energy charac-
teristics, improving energy efficiency, and minimizing energy consumption in machining.
Currently, CNC machine tool energy consumption models can be generally categorized into
three types: material-removal-rate-based models, specific process-parameter-based models,
and cutting-force-based models [8]. The power consumption model based on material
removal rates is simple in form and has clear physical significance. However, research
has shown that different combinations of process parameters can yield different energy
consumption values at the same material removal rate [9-12]. The variation in process
parameters is a significant factor influencing the energy consumption of machine tools [13].
In addition to regression methods, artificial intelligence is also employed to establish the
relationship between process parameters and machine tool power consumption [14]. How-
ever, these models lack physical interpretability, and the energy consumption model based
on artificial intelligence algorithms relies on extensive testing data [15,16]. Due to factors
such as tool wear, tool deflection, and workpiece material properties, accurately modeling
cutting forces presents challenges [17]. Consequently, establishing a cutting power model
based solely on cutting forces may deviate from actual results [18,19].

Micro-milling is a key technology for manufacturing precision components and finds
widespread applications in various fields. Due to the influence of size effects, micro-milling
has a higher specific energy consumption, which is particularly pronounced when pro-
cessing difficult-to-machine materials such as Ti-6Al-4V [20]. Although many researchers
have analyzed the power consumption characteristics of cutting processes and established
corresponding power consumption models using various methods, most of these models
are focused on general-machining machine tools and still have certain limitations, particu-
larly a lack of in-depth explanations of the power consumption mechanisms and unclear
physical meanings [21-24]. Therefore, it is crucial to determine a more generalized process-
parameter-based power consumption modeling approach for micro-milling processes.
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To reduce the energy consumption in micro-milling processes, this paper carried out
power consumption modeling using power flow analysis. Based on the established model,
the optimization of process parameters was undertaken with the objective of reducing the
specific energy consumption, considering constraints on machining quality and efficiency,
thereby achieving comprehensive improvements in machinability and sustainability.

2. Materials and Methods
2.1. Power Consumption Modeling

During the machining process, all the various forms of energy generated by machine
tools are derived from electrical energy, including mechanical energy, sound energy, and
thermal energy. Therefore, in this paper, when measuring the power consumption of vari-
ous energy-consuming subsystems of machine tools, only the electrical energy consumption
was measured.

In this paper, the machine tool power consumption is split into several components,
and their sum is the total power consumption of the machining process, which can be
illustrated with Equation (1).

I J
Protal = Z Prix—i + Pvarfj (Tl, fZ' aP) 1)
i=1 =1

where Py, represents the total power consumption of the machine tool; Py, _; represents
the power consumption of the i-th fixed energy consumption subsystem; Py, represents
the power consumption of the j-th variable energy consumption subsystem; I represents
the number of fixed energy consumption subsystems; | represents the number of variable
energy consumption subsystems; n represents the spindle speed; f, represents the feed per
tooth; and a, represents the cutting depth.

The power consumed by each fixed energy consumption subsystem can be considered
as a constant value that does not vary with machining states. The power consumed by each
variable energy consumption subsystem is influenced by process parameters, cutting tools,
and workpiece materials. Therefore, this paper focused on analyzing and establishing
power consumption models for variable energy consumption subsystems. The Kern EVO
micro-milling machining center was the research object, as shown in Figure 1.
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Figure 1. Energy consumption boundary of Kern Evo micro-milling machine tool.

On this basis, the total power consumed by the machine tool can be further decom-
posed as Equation (2).

PtotalzPi+Pm:Pb+Pa+Ps+Pf+Pm (2)

where P}, represents the basic power of the control systems, lighting, and air pumps;
P; represents idle power consumption; P, represents the auxiliary power of the cooling,
lubrication, chip collection, and tool-changing systems; Ps represents the non-machining
spindle power; P¢ represents the non-machining feed power; and Pp, represents the material
removal power.
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The machine tool power varies with different machining process stages, as shown
in Figure 2. It can be observed that the tool change process has a short duration and low
power consumption, which can be neglected if the tool change frequency is not high. Upon
activating the cutting lubrication system, there is a significant increase in the machine
tool power. Furthermore, it can be seen that different process stages exhibit distinct
variations in cutting power, indicating that changes in process parameters lead to different
power consumptions.
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Figure 2. Power spectrum of different machining states.

2.1.1. Power Consumption Modeling in Feed and Spindle Subsystems

A schematic diagram of the feed unit motion structure for micro-milling machining
equipment is illustrated in Figure 3. The power source for the feed system is synchronous
permanent magnet motors, which transmit driving force (torque) to the worktable through
couplings, bearings, and ball screws. For the horizontal feed drive unit, the load refers to
the friction of the ball screw pair, and for the vertical feed drive unit, the effect of gravity
should also be considered. It should be noted that the cutting force load is not included.
Similarly, the load of the spindle system does not consider the influence of the cutting
force torque.Synchronous permanent magnet motors convert input electrical energy into
mechanical energy, and the motor’s output power can be obtained via force analysis. The
relationship between the motor’s output torque and the forces on the ball screw, bearings,
and couplings can be described using Equations (3)—(5).

dw
Tm = ]mTtm + Cmwm + Tt (©)]
dewe
T. = ]CW + Ccwe + Typs + 27T, 4)
dwbs
Tps = IbsT + Cpswps + Tt ®)

where T, ], C, and w represent the output torque, moment of inertia, viscous damping, and
angular velocity, and subscripts m, ¢, bs, b, and t represent the motor, coupling, ball screw,
bearing, and worktable.Under the assumption of a negligible angular velocity difference,
the relationship between the motor output torque and the workbench output torque can be

expressed as Equation (6).

d
Tm:]d—(;]+C~w+T ©)
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where T, ], and C represent the output torque, moment of inertia, viscous damping, and
angular velocity of the feed system, which can be expressed as Equation (7).

J = Jm 4 Je =+ Jos
C=Cn+Cc+ Gy (7)
T =T+ 2T,

After obtaining the motor’s output torque, the power output of the driving motor can be
represented as Equation (8).

Potput =T =] 2 4 C 0?4 T w ®)
Apart from the motor output power, permanent magnet synchronous motors also have
internal energy losses, which can generally be classified into the following categories:
copper loss, iron loss, mechanical loss, additional loss, and electromagnetic loss, as shown
in Figure 4.Prior research has indicated that the power loss of a motor can be represented
as a quadratic function of the motor’s rotational speed, as shown in Equation (9) [25].

Ploss:kw2+bw+Pc )

where k and b are coefficients determined by the motor itself, and P. represents the fixed
power loss.Therefore, the expression for the power consumption of the feed system can be
obtained by combining Equations (8) and (9).

Peed = Poutput + Pioss = Fo- & - w + F - w? + B - w + F3 (10)

where « represents the angular acceleration, and the coefficients can be expressed as
Equation (11).
=]
FF=C+k
FE=T+b
=P

(11)

In the stable machining process, the feed speed is constant (i.e., the angular acceleration is
0); thus, the power consumption can be expressed as:

Preed s =F -’ +F-w+F (12)

Through a similar force analysis process as that for the feed unit, the power consumption
of the electric spindle can be expressed as follows:

Pspindlefs =51 n’ +5y-n+ 53 (13)

where S; represents the viscous damping of the electric main spindle; S, represents the
output torque of the electric main spindle; and S; represents the power loss of the electric
main spindle.
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Figure 3. Structural diagram of feed system.
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Figure 4. The power loss of drive motor.

2.1.2. Material Removal Power Modeling

Material removal power refers to the power consumed in the interaction between
cutting tools and workpiece materials to achieve specific shapes and meet certain technical
requirements. There are several factors that influence material removal power, making
accurate modeling challenging. The power consumption in the cutting process is directly
influenced by process parameters. Therefore, establishing the material removal power
based on specific process parameters offers the advantages of simplicity, directness, and
accuracy, facilitating the further optimization of process parameters. In this paper, both
exponential and polynomial models are used to fit and analyze cutting power, as shown in
Equations (14) and (15), respectively, and a comparison of their merits is presented.

Pp=a-n.f2.ap (14)

Pmn=potpi-n+pr-ap+ps-fzt
(15)
pa-n-ap+ps-n-fo+pe-ap-f.
where 1, f;, and a, represent the spindle speed, feed per tooth, and depth of cut, respectively,

and a, c1, ¢, ¢3, Po, P1, P2, P3, P4, P5, and pg are coefficients that are closely related to the
cutting tools, materials, and process conditions.

2.2. Description of the Multi-Objective Optimization Problem

In the material removal process, improving a specific technical index by adjusting the
process parameters may lead to the deterioration of performance in other areas. Therefore,
the objective of this study was to balance the relationship between sustainability, machining
quality, and efficiency in micro-milling processes, which is illustrated in Figure 5.

Ovtimization obiecti o (RS machining production
ptimization objectives y i i ey
Specific indicators [ SEC, n Sa, Ds, De MRR
— spindle feed cutting
B
Machining parameters — Dertooth i

Figure 5. The multi-objective optimization problem description.

In this study, the optimization objectives included surface roughness (S,), surface
fractal dimension (D;), and size error (D,) as measures of machining quality; the material
removal rate (MRR) considered for evaluating machining efficiency; and the specific cutting
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energy consumption (SCE) employed for energy efficiency assessment. Their definitions
are shown in Equations (16)—(20).

Sq = jsf |P(x,y) — E(x,y)|dxdy/S (16)

where ®(x,y) denotes the height information of the surface, and ¢(x,y) corresponds to the
reference plane of the surface.

_ InN(e)
P e )

where ¢ represents the side length of the box, and N(e) represents the number of boxes.
The value of the surface fractal dimension represents the richness of details on the surface,
reflecting the complexity and finesse of the surface contour in space, as well as its ability to
fill space. In comparison with parameters of surface roughness, the surface fractal dimen-
sion is more sensitive to the absence of surface microstructures. Therefore, selecting the
surface fractal dimension to characterize surface quality holds a certain significance [26,27].

(17)

D, = |Du - Di| (18)

where D, is the actual dimension, D; is the actual dimension, and D; is the design dimension.
The dimensional errors (D,) were measured using pixel analysis of the SEM-measured
picture. In comparison with image scales, three positions on the thin-walled microstructure
were selected for averaging; thus, the actual dimensions were determined, followed by
subtracting the design dimensions to obtain the dimensional errors.

MRR =ay - ae- f (19)
where ap, e, and f are the cutting depth, cutting width, and feed speed, respectively.

Etotal _ P-T _ p
Vmaterial MRR-T  MRR

where SCE, Eiotal, Vmaterial, 1, and P are the specific cutting energy, cutting energy, volume
of removal material, machining time, and machining power, respectively.

The three process parameters to be optimized are the spindle speed 7, feed per tooth
fz, and cutting depth a,. Considering the main technical requirements of thin-walled
microstructures, the optimal combination of process parameters can be obtained with the
constraints shown in Equations (21) and (22).

SCE =

(20)

Amin < 1 < Mmax
fzmin S fz S fzmax (21)
Apmin < dp < Apmax

minSa(n, fz,ap,)
maxDs (1, fz,ap)
minDe(n, f;,ap) (22)
maxMRR (n, f,ap)
minSEC (n, f ap)

To eliminate the negative impacts caused by the improper selection of process parame-
ters, it is essential to adopt appropriate optimization methods, which generally fall into two
categories: traditional methods and intelligent methods. Traditional methods typically rely
on experimental design and gradient-based search, the limitation of which lies in the fact
that the convergence can be greatly influenced by the nonlinearity of the objective function
and initial value settings and the global optimality is hard to ensure. Therefore, in recent
years, intelligent optimization algorithms have been widely applied to parameter optimiza-
tion in machining, with evolutionary algorithms being the most extensively used. The high
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dimensionality of the optimization objective space poses challenges in the optimization
process. Therefore, in this paper, various process parameter optimization methods were
utilized, and their results were compared, including NSGA-II (non-dominated genetic
sorting algorithm-II), MOPSO (multi-objective particle swarm optimization), and NSGA-III
(non-dominated genetic sorting algorithm-III) [28,29].

2.3. Experimental Design

The micro-milling experiments were conducted in the Kern Evo five-axis vertical ma-
chining center. The cutting tools had a diameter of 800 um and a helix angle of 60 degrees.
The workpiece material was a Ti-6Al-4V alloy, the main dimensions of which are shown in
Figure 6. In order to analyze and validate the power consumption model proposed above,
the Fluke 1735 three-phase power logger was employed to record the power characteristics
during the machining process, as shown in Figure 7.

Figure 6. Main dimensions of workpiece.

Computer

Fluke power logger

Figure 7. Measurement of power consumption.

Due to the feed and spindle power consumption only being influenced by single
factors in the non-machining stage, an experiment was designed to validate the proposed
power consumption models, and the corresponding parameters are shown in Table 1.

Table 1. Process parameters for non-machining power measurement.

f (mm/min)

n (rpm) a, (um)

20, 120, 220, 320, and 420 0 0

10,000, 15,000, 20,000, 25,000, 30,000,
35,000, 40,000, and 45,000

The material removal power is influenced by the combination of process parameters.
In order to analyze the effects of the process parameters on the machining quality, pro-
duction efficiency, and energy efficiency, an orthogonal experiment was designed, and
the corresponding levels are shown in Table 2. Ignoring the interactions between process
parameters, the experimental design was conducted based on the L16 Taguchi experimental
table [30], as shown in Table 3.
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Table 2. Machining parameters used in orthogonal experiments.
Level
Symbol Process Parameters Units 1 ) 3 1

A Spindle speed (1) r/min 15,000 25,000 35,000 45,000

B Axial depth of cut (a,) pm 50 60 100 150

C Feed per tooth (f;) pum/tooth 0.5 1.5 2.5 3.5

Table 3. Machining parameters and machining responses of the orthogonal experiments.
Level

No.  Symbol (rfrun) (51;1) Ds (k]sllifn3) (mrf"I}rI:\in) A B C
1 A1BIC1 45 13 2.5110 15.94 0.60 15,000 50 0.5
2 A1B2C2 56 2.8 2.4620 4.50 2.16 15,000 60 15
3 A1B3C3 60 2.9 2.4468 1.67 6.00 15,000 100 2.5
4 A1B4C4 143 4.1 2.4108 0.82 12.60 15,000 150 3.5
5 A2B1C2 48 3.2 2.4960 15.50 1.20 20,000 60 0.5
6 A2B2C1 54 2.2 2.4730 6.15 3.00 20,000 50 15
7 A2B3C4 185 43 2.3663 1.28 15.00 20,000 150 2.5
8 A2B4C3 121 4.4 2.3903 1.38 14.00 20,000 100 3.5
9 A3BI1C3 57 2.8 2.4565 10.27 2.80 25,000 100 0.5
10 A3B2C4 133 4.6 2.4478 2.31 12.60 25,000 150 15
11 A3B3C1 58 2.7 2.4500 415 7.00 25,000 50 2.5
12 A3B4C2 99 3.5 2.4346 2.49 11.76 25,000 60 3.5
13 A4B1C4 60 2.3 2.4441 8.22 5.40 30,000 150 0.5
14 A4B2C3 85 47 2.4346 4.09 10.80 30,000 100 15
15 A4B3C2 90 3.8 2.4291 410 10.80 30,000 60 2.5
16 A4B4C1 66 5.7 2.4391 3.52 12.60 30,000 50 3.5

3. Results and Discussions

For the non-machining experiments, the power results corresponding to different feed
rates are shown in Figure 8. It can be observed that the power values exhibit an increasing
trend with the increasing feed rate.

500

f=320mm/min
_ f~120mm/min l --------
=
= 490 Basis power l ........
% _________________ F~420mm/min
&
E T
= ) ) f=220mm/min
430 =20mm/min
1 T T T T L
0 100 200 300 400 500
Time [s]

Figure 8. Non-machining power at different feed speeds.
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To determine the model coefficients, a quadratic fitting was performed, and the trend
of the power variation with the feed rate was obtained, as depicted in Figure 9.

124

]
b

Feed power [W
(o)}

0 100 200 300 400 500
Feed speed [mm/min]

Figure 9. Variation in non-machining power with feed speed.
The result of the quadratic fitting is shown in Equation (23).

Preed—s = 44 x 107> - f24+0.0038 - f + 1.83 (23)

The variance (R?), adjusted variance (R2—adj), and prediction variance (R2—pre) of the
proposed model all exceeded 90%, as shown in Table 4, which indicates that the modeling
method presented in this study demonstrates high prediction accuracy.

Table 4. Non-machining power model prediction accuracy.

Feed Unit Spindle Unit
R? R2-pre R2-adj R? R?-pre R2-adj
99.21% 94.42% 98.43% 99.92% 99.82% 98.89%

The variation trend of the spindle power at different speeds is shown in Figure 10.
It can be observed that, compared with the feed motion, the spindle rotational motion
consumes higher power. Therefore, in the process of energy consumption optimization,
special attention should be given to the spindle power.

T _‘ n=45,000rpm
n=40,000rp 1n=35,000rpm
1000 n=25,000rpm / n=15,000rpm
| n=10,000rpm

N

n=30,000rpm

Spindle power [W]

™ #=20,000rpm
| Basic power

0 T T T T T T T —
0 100 200 300 400
Time [s]

Figure 10. Non-machining power at different spindle speeds.
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The power consumption of the spindle demonstrates a well-fitted quadratic relation-
ship with the rotational speed, as depicted in Figure 11. The fitting result is presented
in Equation (24). The variance (R?), adjusted variance (R2-adj), and prediction variance
(R?-pre) of the proposed fitting model all exceeded 98%, as shown in Table 4, which
indicates that the proposed modeling method demonstrates good prediction accuracy.

600 -

I

o

(=}
!

Spindle power [W]

200 ~

0 T T T T >
10,000 20,000 30,000 40,000 50,000

Spindle speed [rpm]

Figure 11. Variation in non-machining power with spindle speed.

Papindie—s = 2.37 x 1077 - n 4+ 0.00461 - n + 1.3 (24)

To facilitate the fitting of the relationships between the process parameters and mate-
rial removal power, Equation (14) was further manipulated into Equation (25). A linear
regression approach can be employed to obtain the coefficients for each term.

lanr:lna+cllnn+czlan+C3lnap (25)

Under each set of process parameters, the total power Py,, can be measured when
performing each experiment; the machine base power P}, can be measured when the
machine tool is powered on but without performing any movement or processing, as
shown in Figure 2; the spindle power Ps and feed power P¢ can be calculated using
Equations (23) and (24), respectively; and after determining the power component values
above, the material removal power can be calculated using Equation (26). The correspond-
ing values are presented in Table 5.

P = Protal = (Pp + Pa + Ps + ) (26)

To achieve the best predictive accuracy, a comparison between the exponential fit-
ting and polynomial fitting models was performed. The results of the exponential and
polynomial fittings are shown in Equation (27) and Equation (28), respectively.

Py = 14.92 - n0‘0613 .f£.1214 . IZ%WOS (27)
Py =10.18 +6 x 107° - n+0.153 - ap + 1.98 - fz+

1x10%n-a,—19x107°-n-f, —0.0034-a, - f. (28)

To compare the goodness of fit and predictive accuracy of the two fitting models, the
variance (R?), adjusted variance (Rz—adj), predictive variance (Rz—pre), Akaike information
criterion (AIC), and Bayesian information criterion (BIC) values were obtained, as shown
in Table 6.
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Table 5. Values of different power components in orthogonal experiments.

No. Piatar (W) Py, (W) Ps (W) P¢ (W) P (W)
(Measured) (Measured) (Calculated)  (Calculated) (Calculated)
1 645.4 127 1.9 335
2 648.1 2.1 36.0
3 653.3 2.4 40.9
4 659.3 2.7 46.6
5 793.9 271 2.4 36.5
6 795.7 2.0 34.7
7 802.5 3.8 447
8 806.9 186 3.0 46.9
9 965.2 440 3.8 35.4
10 969.0 5.4 39.6
11 970.7 2.1 42.6
12 976.2 2.7 455
13 12214 692 74 40.0
14 1202.3 4.9 38.7
15 1224.0 3.1 429
16 1228.5 2.1 46.4

Table 6. The goodness of fit of Pp,.

R2 R2-adj R2-pre AIC BIC
Exponential model 0.8589 0.8236 0.7300 —34.32 —36.46
Polynomial model 0.9185 0.8641 0.6755 89.53 75.14

It is evident that selecting different criteria as the goodness-of-fit measures leads to
different conclusions. In comparison with the exponential model, the polynomial fitting
model exhibits higher values for R? and R?-adj but a lower value for R?-pre. However,
the differences are not very significant. To better explain the selection rationale, the AIC
and BIC values of both models were also compared. The AIC and BIC values of the
exponential fitting model are both smaller than the polynomial fitting model, indicating
that the exponential model is superior from both predictive and fitting perspectives.

After obtaining models for the spindle power, feed power, and material removal
power, the variable power could be obtained using Equation (29).

Pvar:Ps+Pf+Pm (29)

From the range analysis, it can be observed that the order of the process parameters’
influences on the variable power is as follows: spindle speed, feed per tooth, and cutting
depth. The range value of the spindle speed is significantly larger than the range values of
the feed per tooth and cutting depth, which indicates that during micro-milling processes,
the cutting energy consumed by the spindle unit is the highest, as shown in Table 7. The
main effects of the process parameters on the variable power also support this result, as
shown in Figure 12.
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Table 7. Range analysis of Pygr.

n (rpm) fz (um/t) ay (um)
Rj 572.9 8.7 6.2
Ranking 1 3
800 432 430
600 428 1
_ 428
=2
426
£ 400 -
A 424
424
200 4
T T T 420 T T 422 T T T
15,000 30,000 45,000 0.0 15 3.0 50 100 150
7 [rpm] Jo [nm/t] a, [pm]

Figure 12. Main effects of process parameters on variable power.

The surface topographies are shown in Figure 13, which were measured with a white-
light interferometer. The measurement range was 396 um by 396 um. The indicators
characterizing the micro-milling quality, including S;, Ds, and D,, are presented in Table 3.
The corresponding regression models are shown in Equation (30), and the respective

goodness-of-fit indices are listed in Table 8.

Figure 13. Surface topographies of the machined surface.
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Table 8. Goodness-of-fit of machining quality indices.
S, Dy D,
R? R2-adj R? R%-adj R? R2-adj
77.71% 72.14% 81.27% 76.59% 67.47% 59.33%
S, = 1.8221 x 100830 f0.3404 x 96230
° z

D, = 2.1839 x 100059 f£.0125 % 00181 (30)

De = 0.0247 x 7’10'3490 % f£.3076 X 112‘2630

The main effects of the process parameters on the surface roughness, fractal dimension,
and dimension error are shown in Figures 14-16. It can be observed that the surface rough-
ness and fractal dimension exhibit distinct opposite trends because the fractal dimension
characterizes the richness of details on the surface. The larger the fractal dimension, the
more complex and intricate the structures are. Conversely, the smaller the fractal dimension,

the fewer irregular structures there are, and the rougher the structure becomes.

140 140
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E 100 A 100
%?.

80 | 80

60 60
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n [rpm] fo [um/t]

Figure 14. Main effects of process parameters on S;.

2.48
2461 o
© \ 1
2.44 4 \ ~~
2.42
T T T
15,000 30,000 45,000
n [rpm]

Figure 15. Main effects of process parameters on D;.
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Figure 16. Main effects of process parameters on D,.
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The dimensional error shows an overall increasing trend with the enlargement of
the process parameters. This is due to the fact that with the increase in the feed per
tooth and cutting depth, the cutting forces exhibit an increasing trend. This leads to
greater deformation of thin-walled micro-structures in the vertical feed direction, ultimately
resulting in an increase in dimensional error. Conversely, as the spindle speed increases,
the heat generated during cutting also increases, making the workpiece material prone to
thermal deformation. Consequently, this leads to an augmentation in dimensional error.
The reasons for small deformation errors are as follows: The micro-milling force is relatively
small, and previous studies have shown that the average cutting force for the micro-milling
of titanium alloys is within 5 N [31]; the positioning accuracy of the KERN EVO machining
center is 1 um, with a repeatability accuracy of & 0.5 um, exhibiting excellent machining
precision; and Ti-6Al-4V possesses high strength, and under the influence of relatively
small cutting forces, noticeable deformation errors are not likely to occur.

The main effects of the process parameters on the SCE are shown in Figure 17. It can
be observed that the SCE significantly decreases with the increase in feed per tooth and
cutting depth because their impacts on the material removal rate do not significantly affect
power consumption. However, the multiplication of the spindle speed leads to a rapid
increase in power consumption.

)
1
)
1
)
1

SEC [KJ/mm?®]
o0
1
%
1
o0
1

- N

T T T 0 T T 0 T T T
15,000 30,000 45,000 0.0 L5 3.0 50 100 150

7 [rpm] J2 [nm/t] a, [um]

IS
1
IS
1
ES
1

0

Figure 17. Main effects of process parameters on SCE.

The relationship between the SCE and MRR is illustrated in Figure 18, with a Pear-
son correlation coefficient of —0.793, which exceeds 0.7, indicating a significant negative
correlation. This implies that enhancing the machining efficiency can reduce specific
energy consumption.

[ J
15 @
o Correlation coefficient: —0.793
=)
£ 10- .
& °
é °
5
[
{ ] [ J °
®e
L e ®°
0 . ‘ ;
0 5 10 15
MRR [mm*/min]

Figure 18. Correlation between MRR and SCE.

In order to overcome the problem of intelligent optimization algorithms easily getting
trapped in local optima, this paper investigated and compared the optimal combination
of process parameters using three evolutionary algorithms. Since NSGA-II and MOPSO
perform poorly when dealing with four or more optimization objectives, the optimization
objectives were first compressed. To retain and interpret the original variable information as
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much as possible, principal component analysis (PCA) was applied to the three indicators
representing the machining quality. First, the standardization of S,;, Ds, and D, was
performed according to Equation (31).

X;lqm = (an _Xm) /Om

_ P
Xm = an
ngl /P (31)

p —
Om = \/gl(xmn_xm)z/ﬁ

where X, represents the n-th sampled value of the m-th objective function after normal-
ization; X, represents the n-th sampled value of the m-th objective function; p represents
the total number of samples; and X and oy, represent the mean and standard deviation,
respectively.

The surface roughness, fractal dimension, and dimensional error correlation coeffi-
cients are shown in Table 9. It can be observed that the surface quality indices, S, and Ds,
exhibit a strong negative correlation, while the correlation between surface quality and
dimensional error is relatively weak.

Table 9. Correlations between the optimization objectives.

Sa Ds D,
Sa 1 ~0.832 0.579
Ds —0.832 1 —0.628
D, 0.579 —0.628 1

Bartlett’s sphericity test and the Kaiser-Meyer-Olkin (KMO) sampling adequacy test
were conducted to assess the suitability of PCA, as shown in Table 10. The results indicate
that Bartlett’s sphericity test was significant (p = 0.000 < 0.05), and the KMO value was
0.681, which falls between 0.6 and 0.7. Therefore, PCA was appropriate.

Table 10. KMO and Bartlett’s tests.

Sampling Adequacy KMO Measure 0.681

Bartlett’s test of sphericity Approximate chi-square 22.351
df 3

Sig. 0.000

Table 11 presents the common factor variance matrix, revealing that the S, and D;
indicators for surface quality exhibit sufficient information extraction, and the information
extraction content of D, is relatively small.

Table 11. Common factor variance.

Initial Variance Extracted Variance
Sa 1.000 0.834
Ds 1.000 0.867
D, 1.000 0.665

Higher eigenvalues indicate greater potential energy and are more crucial for the
analysis. In Figure 19, only the first eigenvalue is greater than one, which indicates only
one factor is needed to extract from the original features.
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Figure 19. Scree plot of PCA results.

The explained total variance is shown in Table 12. The variance contribution of the
first component is 78.851%, allowing for the extraction of original features with minimal
information loss.

Table 12. Explained total variance.

No. Initial Eigenvalue Extract Loading Sum of Squares
Eigenvalue v I{ﬁtial . Cun.lulati:re Eigenvalue Il.1itial . Cun'lulati:)/e
ariance % Variance % Variance % Variance %
1 2.366 78.851 78.851 2.366 78.851 78.851
2 0.470 15.654 94.505
3 0.165 5.495 100.000

The factor loading matrix is shown in Table 13, which illustrates the contributions of
the principal components to each variable. According to the principal component matrix,
the linear combinations of machining quality variables can be obtained as Equation (32).
This principal component can be interpreted as the machining quality.

Table 13. Factor loading matrix.

Sa D, D,
0.386 —0.394 0.345
Py = 0.386(Sa) — 0.394(Ds) + 0.345(De) (32)

Therefore, the objective function optimized with NSGA-II and MOPSO can be ex-
pressed as Equation (33), and the objective function optimized with NSGA-III can be
expressed as Equation (34).

AX) =P
minfy;(X) = { fo(X) = MRR™! (33)
f3(X) = SEC
fl (X) = Sa
f(X) =Ds!
miani(X) = f3(X) = De (34)

fa(X) = MRR™!
f5(X) = SEC
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The decision variables can be represented as X = [#, f-, ap] T The ranges of the process
parameters are as follows: 50 um < g, < 150 um, 15,000 rpm < n < 45,000 rpm, and
0.5 mm/t < f, < 3.5 mm/t. The initial population size and number of iterations for each
optimization algorithm were set as 500 and 1500, respectively. A membership function was
used to select results from the Pareto solution set, as shown in Equation (35).

pi = fzmax — fz (35)
fimax - f imin
where fimax and fimin represent the maximum and minimum values of the i-th objective
function, respectively, and f; denotes the value of the i-th objective function.
The optimal solution is selected by maximizing the average p-value, as shown in
Equation (36).

P = pi (36)

Z| =
=

Il
—

1

The optimization results of process parameters with different methods are listed in
Table 14, and the corresponding experimental validations were performed, which can
be observed in Figures 20 and 21, respectively. The results obtained using NSGA-III
demonstrate a better trade-off between machinability and sustainability compared with the
results using NSGA-II and MOPSO. It can be observed that the specific energy consumption
and processing efficiency of the three optimization algorithms are very close. However,
optimization results based on NSGA-III can achieve better machining quality, including
lower surface roughness, larger surface fractal dimensions, and smaller dimensional errors.

Table 14. Optimization results.

n fz ap Sa Dq D, MRR SCE

NSGA-II 17,760 33 98 65 2.4860 35 9.37 0.960
MOPSO 21,000 3.2 88 59 2.4980 3.6 9.46 1.110

NSGA-III 28,800 2.6 62 50 2.5010 2.0 9.36 1.126

L

HV mags HFW WD curr det
5.00kV 61x 3.40mm 10.3095mm 0.40nA ETD

Figure 20. Dimensions of the thin-walled micro parts.
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Figure 21. Surface topographies of the thin-walled micro parts: (a) NSGA-II; (b) MOPSO; and
(c) NSGA-IIL

4. Conclusions

An optimization strategy for micro-milling process parameters based on multi-objective
evolutionary algorithms was proposed. The optimization objectives including machining
quality, machining efficiency, and specific cutting energy were trade-offs. The obtained pro-
cess parameters were validated using micro-milling experiments. The specific conclusions
are as follows:

(1) The power consumption characteristics of the micro-milling process were analyzed,
and a process-parameter-based power consumption model was established. The
analysis revealed that the power consumption of non-machining feed motion exhibits
a quadratic relationship with the feed rate, while the non-machining spindle power
consumption shows a quadratic relationship with the spindle speed. The spindle
speed exerts the greatest influence on the variable power consumption.

(2) The coefficient between SCE and MRR was —0.793, which indicates that enhancing
machining efficiency can simultaneously improve machining sustainability.

(3) Among the three indicators characterizing machining quality, surface roughness
and surface fractal dimension exhibited a significant negative correlation (with a
correlation coefficient of —0.832). However, their correlations with dimensional error
were relatively small, being 0.57 and —0.628, respectively. After performing PCA, the
variance extraction percentages for S;, Ds, and D, all exceeded 50%, indicating a good
level of information condensation.

(4) The optimization results of the process parameters demonstrate that the NSGA-
III-based optimization method yields a better trade-off between machinability and
sustainability, indicating that NSGA-III exhibits superior performance in handling
multi-objective optimization problems and can obtain globally optimal parame-
ters. The optimal combination of micro-milling parameters was n = 28,800 rpm,
f: =2.6 um/t, and a, = 62 um.

Author Contributions: Conceptualization, PW. and Q.B.; methodology, P.W.; software, PW.; val-
idation, Q.B., K.C., L.Z. and Y.Z.; formal analysis, P.W.; investigation, PW.; resources, Q.B.; data
acquisition, PW.; writing—original draft preparation, PW.; writing—review and editing, Q.B. and
K.C,; visualization, PW.; supervision, Q.B. and K.C.; project administration, Q.B.; funding acquisition,
Q.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was supported by the National Natural Science Foundation of China
(grant no. 52075129).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used or analyzed during the current study are available
from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023,13, 9392 20 of 21

References

1.  Shang, Z.; Gao, D.; Jiang, Z.; Lu, Y. Towards less energy intensive heavy-duty machine tools: Power consumption characteristics
and energy-saving strategies. Energy 2019, 178, 263-274. [CrossRef]

2. Li, C;Li, L; Tang, Y,; Zhu, Y; Li, L. A comprehensive approach to parameters optimization of energy-aware CNC milling.
J. Intell. Manuf. 2019, 30, 123-138. [CrossRef]

3. Hu, L.; Tang, R.; Cai, W.; Feng, Y.; Ma, X. Optimisation of cutting parameters for improving energy efficiency in machining
process. Robot. Comp. Int. Manuf. 2019, 59, 406-416. [CrossRef]

4. Feng, C.; Chen, X.; Zhang, J.; Huang, Y.; Qu, Z. Minimizing the energy consumption of hole machining integrating the optimization
of tool path and cutting parameters on CNC machines. Int. |. Adv. Manuf. Technol. 2022, 121, 215-228. [CrossRef]

5. Yan,].; Li, L. Multi-objective optimization of milling parameters—The trade-offs between energy, production rate and cutting
quality. J. Clean. Prod. 2013, 52, 462-471. [CrossRef]

6. Zhang, X.; Yu, T;; Dai, Y.; Qu, S.; Zhao, J. Energy consumption considering tool wear and optimization of cutting parameters in
micro milling process. Int. | Mech. Sci. 2020, 178, 105628. [CrossRef]

7. Wang, W,; Tian, G.; Chen, M.; Tao, F.; Zhang, C.; Al-Ahmari, A ; Li, Z,; Jiang, Z. Dual-objective program and improved artificial
bee colony for the optimization of energy-conscious milling parameters subject to multiple constraints. J. Clean. Prod. 2020,
245,118714. [CrossRef]

8. Zhong, Q.; Tang, R.; Peng, T. Decision rules for energy consumption minimization during material removal process in turning.
J. Clean. Prod. 2017, 140, 1819-1827. [CrossRef]

9. Li, L;; Yan, J.; Xing, Z. Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling.
J. Clean. Prod. 2013, 52, 113-121. [CrossRef]

10.  Velchev, S.; Kolev, L; Ivanov, K.; Gechevski, S. Empirical models for specific energy consumption and optimization of cutting
parameters for minimizing energy consumption during turning. J. Clean. Prod. 2014, 80, 139-149. [CrossRef]

11.  Gutowski, T.G.; Branham, M.S.; Dahmus, ].B.; Jones, A.].; Thiriez, A. Thermodynamic analysis of resources used in manufacturing
processes. Environ. Sci. Technol. 2009, 43, 1584-1590. [CrossRef] [PubMed]

12.  Jiang, Z.; Gao, D.; Lu, Y;; Liu, X. Optimization of Cutting Parameters for Trade-off Among Carbon Emissions, Surface Roughness,
and Processing Time. Chin. . Mech. Eng 2019, 32, 94. [CrossRef]

13.  Liu, Z.Y,; Sealy, M.P,; Guo, Y.B.; Liu, Z.Q. Energy Consumption Characteristics in Finish Hard Milling of Tool Steels. Procedia
Manuf. 2015, 1, 477-486. [CrossRef]

14. Deng, Z.; Zhang, H.; Fu, Y,; Wan, L.; Liu, W. Optimization of process parameters for minimum energy consumption based on
cutting specific energy consumption. J. Clean. Prod. 2017, 166, 1407-1414. [CrossRef]

15. Ly, ], Tang, R;; Jia, S.; Liu, Y. Experimental study on energy consumption of computer numerical control machine tools. J. Clean.
Prod. 2016, 122, 3864-3874. [CrossRef]

16. Ly, L,;Deng, Z.; Yan, C,; Liu, T.; Wan, L.; Gu, Q. Modelling and analysis for processing energy consumption of mechanism and
data integrated machine tool. Int. J. Prod. Res. 2020, 58, 7078-7093. [CrossRef]

17. de Carvalho, HM.B.; de Gomes Oliveira, J.; Schmidt, M.A.; Brandao, V.L.C. Vibration Analysis and Energy Efficiency in
Interrupted Face Milling Processes. Procedia CIRP 2015, 29, 245-250. [CrossRef]

18. Pervaiz, S.; Deiab, I.; Rashid, A.; Nicolescu, M. Prediction of energy consumption and environmental implications for turning
operation using finite element analysis. Proc. Inst. Mech. Eng. Part B |. Eng. Manuf. 2015, 229, 1925-1932. [CrossRef]

19. Shi, K.N.; Zhang, D.H.; Liu, N.; Wang, S.B.; Ren, J.X,; Wang, S.L. A novel energy consumption model for milling process
considering tool wear progression. J. Clean. Prod. 2018, 184, 152-159. [CrossRef]

20. Li,C.;Tang, Y.; Cui, L,; Li, P. A quantitative approach to analyze carbon emissions of CNC-based machining systems. J. Intell.
Manuf. 2015, 26, 911-922. [CrossRef]

21. Tian, C.; Zhou, G.; Lu, E; Chen, Z; Zou, L. An integrated multi-objective optimization approach to determine the optimal feature
processing sequence and cutting parameters for carbon emissions savings of CNC machining. Int. J. Comput. Integr. Manuf. 2020,
33, 609-625. [CrossRef]

22. Zhou, L;Li, ] Li, F; Meng, Q.; Li, J.; Xu, X. Energy consumption model and energy efficiency of machine tools: A comprehensive
literature review. J. Clean. Prod. 2016, 112, 3721-3734. [CrossRef]

23.  Jamil, M.; Zhao, W.; He, N.; Gupta, M.K,; Sarikaya, M.; Khan, A.M.; Sanjay, M.R; Siengchin, S.; Pimenov, Y.D. Sustainable milling
of Ti-6Al-4V: A trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic
environment. J. Clean. Prod. 2021, 281, 125374. [CrossRef]

24. Singh, R.; Dureja, ].S.; Dogra, M.; Gupta, M.K.; Jamil, M.; Mia, M. Evaluating the sustainability pillars of energy and environment
considering carbon emissions under machining ofTi-3Al-2.5 V. Sustain. Energy Technol. Assess. 2020, 42, 100806. [CrossRef]

25. Turhan, M.H.; Tseng, G.W.G.; Erkorkmaz, K.; Fidan, B. Dynamic model identification for CNC machine tool feed drives from
in-process signals for virtual process planning. Mechatronics 2020, 72, 102445. [CrossRef]

26. Zheng, W.; Zhou, M.; Zhou, L. Influence of process parameters on surface topography in ultrasonic vibration- assisted end
grinding of SiCp/Al composites. Int. |. Adv. Manuf. Technol. 2017, 91, 2347-2358. [CrossRef]

27. Liu, J. Research on Material Removal and Parameter Optimization in Micro Milling SICp/AL Composites. Ph.D. Thesis, Harbin

Institute of Technology, Harbin, China, 2018; pp. 75-77. (In Chinese)


https://doi.org/10.1016/j.energy.2019.04.133
https://doi.org/10.1007/s10845-016-1233-y
https://doi.org/10.1016/j.rcim.2019.04.015
https://doi.org/10.1007/s00170-022-09343-5
https://doi.org/10.1016/j.jclepro.2013.02.030
https://doi.org/10.1016/j.ijmecsci.2020.105628
https://doi.org/10.1016/j.jclepro.2019.118714
https://doi.org/10.1016/j.jclepro.2016.07.084
https://doi.org/10.1016/j.jclepro.2013.02.039
https://doi.org/10.1016/j.jclepro.2014.05.099
https://doi.org/10.1021/es8016655
https://www.ncbi.nlm.nih.gov/pubmed/19350939
https://doi.org/10.1186/s10033-019-0408-9
https://doi.org/10.1016/j.promfg.2015.09.007
https://doi.org/10.1016/j.jclepro.2017.08.022
https://doi.org/10.1016/j.jclepro.2015.07.040
https://doi.org/10.1080/00207543.2020.1756508
https://doi.org/10.1016/j.procir.2015.02.165
https://doi.org/10.1177/0954405414541105
https://doi.org/10.1016/j.jclepro.2018.02.239
https://doi.org/10.1007/s10845-013-0812-4
https://doi.org/10.1080/0951192X.2020.1775303
https://doi.org/10.1016/j.jclepro.2015.05.093
https://doi.org/10.1016/j.jclepro.2020.125374
https://doi.org/10.1016/j.seta.2020.100806
https://doi.org/10.1016/j.mechatronics.2020.102445
https://doi.org/10.1007/s00170-016-9931-3

Appl. Sci. 2023,13, 9392 21 of 21

28. Chaudhari, P; Thakur, K.A.; Kumar, R.; Banerjee, N.; Kumar, A. Comparison of NSGA-III with NSGA-II for multi objective
optimization of adiabatic styrene reactor. Mater. Today Proc. 2022, 57, 1509-1514. [CrossRef]

29. Tavana, M,; Li, Z.; Mobin, M.; Komaki, M.; Teymourian, E. Multi-objective control chart design optimization using NSGA-III and
MOPSO enhanced with DEA and TOPSIS. Expert Syst. Appl. 2016, 50, 17-39. [CrossRef]

30. Selvakumar, S.; Arulshri, K.P.; Padmanaban, K.P,; Sasikumar, K.S.K. Design and optimization of machining fixture layout using
ANN and DOE. Int. J. Adv. Manuf. Technol. 2013, 65, 1573-1586. [CrossRef]

31. Wang, P; Bai, Q.; Cheng, K.; Zhao, L.; Ding, H.; Zhang, Y. Machinability analysis of micro-milling thin-walled Ti-6Al-4V micro
parts under dry, lubrication, and chatter mitigation conditions. Proc. Inst. Mech. Eng. Part B ]. Eng. Manuf. 2023, 1-12. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.matpr.2021.12.047
https://doi.org/10.1016/j.eswa.2015.11.007
https://doi.org/10.1007/s00170-012-4281-2
https://doi.org/10.1177/09544054221147608

	Introduction 
	Materials and Methods 
	Power Consumption Modeling 
	Power Consumption Modeling in Feed and Spindle Subsystems 
	Material Removal Power Modeling 

	Description of the Multi-Objective Optimization Problem 
	Experimental Design 

	Results and Discussions 
	Conclusions 
	References

