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Abstract 

Background  Plasma biomarkers reflecting the pathology of frontotemporal dementia would add significant value 
to clinical practice, to the design and implementation of treatment trials as well as our understanding of disease 
mechanisms. The aim of this study was to explore the levels of multiple plasma proteins in individuals from families 
with genetic frontotemporal dementia.

Methods  Blood samples from 693 participants in the GENetic Frontotemporal Dementia Initiative study were ana‑
lysed using a multiplexed antibody array targeting 158 proteins.

Results  We found 13 elevated proteins in symptomatic mutation carriers, when comparing plasma levels from peo‑
ple diagnosed with genetic FTD to healthy non-mutation controls and 10 proteins that were elevated compared 
to presymptomatic mutation carriers.

Conclusion  We identified plasma proteins with altered levels in symptomatic mutation carriers compared to non-
carrier controls as well as to presymptomatic mutation carriers. Further investigations are needed to elucidate their 
potential as fluid biomarkers of the disease process.

Keywords  Frontotemporal dementia, Plasma biomarkers, GRN, C9orf72, MAPT, Neurodegeneration

Background
Frontotemporal dementia (FTD) is a group of neurode-
generative diseases where the most common phenotypes 
are behavioural variant FTD (bvFTD) and primary pro-
gressive aphasias (PPA). There is a great heterogeneity 

in FTD, both in terms of clinical symptoms, underlying 
genetic causes, and neuropathological findings. Over the 
past years, effort has been put into explaining the diver-
sity by searching for fluid biomarkers that reflect different 
aspects of FTD [1]. Most efforts have focused on finding 
biomarkers in cerebrospinal fluid (CSF) and a few prom-
ising candidates have been found, such as neurofilament 
light chain (NEFL) and neuronal pentraxin 2 (NPTX2) [2, 
3]. However, the use of CSF biomarkers is limited by the 
invasive nature of the sampling procedure and restricted 
availability. Therefore, a reliable blood-based biomarker 
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would be extremely valuable. A well-known blood-based 
biomarker in genetic FTD is progranulin (GRN), which 
is reduced in individuals with loss-of-function muta-
tions in the gene with the same name [4]. While serum 
or plasma GRN levels can be used to confirm mutations 
in GRN, they do not correlate with clinically important 
metrics such as age at onset [4]. Previous studies have 
also identified glial fibrillary acidic protein (GFAP), tau 
and NEFL as possible plasma-based biomarkers, where 
GFAP is elevated in symptomatic GRN mutation carri-
ers, tau is elevated in sporadic FTD and in symptomatic 
MAPT mutation carriers, and NEFL is elevated in both 
genetic and sporadic FTD [5–7]. However, none of the 
proteins are specific for FTD since increased levels have 
been observed in other neurological diseases [8, 9]. A 
large screen of plasma proteins in FTD and Alzheimer 
disease (AD) found a panel of 12 proteins that discrimi-
nated between the two diseases. However, these proteins 
were associated with AD pathology and no differences 
were found between FTD cases and controls [10]. Fur-
ther studies are therefore needed to find biomarkers that 
are FTD specific.

Here, we present an exploratory plasma profiling study 
of 158 proteins in 693 participants in the well-described 
genetic FTD cohort. To our knowledge, a plasma pro-
teomic analysis of this magnitude has not been done in 
genetic FTD before. We aimed to investigate differences 
in plasma protein levels between both symptomatic and 
presymptomatic mutation carriers compared to non-
carrier family members who serve as controls. Our find-
ings indicate alterations in plasma protein levels between 
symptomatic mutation carriers and non-carrier controls, 
as well as gene specific differences in GRN mutation 
carriers.

Materials and methods
Cohort
All clinical data and samples included in the study were 
collected within the Genetic frontotemporal dementia 
initiative (GENFI) between 2012 and 2019 [11]. Vari-
ables included were age at sampling, sex, mutation group 
(symptomatic mutation carriers, SMC; presymptomatic 
mutation carriers, PMC; or non-carrier controls, NC), 
genetic group (chromosome 9 open reading frame 72, 
C9orf72; progranulin, GRN; or microtubule associated 
protein tau, MAPT), clinical phenotype, and age at onset. 
In total, baseline plasma samples from 701 participants 
were collected including 141 SMC (63 C9orf72, 50 GRN, 
and 28 MAPT), 283 PMC (97 C9orf72, 135 GRN and 51 
MAPT) and 277 NC. Carriers of FTD-causing variants in 
other genes were not included. Clinically, the SMC most 
frequently presented with bvFTD (n = 102), followed by 
PPA (n = 25), FTD with concomitant amyotrophic lateral 

sclerosis (ALS) (n = 5) and other FTD-related phenotypes 
(n = 5).

Sample collection according to GENFI protocol
Blood samples (n = 701) were collected at 20 different 
sites in Europe and Canada in ethylenediaminetetraacetic 
acid (EDTA) tubes. Samples were centrifuged at 2200 × g 
for 5 min at 22 °C and the supernatant plasma was trans-
ferred to 0.5  ml polypropylene cryotubes and stored at 
-80 °C until analysis.

Suspension bead array assay
The plasma samples were diluted and labelled with a ten-
fold molar excess of biotin (NHS-PEG4-biotin. 21329, 
Thermo Scientific), heat treated, and subsequently mixed 
with an antibody suspension bead array as described in 
detail previously [12, 13]. A streptavidin conjugated fluo-
rophore (Streptavidin R-Phycoerythrin Conjugate, Inv-
itrogen) enabled the detection of the proteins, and the 
readout was performed on a Flexmap 3D instrument 
(Luminex corporation). Binding events were displayed as 
signal intensity. Published as well as internal unpublished 
work were used to guide the selection of target proteins 
(n = 163) which was based on previously identified prom-
ising targets, proteins involved in suggested pathologi-
cal processes of neurodegeneration and proteins with 
enriched expression in brain compared to other tissue 
[14–17]. The majority of the antibodies (n = 156) were 
selected from the Human Protein Atlas project (www.​
prote​inatl​as.​org) and the remaining seven were obtained 
from other providers (M067-3 from MBL International; 
MA1-70053, PA5-34943, 34–1000 from Invitrogen Anti-
bodies; MAB2037-SP, AF2420, AF3154 from R&D Sys-
tems). The mean coefficient of variance per 384-well 
plate (n = 3) was less than 10%, and 97% of the antibod-
ies had an individual coefficient of variance below 20%. 
The inter-assay correlations were high (rho > 0.8 for 154 
antibodies). After quality control analysis, five antibodies 
were excluded due to high correlation to a negative con-
trol (rho > 0.6) resulting in 158 protein targets for further 
analysis (Supplementary Table 1).

Statistical analysis
Data pre‑processing
All data pre-processing, analysis and illustrations were 
performed in R Studio version 2022.2.3.492 using R ver-
sion 4.2.1 [18]. The data was normalised in two steps to 
diminish the effects of time delay during readout and 
potential differences between plates [19]. Prior to statis-
tical analysis, the data was log2- and z-transformed via 
mean centring and unit variance scaling. Outlier samples 
with a median protein level three standard deviations 
higher or lower than the median for the whole cohort 

http://www.proteinatlas.org
http://www.proteinatlas.org


Page 3 of 12Ullgren et al. Molecular Neurodegeneration           (2023) 18:85 	

were excluded from the analysis (n = 8 samples removed). 
A residual adjustment approach was used to deal with 
the potential confounding effect of healthy ageing on 
protein levels [20]. The effect of healthy ageing on protein 
levels was estimated in the NC via linear mixed effect 
models using protein levels as the response variable, age 
as a fixed effect and collection site as a random intercept 
(lmer, lme4, [21]). For each subject in the overall cohort 
(including each of the NC, PMC, and SMC groups), the 
adjusted protein levels were then obtained through the 
following:

where Proteinadj. is the age adjusted protein level, Protein 
is the original protein level, β is the age-associated beta 
coefficient, Age is the subject’s age and Age is the mean 
age in the entire cohort.

Demographic statistics
The participants’ ages followed a normal distribution, 
evaluated by visual assessment of normal probability plot 
and histogram. Differences in age between SMC, PMC 
and NC were assessed by one-way ANOVA and Tukey’s 
HSD post hoc test. Pearson’s Chi-squared test was used 
to investigate differences in sex between SMC, PMC and 
NC. P-values below 0.05 were considered significant.

Protein profile analysis
Differences in protein levels between SMC and NC were 
examined via binomial generalised linear mixed effects 
models using clinical status (i.e. SMC or NC) as the 
response variable, protein levels and sex as fixed effects 

Proteinadj. = Protein− β(Age − Age)

with a random intercept based on collection site (glmer, 
lme4, [21]). One model per protein was built. The same 
method was used to assess differences in protein lev-
els between SMC and presymptomatic mutation carri-
ers (PMC), PMC versus NC, as well as to analyse gene 
specific differences e.g., SMC carrying a GRN mutation 
(SMC-GRN) vs NC. Log2 fold changes were calculated 
by subtracting the median log2 transformed protein lev-
els in NC or PMC from the median log2 transformed 
protein levels in SMC. In contrast, the effects of age and 
sex on the protein levels in mutation carriers as well as in 
non-carriers were estimated via generalised linear mixed-
effects models using protein levels as the response; age 
and sex as fixed effects with a random intercept based on 
collection site (lmer, lme4, [21]). P-values were calculated 
using the Satterthwaite’s degrees of freedom method 
(lmerTest, [22]). Multiple testing corrections were made 
via the Benjamini–Hochberg method for controlling 
false-discovery rates and an adjusted p-value of 0.05 
was considered significant. Only adjusted p-values are 
reported unless clearly stated otherwise. Protein – pro-
tein correlations were calculated using Spearman’s rank 
correlation coefficient. Protein clusters are based on hier-
archical clustering using Ward’s clustering criterion.

Results
Cohort
In total, plasma results from 693 participants were 
included in the statistical analysis, and demographic 
data of the cohort is presented in Table  1. The age 
was not significantly different between NC and PMC 
(p-value = 0.06), but SMC were older than both NC 

Table 1  Demographic data of the cohort

a One-way ANOVA (F(2,690) = 106.0, p = 7.13 × 10–41). Differences in age between NC vs SMC and PMC vs SMC (Tukey multiple comparison post-hoc test). No difference 
between NC and PMC (p = 0.06)
b Pearson’s Chi-squared test. More females in NC and PMC compared to SMC (X2(1, N = 413) = 6.1, p = 1.3 × 10–2) and X2(1, N = 417) = 14.9, p = 1.1 × 10–4 respectively). No 
difference between NC and PMC (X2(1, N = 556) = 2.6, p = 0.1)

Non-carriers (NC) Presymptomatic mutation 
carriers (PMC)

Symptomatic mutation 
carriers (SMC)

Total p-value

No. of participants 276 280 137 693

Age, mean years (SD) 47 (14) 45 (12) 63 (9) 49 (14) < 0.001a

Females (%) 152 (55) 174 (62) 57 (42) 383 (55) < 0.001b

Mutated gene (%) 417 (60)

    GRN 133 (48) 49 (36)

    C9orf72 96 (34) 62 (45)

    MAPT 51 (18) 26 (19)

Age at onset,  mean years (SD)

    GRN 61 (8)

    C9orf72 60 (9)

    MAPT 51 (8)
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and PMC (p-value = 7.13 × 10–41). There were more 
females in NC (55%) and PMC (62%) compared to SMC 
(42%) (NC vs SMC: p-value = 1.3 × 10–2; PMC vs SMC: 
p-value = 1.1 × 10–4).

Altered plasma protein levels in symptomatic mutation 
carriers
When comparing plasma protein levels in SMC to 
NC, we found that 13 proteins were elevated in SMC 
(Fig.  1A, Table  2 and Supplementary Fig.  1). In the 
comparison between SMC versus PMC, we found that 
10 proteins were elevated in SMC (Fig.  1B, Table  2). 
There were six overlapping proteins i.e., six proteins 
had elevated levels in SMC both in the comparison to 
NC as well as in the comparison to the protein levels in 
PMC. An overview of how these proteins correlate with 
each other can be found in Fig. 2. When stratifying by 
genetic group, rabphilin 3a (RPH3A) was increased in 

SMC-GRN compared to NC (p-value = 1.3 × 10–3, odds 
ratio = 1.915) whereas progranulin, as expected, was 
decreased (p-value = 9.3 × 10–6, odds ratio = 0.152). No 
proteins had significantly different levels in the com-
parison between SMC-C9 and NC nor in the compari-
son between SMC-MAPT and NC (data not shown).

Next, we investigated the correlation between age 
and protein levels of the altered proteins in mutation 
carriers. Among the 17 unique proteins with elevated 
levels in SMC (SMC vs NC or SMC vs PMC), 13 had a 
significant correlation with age (Table 3).

When analysing sex differences for the 17 pro-
teins elevated in SMC, two proteins were found 
to be increased in men compared to women in 
the mutation carriers: apolipoprotein E (APOE, 
p-value = 1.73 × 10–2, β = 0.267) and apolipoprotein 
C1 (APOC1, p-value = 1.73 × 10–2, β = 0.235). No 
sex differences were found among the NC for either 

Fig. 1  Volcano plots of plasma protein levels showing -log10 (p-values) of the log2(fold change) for comparisons between different groups. 
Plasma protein level differences between A) all SMC and NC, B) all SMC and all PMC. Each protein is represented by a gray dot and are coloured 
red if the protein levels are increased in the SMC compared to the comparison group (NC, or PMC). Dotted horizontal line = adjusted p-value 0.05, 
dotted vertical line = log2 fold change 0
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protein (p-value = 1.49 × 10–1 and p-value = 7.4 × 10–1, 
respectively).

Finally, we explored if any of the 158 proteins included 
in this study were found at different levels in SMC with 
bvFTD compared to SMC with PPA but found no signifi-
cant differences (data not shown).

Plasma protein levels in the presymptomatic stage
We also investigated the possibility to detect differences 
in protein levels already at the presymptomatic stage of 
FTD by first comparing PMC to NC and then stratify-
ing by gene. The only difference found in these com-
parisons was decreased levels of GRN in PMC-GRN 
compared to NC (p-value = 4.44 × 10–3). However, the 
proteins neurofilament medium chain (NEFM), neuronal 
pentraxin 2 (NPTX2) and chitinase 3 like 1 (CHI3L1) 
showed trends of being elevated in PMC-GRN com-
pared to NC (unadjusted p-value = 3.1 × 10–3, unadjusted 
p-value = 4.8 × 10–3 and unadjusted p-value = 4.6 × 10–3, 
respectively), though these differences were not signifi-
cant after adjustment for multiple testing. None of the 
three proteins showed any correlation with age when 
analysed in PMC-GRN alone or in PMC-GRN together 
with SMC-GRN (Supplementary Table  2). NPTX2 was, 
however, elevated in SMC compared to NC and CHI3L1 
was just above the significance threshold in the same 

comparison (p-value = 5.1 × 10–2). Neither were signifi-
cant in the comparison between SMC and PMC (both 
p-values > 0.3).

Discussion
We performed extensive protein profiling of plasma from 
a genetic FTD cohort, collected within the GENFI study. 
We found 13 significantly increased plasma proteins in 
patients with genetic FTD compared to non-carrier con-
trols and 10 proteins that were significantly increased 
compared to presymptomatic mutation carriers. Six of 
these proteins were significantly different in both com-
parisons, indicating that they likely are associated with 
symptom onset rather than the presence of one of the 
pathogenic mutations. These six proteins were also sig-
nificantly correlated with increased age in mutation car-
riers, after correcting for healthy ageing, which further 
strengthens their association with symptom onset.

In contrast, four proteins, increased in SMC vs NC, 
were not correlated with age, nor elevated in the SMC vs 
PMC comparison, suggesting that they may be elevated 
already before symptom onset. One of these proteins 
NPTX2, is of particular interest. NPTX2, a synaptic pro-
tein, which has previously been shown to be reduced in 
CSF from patients with FTD and is potentially one of the 
first protein biomarkers to become abnormal in genetic 

Table 2  Comparison of plasma protein levels in symptomatic mutation carriers versus non-carriers and presymptomatic mutation 
carriers

Proteins with statistically significant different plasma levels in the comparison between symptomatic mutation carriers (SMC) and non-carriers (NC) or in the 
comparison between SMC and presymptomatic mutation carriers (PMC), including p-values and odds ratios with 95% confidence intervals. All p-values are adjusted 
for multiple testing. Non-significant p-values are in italics. An asterisk indicates proteins with significantly different plasma levels in both comparisons

Protein SMC vs NC SMC vs PMC

p-value Odds ratio p-value Odds ratio

RPH3A* 2.68 × 10–2 1.535 (1.228—1.919) 2.27 × 10–2 1.46 (1.177—1.811)

NPTX2 2.93 × 10–2 1.499 (1.2—1.874) 3.52 × 10–1 1.176 (0.964—1.433)

XPO5 3.73 × 10–2 1.598 (1.216—2.1) 1.29 × 10–1 1.322 (1.056—1.656)

RGS7BP* 3.73 × 10–2 1.504 (1.181 – 1.915) 2.27 × 10–2 1.619 (1.246 – 2.103)

APOE* 3.73 × 10–2 1.532 (1.179—1.992) 3.94 × 10–2 1.516 (1.165—1.972)

S100A12* 3.73 × 10–2 1.5 (1.173—1.919) 3.94 × 10–2 1.394 (1.126—1.725)

GLA 3.87 × 10–2 1.605 (1.194—2.158) 4.25 × 10–1 1.185 (0.938—1.498)

APOC1* 4.06 × 10–2 1.627 (1.194—2.218) 3.94 × 10–2 1.651 (1.2—2.271)

EIF4ENIF1 4.60 × 10–2 1.503 (1.144—1.976) 3.31 × 10–1 1.264 (0.976—1.636)

LCAT​ 4.60 × 10–2 1.414 (1.128—1.773) 8.46 × 10–2 1.336 (1.075—1.662)

C7 4.60 × 10–2 1.49 (1.14—1.948) 3.08 × 10–1 1.277 (0.981—1.663)

CHGA 4.60 × 10–2 1.458 (1.132—1.877) 5.96 × 10–2 1.436 (1.111—1.855)

ADAMTS1* 5.00 × 10–2 1.404 (1.113—1.77) 3.11 × 10–2 1.564 (1.198—2.04)

TFEB 7.47 × 10–2 1.362 (1.082—1.715) 2.27 × 10–2 1.555 (1.229—1.967)

LRRFIP2 7.47 × 10–2 1.344 (1.079—1.674) 3.94 × 10–2 1.44 (1.141—1.818)

LAMA2 9.31 × 10–2 1.327 (1.057—1.667) 2.27 × 10–2 1.57 (1.219—2.022)

IL1B 1.69 × 10–1 1.308 (1.018—1.681) 3.94 × 10–2 1.576 (1.173—2.117)
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FTD [3, 23, 24]. We have, as of yet, no explanation to why 
NPTX2 is reduced in CSF and elevated in plasma, or if 
the NPTX2 detected in plasma is brain derived. How-
ever, finding elevated levels of NPTX2 in plasma from 
SMC suggests that NPTX2 could work as a plasma-based 
biomarker.

We found two proteins, GRN and RPH3A, that dif-
fered in SMC-GRN compared to NC, while no proteins 
were observed at different levels in neither SMC-MAPT 
nor SMC-C9, compared to NC. A reduction of GRN in 
progranulin mutation carriers is of course expected since 
all known pathogenic FTD-related GRN mutations lead 
to haploinsufficiency. On the other hand, RPH3A was 
elevated in SMC-GRN. RPH3A is involved in presynaptic 
vesicle trafficking and has been implicated to play a role 
in synaptic dysfunction in other neurodegenerative dis-
eases [25, 26]. In addition to the findings in SMC-GRN, 
we observed some indications of differences already 
in the presymptomatic stages in GRN mutation carri-
ers. While not statistically significant after adjustment 
for multiple testing, the differences are still noteworthy 
since the proteins, NEFM, NPTX2 and CHI3L1, all have 

been reported as biomarker candidates in CSF [16, 27]. 
NPTX2 was also elevated in all SMC compared to NC 
and CHI3L1 was just above the threshold for significance 
while neither of these two proteins were elevated in SMC 
when compared to PMC. Taken together this indicates 
that these two proteins might be upregulated already at 
the presymptomatic stage. However, further studies are 
needed to establish if these proteins indeed are related to 
presymptomatic changes in GRN mutation carriers or if 
it is a spurious finding.

Biological sex is a known risk factor for several types 
of dementia, with female sex being a risk factor for AD 
and male sex being more common in FTD [28, 29]. In 
light of this, we analysed if any of the proteins identified 
in the current study exhibited any sex specific patterns. 
While we could not determine any significant interac-
tions between sex and mutation status for these proteins 
(data not shown), two proteins were significantly corre-
lated with sex in the mutation carrier group, but not in 
controls, suggesting a potential biological effect.

We acknowledge several limitations in this study. The 
focus was on genetic FTD and samples from patients 

Fig. 2  Plots of protein – protein correlations. Protein order is based on hierarchical clustering. Correlation plot of the 17 proteins with elevated 
levels in symptomatic mutation carriers (SMC) compared to non-carriers (NC) or presymptomatic mutation carriers (PMC). The colour scale indicates 
Spearman’s rank correlation coefficient from dark blue (-1) to bright red (1)
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with other neurodegenerative diseases were not 
included in the analysis. Follow-up studies with com-
parisons to for example AD and ALS will elucidate the 
importance of altered plasma proteins in FTD in rela-
tion to other diseases as well as sporadic FTD. The sus-
pension bead array technique is a method for analysing 
multiple proteins simultaneously, which is useful in an 
exploratory study like this. However, a high-throughput 
antibody-based single-binder assay can have reduced 
sensitivity, which may limit the detection of low abun-
dant proteins and require further validation of antibody 
specificity. In addition, we used a targeted approach, 
and the protein analysis was thus limited by the protein 
selection as well as the availability of antibodies.

Conclusions
To our knowledge, this is the first large scale plasma 
protein profiling specifically in genetic FTD. A reli-
able fluid biomarker could aid for example in diagnos-
ing FTD at an early stage or in selecting individuals 
for upcoming clinical trials. Blood-based biomarkers 
would have the advantage of being easy to access and 
widely available compared to CSF-biomarkers. Here, we 
have presented an exploratory study providing proteins, 
including a previous CSF-biomarker, that are of interest 
for future investigations as potential biomarkers.
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Table 3  Correlations between age and protein levels in 
mutation carriers

Correlations between protein levels and age in all mutation carriers (MC) 
including p-values and beta coefficients with 95% confidence intervals. All 
p-values are adjusted for multiple testing. Non-significant p-values are in italics

Protein p-value β

RPH3A 9.98 × 10–7 0.019 (0.013—0.026)

IL1B 2.16 × 10–4 0.012 (0.006—0.017)

RGS7BP 5.35 × 10–4 0.012 (0.006—0.018)
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