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ABSTRACT Distributed denial of service (DDoS) attacks continue to be a major security concern,
threatening the availability and reliability of network services. Software-defined networking (SDN)
has emerged as a promising solution to address this issue, enabling centralized network control and
management. However, conventional SDN-based DDoS mitigation techniques often struggle to detect and
mitigate sophisticated attacks due to their limited ability to analyze complex traffic patterns. This paper
proposes an innovative and optimized approach that effectively combines mininet, Ryu controller, and
one dimensional-convolutional neural network (ID-CNN) to detect and mitigate DDoS attacks in SDN
environments. The proposed approach involves training the 1D-CNN model with labeled network traffic data
to effectively identify abnormal patterns associated with DDoS attacks. Furthermore, seven hyperparameters
of the trained 1D-CNN model were tuned using non-dominated sorting genetic algorithm IT (NSGA-II)
to achieve the best accuracy with minimum training time. Once the optimized 1D-CNN model detects
an attack, the Ryu controller dynamically adapts the network policies and employs appropriate mitigation
techniques to protect the network infrastructure. To evaluate the effectiveness of the optimized 1D-CNN
model, extensive experiments were conducted using a simulated SDN environment with a realistic DDoS
attack dataset. The experimental results demonstrate that the developed approach achieves significantly
improved detection accuracy of 99.99% compared to other machine learning (ML) models. The NSGA-II
enhances the optimized model accuracy with an improvement rate of 9.5%, 8%, 5.4%, and 2.6% when it
is compared to logistic regression (LR), random forest (RF), support vector machine (SVM), and k-nearest
neighbor (KNN) optimized models respectively. This research paves the way for future developments in
leveraging deep learning (DL) driven techniques and SDN architectures to address evolving cybersecurity
challenges.

INDEX TERMS Artificial intelligence, distributed denial of service, hyperparameters tuning, mininet,
NSGA-II, optimized model, Ryu controller, software defined networking.

I. INTRODUCTION

Software-defined networking (SDN) is a networking
approach that separates the control plane from the data
plane in a network. The control plane is one of the core
components responsible for managing and controlling the
behavior of the network. It involves making decisions about
how network traffic should be handled, how data should
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flow through the network, and how network resources should
be allocated. The control plane essentially defines the rules
and policies that govern the operation of the network. The
functions of the control plane are shifted from individual
networking devices to a centralized software application
known as the SDN controller. The controller acts as a brain for
the network, making high-level decisions and orchestrating
the configuration of network devices. The data plane, also
known as the forwarding plane, is responsible for the actual
forwarding of network traffic, including data packets, from
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source to destination based on the instructions received from
the control plane. It is the operational layer of the network
where the physical network devices (such as switches and
routers) perform the essential task of transmitting packets.
The data plane devices in an SDN architecture follow
instructions provided by the centralized controller [1].

In traditional or legacy networks, network devices such
as switches and routers have control planes and make
independent forwarding decisions based on their routing
tables. This feature can lead to inefficient use of network
resources and difficulty in managing network configurations
[2]. In contrast, SDN centralizes the control plane and
enables network administrators to manage network traffic
and configurations from a central location using software
applications. These applications allow more efficient use of
network resources, easier network management, and greater
flexibility in adapting to changing network needs. Fig. 1
illustrates the legacy network and SDN architectures. Some
of the key differences between SDN and legacy networks
include [3], [4]:

1) Centralized control: In SDN, the control plane is
centralized and managed by a software controller,
whereas, in legacy networks, each network device has
its own control plane.

2) Programmability: SDN networks are programmable,
meaning network administrators can write applications
to manage network traffic and configurations. In con-
trast, legacy networks are not as flexible and require
manual configuration.

3) Virtualization: SDN enables network virtualization,
which allows multiple virtual networks to run on
a single physical network infrastructure. Network
virtualization can improve network efficiency and
reduce costs.

4) Open standards: SDN is based on open standards,
meaning network devices from different vendors can
work together seamlessly. The open standard is in
contrast to legacy networks, which often require
proprietary technologies that are specific to each
vendor.

SDN is a rapidly evolving technology that is transforming
how networks are managed and operated. Recent trends in
SDN technology have focused on enhancing network per-
formance, improving security, and increasing the scalability
of networks. SDN is used to enhance network security by
providing greater visibility into network traffic and enabling
dynamic security policies that include using SDN to detect
and mitigate distributed denial of service (DDoS) attacks and
other types of cyber threats [4].

DDoS is a cyber attack involving overwhelming a network
or server with traffic from multiple sources. A DDoS attack
aims to disrupt or bring down the targeted network or server.
DDoS attacks are typically carried out using a botnet, which
is a network of compromised computers that are controlled
by a single attacker. DDoS attacks can be very difficult to
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defend against and are a common threat to online services
and businesses [5].

DDoS attacks significantly threaten network security, and
SDN environments are not immune to them. In fact, SDN
environments are particularly vulnerable to DDoS attacks
because of their centralized control and programmability.
A DDoS attack in an SDN environment can occur in
several ways. Attackers may flood the network with a high
volume of traffic to overwhelm the network and cause
it to crash. Alternatively, they may exploit vulnerabilities
in SDN controllers or switches to gain control of the
network and launch DDoS attacks against other targets. The
programmability of SDN also allows attackers to modify
the network configuration to evade detection or launch more
sophisticated attacks. For example, attackers may modify the
flow rules in SDN switches to redirect traffic to a victim
or bypass DDoS mitigation mechanisms. To prevent DDoS
attacks in SDN environments, it is important to implement
effective security measures [6].

Artificial Intelligence (Al is a branch of computer science
that focuses on creating intelligent machines that can learn
and make decisions like humans. Al is used in various
applications, from image recognition to robotics. Some of
the popular Al technologies include machine learning (ML),
deep learning (DL), and natural language processing (NLP)
[71, [8]. AL, SDN, and DDoS are all related to the field of
computer networking and security, and integrated them can
be carried out in many ways [9], [10]:

o Al for DDoS detection and mitigation: Al can be used
to detect and mitigate DDoS attacks by utilizing ML
algorithms that can analyze network traffic patterns and
identify abnormal traffic behavior that could indicate a
DDoS attack. Once a DDoS attack is detected, an SDN
controller can be used to reconfigure the network to
block or mitigate the attack dynamically.

o SDN for Al-enabled network management: SDN can
be used to provide a flexible and programmable
network infrastructure that enables Al to manage
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network resources. With SDN, network administrators
can dynamically allocate network resources, prioritize
traffic, and control network policies. Al can be used to
optimize network performance, predict network failures,
and automate network management tasks based on
current traffic status.

o Al-enabled SDN for DDoS defense: Al can be used to
enhance the effectiveness of SDN-based DDoS defense
mechanisms. For example, Al algorithms can be used
to automatically configure SDN-based DDoS mitigation
policies based on real-time network traffic patterns. The
automatic configuration can help to detect and mitigate
DDoS attacks more quickly and efficiently without
affecting the network performance.

The main contributions of this paper navigate the intricate
intersection of DDoS attack mitigation and detection mecha-
nisms within the context of SDN using Al techniques and can
be summarized as follows:

1) Creating SDN simulated traffic dataset by utilizing
mininet emulator. The created dataset launches DDoS
flooding attacks for multiple protocols (i.e., user
datagram protocol (UDP), Internet control message
protocol (ICMP), and transmission control protocol
(TCP)).

2) Developing a DL model based on one dimensional-
convolutional neural network (1D-CNN) that employs
a stacked convolution technique for improving the
model’s ability to extract complex features from the
input data, handle variations, and prevent overfitting.

3) Optimizing the 1D-CNN model’s hyperparameters
using non-dominated sorting genetic algorithm II
(NSGA-II) for achieving the best accuracy with
minimum training time.

The rest of the paper is organized as follows: Section II
reviews the recent state-of-the-art research that targeted the
integration of Al to detect or mitigate DDoS attacks in
the SDN environment. Section III summarizes the DDoS
operation and its effects on network resources. While
Section IV and Section V provide a clear explanation
of the mininet emulator and the employed ryu controller.
Section VI introduces the proposed approach steps in detail
and highlights the main contributions of this work. On the
other hand, Section VII discusses the obtained results from
the developed approach. Finally, Section VIII concludes the
presented work.

Il. RELATED WORKS

The field of utilizing AI in the SDN environment has
witnessed significant advancements in recent years, with
numerous scholars and researchers investigating various
aspects of the subject matter. This section provides a
comprehensive review of the existing literature, highlighting
the key studies, theories, and methodologies that have
shaped the understanding of protecting the SDN environment
from DDoS attacks. By examining the works of prominent
researchers, this review aims to identify the gaps and
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limitations in the current knowledge, paving the way for the
present study’s contribution.

Swami et al. in [11] introduced a voting-based intrusion
detection framework that could detect DDoS attacks and
secure the SDN environment. The authors employed three
ensemble classifiers called Voting-CKM, Voting-RKM, and
Voting-CMN. While NSL-KDD, CICIDS2017, and UNSW-
NB15 datasets were utilized for training and testing their
developed models. The authors argued that their ensemble
models had better performance when compared to other
existing models with a classification accuracy of 99.68%,
97.77%, and 89.29% for Voting-CKM, Voting-RKM, and
Voting-CMN, respectively.

Sahoo et al. in [12] utilized a support vector machine
(SVM) as the main classifier for DDoS detection and
mitigation in the SDN environment. The classifier was
followed by kernel principal component analysis (KPCA)
to perform feature selection. At the same time, a genetic
algorithm (GA) was adopted to tune the SVM parameters
to find their optimum values. The authors compared their
developed approach to a single SVM classifier, and the
results showed that their classifier achieved a high detection
accuracy of 98.90%.

Zhijun et al. in [13] introduced a DDoS detection approach
using factorization machines (FM) for low-rate DDoS attacks
that targeted the data plane in SDN architecture. The
obtained experimental results from their developed approach
showed a moderate detection accuracy of 95.80% due to the
fine-grained detection for low-rate DDoS attacks.

Ahuja et al. in [14] utilized ML techniques to classify
the incoming traffic in an SDN environment into normal
and DDoS attack traffic. The authors developed their
hybrid model by integrating two classification algorithms:
SVM and random forest (RF). The obtained results from
their experimental scenario showed that the support vector
classifier with random forest (SVC-RF) model achieved a
high classification accuracy of 98.8% when a realistic SDN
dataset was employed in training and testing their model.

Musumeci et al. in [15] developed an automated DDoS
attacks detection (DAD) approach for SDN environment that
aimed at detecting DDoS attacks in OpenFlow switch with
the marginal intervention of SDN controllers. The authors
introduced two versions of the DAD approach: standalone
and correlated. These approaches were able to detect SYN
flood attacks locally on the OpenFlow switch level to protect
the SDN controller from DDoS attacks. The numerical results
for the DAD model showed a classification accuracy of 98%
for all tested ML algorithms (k-nearest neighbors (KNN), RF,
SVM, and artificial neural network (ANN)).

Swami et al. in [16] presented a detailed analysis of
various classifiers to detect the ingress DDoS attack traffic
in an SDN environment. TCP-SYN flooding attacks were
employed to study the effectiveness of the developed ML
classifiers, such as decision tree (DT), multilayer perceptron
(MLP), AdaBoost (AB), RF, and logistic regression (LR).
The authors utilized a cross-validation technique to validate
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the introduced classification models, and the obtained results
from the conducted experiments showed that their introduced
approach achieved high performance.

Sangodoyin et al. in [17] developed multiple ML models
to detect and classify DDoS attacks against SDN. Their
introduced SDN model had been emulated using mininet,
while three DDoS flooding attacks were launched to study
the effectiveness of their ML models. Four popular classifiers
were employed by the authors (i.e., classification and
regression tree (CART), KNN, Gaussian naive Bayes (GNB),
and quadratic discriminant analysis (QDA)), and the obtained
results showed that the CART model outperformed other
models with prediction accuracy of 98%.

Maheshwari et al. in [18] introduced an optimized
weighted voting ensemble model that employed a hybrid
metaheuristic optimization algorithm (BHO) to find the
optimal set of the model’s weights. Their introduced
ensemble classifier was based on a couple of each of
the following classifiers: SVM, RF, and gradient-boosted
machines (GBM). The author argued that the employed
six classifiers were differentiated by their hyperparameter
values and eliminated false negatives through the introduced
dynamic fitness function. The obtained results from their
developed ensemble model showed that their model had
high classification accuracy of 99.35% and 99.41% for
CAIDA-2007 and CIC-DDo0S-2019 datasets, respectively.

Alanazi et al. in [19] proposed an efficient DDoS detection
approach for SDN environment using DL. The authors
employed the CIC-IDS2017 dataset to train their classifier
using long-short-term memory (LSTM), gated recurrent unity
(GRU), and CNN to enhance the traffic classification. The
authors argued that their proposed approach achieved a
detection accuracy of 99.77% while a few features were
adopted.

Mbasuva et al. in [20] proposed a DDoS detection
approach for SDN environment that utilized recurrent neural
network (RNN), deep neural network (DNN), and CNN.
The authors employed the CIC-IDS2017 dataset to train
their developed ensemble model, and they argued that their
experimental results outperformed other ensemble classifiers
(i.e., ensemble voting, ensemble RNN, and ensemble CNN)
by achieving a high detection accuracy of 99.05%.

Liu et al. in [21] introduced a DDoS attack detection
approach comprising information entropy and DL. The
information entropy detected the spoofed switch ports, while
the CNN model was used to differentiate between suspicious
traffic and normal traffic. The authors argued that their
proposed approach exhibited high detection accuracy of
98.98% when detecting DDoS attacks.

The main motivation behind the conducted research was
that DDoS attacks are becoming increasingly sophisticated,
making them challenging to detect using traditional methods.
DL techniques have shown promise in capturing and
learning intricate patterns in data, making them suitable for
detecting the complex and evolving nature of DDoS attacks.
The potential research gaps for developing an Al model to
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detect DDoS attacks, relative to existing works, could be: (i)
none of the papers cited above considered the imbalance of
classes in the employed dataset, and (ii) some of the papers
cited above did not utilize SDN emulated traffic dataset.
However, publicly accessible datasets created for legacy
networks were not applicable in the SDN context. This work
utilizes ID-CNN that aims to leverage the strengths of DL,
specifically in capturing complex patterns, automatic feature
extraction, and adaptability. By harnessing these capabilities,
the developed 1D-CNN model will enhance the accuracy,
efficiency, and effectiveness of DDoS detection systems,
ultimately improving the resilience and security of network
infrastructures.

To the best of our knowledge, this paper underscores the
significant contributions that have been made to the field of
SDN security. Through meticulous investigation and rigorous
analysis, this paper shed new light on DDoS detection
in the SDN environment, providing valuable insights and
advancing our understanding of the benefits of optimizing the
hyperparameters of the 1D-CNN model. The findings of this
paper pave the way for future investigations in this area.

IIl. SDN ENVIRONMENT UNDER DDoS ATTACK

DDoS attack is one of the most regular and devastating attacks
against SDN. This kind of attack has an impact on pro-
grammable networks performance and its behavior. It stops
or degrades network services by depleting the available
resources, and hence, valid hosts cannot communicate with
the SDN controller or deliver packets across the network [22].

In an SDN environment, a DDoS attack is accomplished
by generating several new flows that overwhelm the SDN
controller, the OpenFlow switches, and the secure channel,
causing the network to go down for valid hosts. It is important
to note that while some attack vectors are typical of traditional
networks, programmable networks (e.g., SDN) have their
own distinct set of dangers. For example, an attacker may
take advantage of low-volume traffic flows rather than
high-volume traffic flows to create a large number of ingress
messages, which, in turn, would overwhelm the ingress
switch and the controller. To be more explicit, attackers will
produce numerous new flows that have faked IP addresses
but will send them from several sources. A table-miss has
occurred because these faked addresses do not match any
of the current flow rules in the flow table of the OpenFlow
switch.

Fig. 2 illustrates how the attacker strikes the SDN
environment from many potential points of entry and the
impacts of a DDoS attack in the SDN environment are [23],
[24]:

o Impact on OpenFlow switch: DDoS attacks generate

a massive volume of malicious traffic that floods the
network infrastructure. OpenFlow switches, responsible
for forwarding and controlling network flows in the SDN
environment, may become overwhelmed by excessive
traffic. These large number of malicious flows may flood
the switch, resulting in the exhaustion of flow table
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FIGURE 2. The impact of DDoS attack in SDN environment.

entries. Once the flow table reaches its capacity, the
switch may either stop accepting new flows or evict
existing flows, affecting the network’s ability to process
traffic effectively. Consequently, this can lead to network
congestion, causing delays, packet loss, and overall
performance degradation.

« Impact on the secure channel between SDN planes: The
secure channel, which is responsible for transmitting
control messages and instructions between the SDN
planes, can be compromised or disrupted during a
DDoS attack, leading to various consequences like
(i) communication disruption between control and data
planes, and (ii) increasing latency in the secure channel
by consuming network resources that lead to increased
packet loss and queuing delays.

o Impact on SDN controller: DDoS attacks can over-
whelm the resources of the SDN controller, which
is the central intelligence that manages and controls
the network infrastructure, including CPU, memory,
and network bandwidth. Massive malicious traffic can
consume these resources, resulting in performance
degradation. As a result, the controller may struggle
to process control messages, make intelligent deci-
sions, and effectively manage the network, leading to
delays and unresponsiveness. Hence, critical network
services and applications relying on the controller may
experience downtime or degraded performance.

IV. MININET EMULATOR
Mininet is an open-source network emulator that allows
developers and academic scholars to create a virtual network
on their own computers or in the cloud. It enables developers
to build, test, and debug complex network topologies and
protocols without the need for physical hardware. Mininet
is a powerful tool for network emulation and testing, with a
wide range of features and capabilities that make it useful for
research, education, and network development [25].

Various networks can be created with mininet using virtual
hosts, switches, controllers, and links that behave just like
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a real network but without the expense or limitations of
physical hardware. In addition, it provides an environment to
run experiments, test different network topologies, and evalu-
ate network performance under different conditions. Mininet
supports various network protocols, including OpenFlow,
and can be integrated with other network simulation tools
and emulators. The architecture of mininet consists of the
following components [25], [26], [27]:

« Hosts in mininet represent end devices such as comput-
ers or servers in a network. Each host is implemented as
a Linux network namespace, providing a fully functional
network stack. Hosts can run applications, generate
traffic, and communicate with other hosts within the
mininet network.

« Switches in mininet emulate OpenFlow switches, which
are central to SDN. Each switch is implemented as a
virtual Ethernet bridge and supports OpenFlow protocol
for communication with the SDN controller. Switches
in the mininet handle the forwarding of network traffic
based on the flow table entries provided by the SDN
controller.

o Controllers in mininet represent the SDN controller that
is responsible for managing the network and providing
instructions to the switches. Mininet supports various
SDN controllers such as OpenDaylight, Ryu, and POX.
The controller communicates with switches using the
OpenFlow protocol to install flow table entries, handle
network events, and control the behavior of the network.

« Links in mininet represent the virtual network connec-
tions between switches and hosts. They emulate network
links and provide connectivity between different com-
ponents within the mininet network. Links can have
configurable characteristics such as bandwidth, delay,
and packet loss, allowing users to simulate various
network conditions.

o Custom network topologies in mininet can be created
by users throughout the arrangement of switches,
hosts, and links. Topologies range from simple linear
or tree-like structures to more complex and realistic
configurations. Mininet provides a flexible application
programming interface (API) for defining topologies
programmatically or using predefined topologies.

o Command line interface (CLI) and API in mininet allow
users to manage and control the network interactively.
Users can use the CLI to execute commands on hosts,
view network configurations, and test network behavior.
Additionally, mininet offers a Python API that enables
programmatic control and automation of network setup
and testing.

V. RYU CONTROLLER

An SDN controller is a software program that manages and
directs network traffic flow in an SDN environment. The
SDN controller manages the network and communicates
with the switches that forward the traffic. It provides a
single point of control for the network, allowing network
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administrators to manage the network more easily and
efficiently. The controller communicates with the switches
using the OpenFlow protocol which is a standardized protocol
used in SDN environments. The OpenFlow protocol allows
the controller to program the switches to forward traffic in a
specific way based on the network policies and rules defined
by the administrator [28].

Ryu is an open-source SDN controller that provides a
programmable feature to network infrastructure for cloud
computing and data center environments. Ryu is written in
Python and supports the OpenFlow protocol, which is widely
used in SDN environments. The Ryu controller architecture
is designed to provide a flexible and modular framework
for building SDN applications. It is based on a component-
based architecture, where each component is responsible for
a specific function or feature. The key components of the Ryu
controller architecture are [29], [30]:

« Ryu application framework provides a programming
framework for building SDN applications. It is based
on the Python programming language and provides
a simple and easy-to-use API for developing SDN
applications.

o Event manager is responsible for receiving and
handling network events, such as switch connec-
tion/disconnection events, packet-in events, and flow
modification events. It uses an event-driven program-
ming model to handle events in real-time.

o The OpenFlow library is responsible for communicating
with OpenFlow switches and other network devices.
It provides a high-level abstraction of the OpenFlow
protocol, allowing developers to write SDN applications
without worrying about the protocol’s low-level details.

o Network application manager is responsible for man-
aging the lifecycle of SDN applications. It provides
an interface for registering and unregistering appli-
cations with the controller and managing application
dependencies.

o Representational state transfer (REST) API server
provides a RESTful interface for interacting with the
Ryu controller. It allows developers to interact with
the controller using hypertext transfer protocol (HTTP)
requests and provides access to the controller’s features
and functionality.

« Database is responsible for storing the configuration
and state information of the controller. It provides
a persistent storage mechanism for the controller,
allowing it to recover from failures and restarts.

Ryu has gained popularity in the SDN community due to
its simplicity, extensibility, and Python-based programming
model. Researchers and developers widely use Ryu controller
to build applications and network management solutions.

Vi. PROPOSED APPROACH

This section presents an innovative and optimized approach
that leverages the integration of the mininet network emula-
tor, the Ryu controller, and the 1D-CNN model to tackle the
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challenge of detecting and mitigating DDoS attacks in SDN
environments. The developed approach aims to enhance the
network’s ability to identify and respond to malicious traffic
patterns in a timely and automated manner. By combining the
flexibility and programmability of SDN, the realistic network
emulation capabilities of mininet, the centralized control
provided by the Ryu controller, and the DL capabilities of
the 1D-CNN model, this work envisions a comprehensive
solution that addresses the limitations of traditional DDoS
mitigation techniques.

A. DATASET COLLECTION AND PREPROCESSING

This work utilizes a simulated approach to construct the

whole dataset specifically targeted to capture the DDoS

attacks in an SDN-based environment. There are many
available datasets, but they lack diversity in attack types
and are unrealistic. Therefore, training DL models will be
difficult to capture real-world scenarios’ behavior effectively.

To address this issue, this work tried to generate various

benign and malicious network traffic for three different

protocols using various tools. Simulating benign traffic and

DDoS attacks in mininet involve creating a virtual network

environment that mimics real-world communication patterns

between hosts and the characteristics of a real DDoS attacks.

Fig. 3 depicts the simulated network architecture and how

the dataset was collected. The dataset collection steps were

identical except the tools that utilized during network traffic
generation:

Step 1: Create Topology: Define the network topology using
mininet’s Python API. This Python program creates
hosts, switches, and links to simulate the architecture
of the employed network. The mininet provides a
virtual network with multiple hosts, switches, and
controllers. The employed topology comprises a
single remote Ryu controller connected to eight
OpenFlow switches that are connected to three hosts.

Step 2: Traffic Generation: To simulate normal traffic,
various communication patterns have been executed
between hosts that mimic real-world communication
patterns, and this can be achieved by having hosts
send requests to each other using common protocols
like web servers might receive HTTP requests from
clients, and clients might fetch data from servers.
On the other hand, to simulate DDoS traffic, a high
volume of traffic from multiple hosts should be
generated using various tools like “iperf’ and
“hping3.” A custom script was used to simulate
attack traffic for ICMP, UDP, and TCP protocols.

Step 3: Monitoring and Logging: A standalone applica-
tion runs inside the Ryu controller that monitors
the global topology construction and then logs
different OpenFlow switch flows statistics on a
regular basis. The OpenFlow switch flow details and
requests to the SDN controller were written into a
comma-separated values (CSV) file. The collected
dataset was annotated automatically using a simple
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TABLE 1. The features of the employed dataset.

No. Feature Name Data Type
1 Switch ID Numerical (integer)
2 Source IP Categorical (object)
3 Destination IP Categorical (object)
4 Packet Count Numerical (integer)
5 Byte Count Numerical (integer)
6 Duration Numerical (integer)
7 Packet In Numerical (integer)
8 Packet / Flow Numerical (integer)
9 Byte / Flow Numerical (integer)
10 Packet Rate Numerical (integer)
11 Protocol Categorical (object)
12 Port Number Numerical (integer)
13 Transmitted Bytes Numerical (integer)
14 Received Bytes Numerical (integer)
15 Label Numerical (integer)

code that set the label column of the dataset to
“0” during the generation of benign traffic and set
the label column of the dataset to “1” during the
generation of malicious traffic.

Fig. 4 depicts the details of the proposed approach
comprising three main phases: dataset collection, AI model
training, and optimized model benchmarking.

Fig. 5(a) and Fig. 6(a) show the detailed statistics of the
collected dataset in this work, with classes O and 1 corre-
sponding to benign traffic and malicious traffic, respectively.
Table 1 shows the features of the collected dataset that were
employed to train the developed model.

The collected dataset should be preprocessed before the
training phase of the optimized model begins because the raw
data may have NaN/infinity values, errors, duplicate values,
and missing values that certainly affect the accuracy of the
Al model when classifying the ingress traffic. In this work,
the below actions were performed during the preprocessing
phase: (i) removing redundant entries, unchanged features,

VOLUME 11, 2023

infinite values, and null; (ii) encoding categorical variables
into a format that can be processed by the 1D-CNN model,
preventing biases, and enhancing the model’s ability to
learn relevant patterns and features from the data; and
(iii) normalizing the numeric features between 0 and 1 is a
key preprocessing step that enhances the training efficiency,
stability, and generalization capability of 1D-CNN models,
leading to better overall performance.

The main observation from Fig. 5(a) and Fig. 6(a) is that the
classes of the employed dataset are unbalanced. Therefore,
the synthetic minority over-sampling technique (SMOTE)
is utilized to improve the balance in dataset classes. The
employed SMOTE algorithm consists of the following main
steps [31]:

1) Split the dataset samples into minority class samples

and majority class samples;

2) Find the center points of the minority sample distribu-
tion {01, O3, ..., O,} for nregions that observed using
k-clustering method, where O; = % >.ji=1 Djj and Dy
is the j™ point in i™ region;

3) Calculate the closest distance d; of all the majority
sample points to the points O; where i = 1 to i = n;

4) Calculate the distance dis for each minority class
sample P to its corresponding center point;

5) Synthesis the new sample using P, = nP+ (1 —1)0;
when dis is less than its corresponding di and 0 < n <
1. Otherwise, the point P is neglected;

In this work, two approaches have been implemented when
applying SMOTE to the original dataset: (i) applying SMOTE
on a protocol basis and (ii) applying SMOTE on a label basis.
It is worth noting from Fig. 5(b) and Fig. 5(c) that both
approaches above balanced the total number of classes in
the dataset. However, applying SMOTE on a protocol basis
achieves better balancing in the total number of class labels,
as shown in Fig. 6(b) because each protocol will have equal
value for benign and malicious traffic labels. On the other
hand, applying SMOTE to the class label will not provide a
balance at the protocol level as shown in Fig. 6(c) because
the variance in protocol samples still exists as SMOTE did
not pay any attention to the type of protocol when synthesis
the new samples of the training dataset.

In summary, this paper adopted the utilization of the
SMOTE approach on a protocol basis when generating the
final dataset due to the following reasons:

o Increasing the representation of the minority class by
generating synthetic samples because SMOTE balances
the class distribution, allowing AI models to learn from
both classes more effectively;

« Reducing bias towards the majority class and promoting
fairer representation for both classes as a class imbalance
can lead to biased models towards the majority class.

B. OPTIMIZED Al MODEL TRAINING

The dataset will be divided into 70% as a training dataset, and
30% will be divided evenly between validation and testing
datasets. TensorFlow is an open-source ML framework
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developed by Google. It provides a comprehensive ecosystem
of tools, libraries, and resources for building and deploying
various ML models. The 1D-CNN is a neural network
architecture commonly used for analyzing sequential or
time-series data. It is particularly effective in capturing
local patterns and dependencies within the data. When
using TensorFlow for 1D-CNN, developers can leverage the
TensorFlow library’s extensive capabilities to build, train, and
deploy models efficiently. TensorFlow provides a high-level
API called Keras, which simplifies the process of building
neural networks, including 1D-CNNs. Keras provides a
user-friendly interface for defining the model architecture,
specifying the layers, and configuring hyperparameters. Once
the 1D-CNN model is trained, TensorFlow offers tools for
model evaluation, visualization, and deployment. Developers
can export the trained model in a format compatible
with different platforms and frameworks, allowing seamless
integration into various applications.

1D-CNNs can capture local patterns and dependencies
in the temporal dimension that are particularly relevant for
DDoS detection, as certain attack patterns may manifest
over time in the network traffic. By applying convolu-
tional operations in the 1D-CNN, the model can extract
relevant features from the temporal data, allowing it to
identify suspicious patterns that indicate DDoS attacks.
In an SDN environment, there is no need to reshape
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or transform the data into a one-dimensional format to
reduce the input dimensionality and simplify the data
preprocessing steps, making the detection process more
efficient.

Two techniques were adopted in the developed model to
improve its accuracy: stacked convolutional neural network
(SCNN) [32] and early stopping (ES) [33]. SCNN involves
stacking multiple convolutional layers in a 1D-CNN model
that can improve model accuracy in several ways, including
increased model capacity, non-linear transformations, and
feature reusability. At the same time, ES involves mon-
itoring the model’s performance on a validation set and
stopping the training early when the performance starts to
deteriorate. The effects of ES on accuracy include preventing
overfitting, finding optimal generalization point, and efficient
model training.

Tuning the hyperparameters of a ID-CNN is an important
step in optimizing its performance and achieving the best
possible results. Hyperparameters are configuration settings
that define the behavior of a model and affect its performance.
In the context of a ID-CNN, the key hyperparameters include
the number of employed filters and size of the employed ker-
nel, the learning rate, batch size, activation functions, dropout
rates, and the number of dense layers. Start by defining a
search space for each hyperparameter, representing the range
of values explored during the tuning process. The NSGA-II

106741



IEEE Access

Y. Al-Dunainawi et al.: Optimized Artificial Intelligence Model for DDoS Detection in SDN Environment

approach was utilized in tuning seven hyperparameters of
the developed 1D-CNN model: The number of employed
filters in both convolutional and stacked convolutional layers,
the size of employed filters in both convolutional and
stacked convolutional layer, the learning rate, the dropout
rate, and the batch size. The NSGA-II is a multi-objective
optimization algorithm that uses a GA to optimize a set
of objectives while ensuring that the solutions found are
non-dominated, meaning no solution is better than another
in all objectives simultaneously. NSGA-II is a favored
choice for multi-criteria optimization due to its capacity to
identify a diverse range of non-dominated solutions that
capture trade-offs between conflicting objectives, enabling
decision-makers to navigate complex decision landscapes
and select from a variety of Pareto-optimal solutions tailored
to their preferences and requirements. NSGA-II algorithm
works by performing a series of steps in each generation [34]:

1) Initialization: Create an initial population of candidate
solutions.

2) Evaluation: Evaluate each candidate’s solution using
the objectives of the problem.

3) Non-dominated sorting: sort the population into fronts
based on the non-dominated relationships between
solutions.

4) Crowding distance assignment: Assign a crowding dis-
tance value to each solution in each front, representing
the density of solutions around that solution.

5) Selection: Select parents for the next generation using
a combination of the non-dominated sorting and
crowding distance assignment.

6) Crossover: Create new candidate solutions by recom-
bining genetic information from the selected parents.

7) Mutation: Introduce small changes to the genetic
information of the new candidate solutions to add
diversity to the population.

8) Replacement: Replace the current population with the
newly created candidate solutions.

The tournament selection was employed in the utilized
NSGA-IIL. A random subset of individuals was selected in a
tournament, and the one with the best fitness value (based on
non-dominated sorting and crowding distance) was chosen
as a parent. Tournament selection helped maintain diversity
in the population and selected solutions with different trade-
offs. At the same time, simulated binary crossover (SBX)
was employed in the utilized NSGA-II. SBX emulated
binary crossover in the continuous domain by mixing the
genetic information of two parents based on a probability
distribution. It created offspring that explore the search space
around the parents, encouraging diversity and exploration
with a crossover rate of 0.8. Finally, the polynomial mutation
was adopted to perturb a decision variable by adding a small
random value while ensuring the new value stayed within
the variable’s defined range. The polynomial mutation with a
mutation rate of 0.1 was important for maintaining diversity
and escaping local optima.
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Multi-objective optimization problems, such as optimizing
the hyperparameters of the ID-CNN model using NSGA-
I, pose interesting challenges for researchers and academic
scholars. These problems involve juggling multiple objec-
tives that often compete with each other. This paper’s
proposed approach strives to maximize model accuracy
while minimizing training time. However, finding the right
balance between these objectives is not a simple task.
It requires careful exploration of trade-offs and identifying
the best set of hyperparameters that can deliver the desired
performance.

Table 2 summarizes the decision variables of the intro-
duced optimization problem and their search space with
the obtained optimum value from the employed NSGA-II
that systematically explores the search space by evaluating
different combinations of values for the decision variables
and adjusting them iteratively to find the best solution.

The first objective function is the model accuracy (MA).
It aims to push the 1D-CNN model to perform at its best by
training it with various hyperparameters and measuring the
resulting validation accuracy. On the other hand, the second
objective function is the training time (TT). It focuses on
reducing the time it takes to train the 1D-CNN model. This
time was measured by determining the time it takes to build
the model using the chosen hyperparameters.

A fitness function (F) is formulated as a weighted sum
to merge the above objective functions. It calculates the
fitness value of a potential solution, represented by a set of
hyperparameters, using the below equation:

F(x) = w1 x MA(x) +wy x TT (x). (1)

where F'(x) represents the fitness value of a candidate solution
with hyperparameters x. By adjusting the weights w; and wo,
the right trade-off between maximizing model accuracy and
minimizing training time can be achieved. It’s like finding the
sweet spot that meets our specific requirements.

The optimization process utilizing NSGA-II involves
creating a population of potential solutions with different
sets of hyperparameters presented in Table 2. They were
then evaluating these solutions based on their fitness values.
NSGA-II employs evolutionary operations such as selection,
crossover, and mutation to evolve the population and uncover
a diverse range of non-dominated solutions. These solutions
represent different trade-offs between the objective functions.

C. ML AND DL BENCHMARKING

This benchmarking section provides a comprehensive eval-
uation and comparison of various ML techniques in the
context of DDoS detection in the SDN environment.
By conducting an extensive analysis, this paper aims to
assess the performance and effectiveness of these techniques
in relation to the existing body of work in the literature.
The benchmarking process involves examining diverse
state-of-the-art algorithms, including LR, RF, SVM, and
KNN, by comparing their performance metrics, such as
accuracy, sensitivity, specificity, precision, and F1-Score.
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TABLE 2. The tuned hyperparameters (decision variable x).

No. Hyperparameter Search Space Optimized Value

1 No. of Filters (Convolutional Layer) 16, 32, 64, 128, 256 64

2 Kernel Size (Convolutional Layer) 8, 16, 32, 64, 128 8

3 No. of Filters (Stack Convolutional Layer) 8, 16,32, 64, 128 128

4 Kernel Size (Stack Convolutional Layer) 4,8, 16, 32, 64 32

5 Dropout Rate 0.1,0.2,0.3,0.4, 0.5 0.5

6 Learning Rate 0.0001, 0.001, 0.01, 0.1 0.001

7 Batch Size 100, 200, 300, 400, 500 200

Furthermore, by contrasting our findings with prior research,
this paper aims to contribute to the ongoing efforts in
advancing the field and identifying the most promising
directions for future developments in DDoS detection and
mitigation in the SDN environment.

Four classifiers have been adopted to study the effec-
tiveness of the optimized model developed in this work.
These classifiers have different strengths and are suitable for
different data types and problem domains. The employed ML
classifiers are:

o LR is a classification algorithm used to predict the
probability of a binary or categorical outcome. It models
the relationship between a set of input features and the
probability of a particular class using a logistic function.
LR is a linear model that applies a sigmoid function to
the linear combination of input features to estimate the
probability of the positive class [35].

« RF is an ensemble learning method that combines mul-
tiple decision trees to make predictions. Each decision
tree is built on a random subset of the training data
and a random subset of the input features. RF improves
the accuracy and reduces overfitting by aggregating the
predictions of multiple decision trees. It can handle both
classification and regression tasks [36].

« SVM is a powerful classification algorithm that
finds the best hyperplane to separate classes in a
high-dimensional feature space. It works by mapping the
input data into a higher-dimensional space and finding
the hyperplane that maximizes the margin between the
closest data points of different classes. It can handle
linear and nonlinear classification tasks using different
kernel functions [37].

« KNN is a simple and intuitive classification algorithm
that classifies new data points based on the majority
vote of their k-nearest neighbors in the feature space.
It does not build a model but stores all the training
instances as reference points. KNN determines the class
of a new instance by comparing it to the k closest training
instances based on Euclidean distance [38].

The system performance that utilized the optimized model
has been evaluated using the dataset created in Section VI-A.
The confusion matrix (CM) is a table that is commonly
used to evaluate the performance of a classification model.
It provides a summary of the predictions made by the model
on a set of data points, comparing them to the actual labels

VOLUME 11, 2023

of those data points. Receiver operating characteristic (ROC)
is a graphical representation and evaluation metric used in
ML to assess the performance of binary classification models.
It plots the false positive rate (1-specificity) against the true
positive rate (sensitivity) at various classification thresholds.
ROC provides a way to observe how well the classifier
separates the positive and negative classes across different
thresholds.

VII. RESULTS AND DISCUSSIONS
The experimental scenarios of the developed approach were

carried out using an HP All-in-One 24-dflxxx machine
that equipped with Intel® Core" i5-1135G7 processor and
8GB of random access memory (RAM). The HP machine
runs Windows 10 as an operating system while the mininet
software runs under a Linux virtual machine. The proposed
approach tried to develop an optimized 1D-CNN model for
SDN traffic classification to prevent DDoS attacks.

The optimized 1D-CNN model developed in this work
utilized NSGA-II to tune its hyperparameters. The tuned
hyperparameters are the number of employed filters in both
convolution and stacked convolution layers, the size of the
employed kernel in both convolution and stacked convolution
layers, batch size, learning rate, and dropout. Fig. 7 shows
the importance of hyperparameters to the optimized model
accuracy. In summary, hyperparameters play a crucial role
in determining the final accuracy of the trained model.
Optimizing these hyperparameters through careful tuning and
experimentation can lead to improved performance. Under-
standing the relationship between specific hyperparameters
and accuracy and their impact on model complexity and
generalization is essential for achieving the best possible
model performance.

Fig. 8 shows the relationship between the model’s hyper-
parameters and fitness function. The NSGA-II employed
a multi-objective function that aimed at simultaneously
optimizing multiple objectives or criteria, considering the
trade-offs between them: the model’s accuracy and the
model’s computation time (training time). The optimization
process explores the hyperparameters search space to find
diverse solutions that balance multiple decision variables.
Once the experimental run finishes, the optimized model will
have a set of hyperparameters with the optimized value that
provides the best accuracy with minimum training time. It is
clear that the NSGA-II maintains diversity in the population
due to the adoption of the crowding distance technique as
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a selection criterion. As a result, the NSGA-II will select
solutions that are not too similar to each other in the objective
space.

Selecting the NSGA-II technique for hyperparameter
tuning of 1D-CNN models can offer several compelling
advantages that make it a suitable choice for the work
presented in this paper: (i) NSGA-II excels in multi-objective
optimization scenarios, enabling the exploration of trade-offs
between conflicting objectives to find a set of Pareto-
optimal solutions, (ii) NSGA-II explores a wide range of
solutions across the Pareto front providing various options
that cater to different priorities, (iii) NSGA-II’s navigates
complex and high-dimensional hyperparameter spaces makes
it well-suited for optimizing hyperparameters in ML and DL
scenarios, (iv) NSGA-II employs techniques like crowding
distance to maintain diversity among solutions, striking a bal-
ance between exploration of the search space and exploitation
of promising regions, and (v) NSGA-II’s relatively straight-
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forward implementation and intuitive parameter settings
make it accessible to researchers from different backgrounds.

Fig. 9 depicts the visual representation of how the
multi-objective function value evolves throughout the opti-
mization process. Over 100 trials, the multi-objective func-
tion curve exhibits a steady improvement with minimum
fluctuation around the initial value (reference point). It is
clearly noted that the optimum values for the optimized
1D-CNN model’s hyperparameters were reached in trial 33,
and the multi-objective function value did not improve after
that point.

Fig. 10 illustrates the learning curve in terms of the
model’s accuracy for the optimized 1D-CNN model. The
training curve shows the optimized model’s performance on
the training data as the amount of training data increases.
While the validation curve represents the optimized model’s
performance on a separate validation dataset, which contains
samples not seen during training. The purpose of the
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FIGURE 10. The accuracy of the optimized 1D-CNN model.

validation set is to evaluate the model’s generalization ability.
It is worth noting from Fig. 10 that the training and validation
curves increased together as more data was added. This
indicates that the model learns from the data and generalizes
well to unseen samples. The narrow generalization gap
indicates that the optimized model has a good ability to
generalize its learning from the training data to unseen
samples. In other words, the optimized model captures the
underlying patterns of the data rather than memorizing
specific instances. In addition, the narrow generalization gap
indicates that the model has reached its optimal capacity
with the available training data. Adding more data may
not significantly improve its performance, suggesting that
the model has learned the essential patterns and features
necessary for accurate predictions.

Fig. 11 illustrates the learning curve regarding the
model’s loss for the optimized 1D-CNN model. The narrow
generalization gap in the loss training curve indicates that the
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FIGURE 11. The loss of the optimized 1D-CNN model.

optimized model is able to minimize its loss not only on the
training data but also on the validation data, indicating its
ability to capture the underlying patterns and make accurate
predictions. This implies that the model is not overfitting or
underfitting but is achieving a reliable level of performance
on unseen data. In summary, a loss training curve with a
narrow generalization gap is a positive sign, reflecting the
model’s ability to be deployed in real-world scenarios.

In order to have a fair comparison, the benchmarking ML
models (e.g., LR, RF, SVM, and KNN optimized models)
have their hyperparameters tuned using NSGA-II. Fig. 12
visually represents the CM comparisons, highlighting the
contrasts between the approach developed in this paper
and other optimized ML models. Concurrently, Table 3
encapsulates a comprehensive summary of intricate com-
parisons among diverse optimized classifiers. Despite the
LR classifier being widely employed in the literature of
ML, however, it did not provide adequate accuracy as
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TABLE 3. The detailed performance evaluation metrics for different classifiers vs the developed optimized model.

Performance Metric LR Model RF Model SVM Model KNN Model Optimized Model
Accuracy (%) 90.87 92.22 94.69 97.37 99.99
Sensitivity 0.9468 0.9219 0.9544 0.9784 0.9999
Specificity 0.8673 0.9225 0.9385 0.9686 0.9999
Precision 0.8860 0.9336 0.9455 0.9714 0.9999
False Positive Rate 0.1327 0.0775 0.0615 0.0314 0.0001
False Negative Rate 0.0532 0.0781 0.0456 0.0216 0.0001
F1-Score 0.9154 0.9277 0.9499 0.9749 0.9999

shown in Table 3 because the LR model failed to capture
the exact relationship between dataset features and dataset
labels. Hence, LR could not classify the incoming traffic
correctly. While various decision trees were adopted by the
RF classifier in order to classify the class labels. Correct
decisions made by other trees can balance out an incorrect
decision resulting from one decision tree. The final class
label can be obtained from the maximum votes provided
by each decision tree. Therefore, the RF classifier provides
better accuracy than the LR classifier. On the other hand,
the SVM classifier provided moderate accuracy because it
utilized support vectors to properly find a decision plane that
had the greatest degree of separation between the two classes.
The dataset features are strongly correlated; therefore, it may
not always be able to get a perfect decision boundary
without overfitting. Finally, the KNN classifier provided
better accuracy than the above-mentioned ML classifiers
as it employed a straightforward approach to classifying
the ingress traffic using just elementary math. It is worth
noting from Fig. 12 and Table 3 that the optimized 1D-CNN
model outperformed all the optimized LR, RF, SVM and
KNN models because the dataset has complex patterns and
automatic feature extraction is important. The improvements
in model accuracy were achieved by the NSGA-II approach
that was employed to tune the hyperparameters of the
I1D-CNN model and reach the optimum values for them.
In addition, employing stacked convolution layers in the
optimized 1D-CNN model can improve the model’s ability
to extract complex features from the input data, handle
variations, and prevent overfitting during model training.

Fig. 13 depicted the ROC for the developed model versus
other ML models. It is clear that the ROC of the optimized
1D-CNN model is closer to the top-left corner, indicating a
better classifier with higher specificity and lower sensitivity
when compared to optimized LR, RF, SVM, and KNN
models.

106746

10— ——r—I o=k === _;’Jﬁf l
P | e e
1
| /
1
0.8 —
14
H
[.
|
E- 0.6
S |
E=] I
7] i
c I
& 0.4
0.2 —— LR (90.87%) —
RF (92.22%)
— SVM (94.69%)
—— KNN (97.37%)
0.0 —+ CNN (99.99%) |
| |

0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

FIGURE 13. The ROC for the optimized model versus other ML models.

In the landscape of DDoS detection and mitigation within
SDN environments, the proposed approach in this paper
stands as an innovative stride, leveraging the power of DL
techniques. The introduced approach addresses the evolving
challenges of DDoS attacks and redefines the boundaries of
efficacy in SDN security. A distinct differentiation emerges
by juxtaposing the introduced method against the state-
of-the-art solutions prevalent in the literature. In order
to evaluate the effectiveness of the proposed approach,
a comparison is made between the model developed in this
work (optimized 1D-CNN) and the previous works that have
already been done in the field of DDOS attack detection
using a simulated dataset described in Section VI-A.
As seen from Table 4, the optimized 1D-CNN model gets
the maximum accuracy, which is 99.99%. The developed
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TABLE 4. The comparisons with state-of-the-art works.

No. Author Name Year ATestmg
ccuracy
1 Sahoo et al. in [12] 2020 98.90%
2 Ahuja et al. in [14] 2021 98.80%
3 Musumeci et al. in [15] 2021 98.00%
4 Alanazi et al. in [19] 2022 99.77%
5 Liu et al. in [21] 2022 98.98%
6 Optimized Model 2023 99.99%

DL-based approach capitalizes on the inherent capacity of
CNN to discern intricate patterns and anomalies that might
elude conventional methods.

VIil. CONCLUSION

This paper presented a comprehensive literature review
covering the state-of-the-art solutions to address DDoS
attacks in the SDN environment. Simple network admin-
istration facilities could be achieved when utilizing SDN
technology with more flexible tools as compared to legacy
network technology. Various security concerns still exist
when deploying SDN controller, and these issues need to
be solved to improve network performance and increase
security. This paper aimed to develop an optimized 1D-CNN
model to classify the incoming traffic in an SDN environment
and prevent DDoS attacks. Ryu controller was employed
to monitor the network traffic generated in the mininet
emulator. Extensive simulation scenarios were run through
the utilization of OpenFlow switches and hosts. Once the
simulation scenarios finished, the raw dataset was saved in a
CSV file for further processing before training the developed
model.

The developed approach enhanced the dataset through
SMOTE in order to eliminate the effect of unbalanced
classes in the collected dataset. The SMOTE was carried
out at the protocol level rather than the label level to ensure
that each type of traffic from different protocols had equal
labels (benign and malicious). Then, the dataset was divided
into 70% training, and 30% was divided evenly between
validation and testing datasets. The developed 1D-CNN
model was trained using NSGA-II to tune its hyperparameters
for achieving the best accuracy with minimum training time.

Various ML algorithms were adopted to compare the
developed approach among them, and other works existed
in the literature to study the effectiveness of the optimized
ID-CNN model. The obtained results showed that the
optimized 1D-CNN model outperformed the other ML
models by 9.5%, 8%, 5.4%, and 2.6% when compared to LR,
RF, SVM, and KNN models, respectively.

The developed methods of detecting and mitigating DDoS
attacks in an SDN environment allow researchers and
network security experts to test new detection and mitigation
strategies without risking actual network infrastructure. This
is particularly beneficial for fine-tuning algorithms, exploring
different attack scenarios, and assessing the effectiveness
of novel techniques. However, the simulated environments
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might not capture the complexities of real-world networks.
The performance of detection and mitigation strategies
in a controlled simulation might not directly translate
to real-world effectiveness due to variations in network
dynamics, traffic patterns, and the adaptability of attackers.

The employed dataset in this work provides controlled
environments where the characteristics of attacks can be
precisely defined. They are useful for benchmarking and
comparing the performance of various detection and miti-
gation methods. They can also help in understanding how
different attacks affect network behavior. However, the
utilized simulated datasets aim to replicate real-world attack
patterns; they might not fully capture the diversity and
sophistication of actual DDoS attacks. Real-world DDoS
attacks can evolve rapidly, employing new techniques that
the simulated dataset might not cover. Additionally, the scale
of real attacks can vary widely, from small-scale attacks to
large and complex botnet-driven assaults, which might not
be adequately represented in the simulated data.
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