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ABSTRACT

This paper explores noise-mismatched models using the Hellinger
distance. In many applications, the design/training stage often as-
sumes an independent and identically distributed (i.i.d.) Gaussian
prior noise, but the real world introduces Gaussian noise with arbi-
trary covariance, creating a mismatch. We analyze the impact on
system output and study optimal injected noise intensity for train-
ing/design. While theory assumes Gaussian sources, it provides
guidance for non-Gaussian settings too. Experiments with Cycle-
GAN for image-to-image translation validate the theory, producing
results consistenting with derivations. Overall, this work provides
theoretical and empirical insights into designing systems robust to
noise uncertainties beyond simplified assumptions.

Index Terms— Noise mismatch, Hellinger distance, f -
divergence, Unpaired Image-to-Image translation.

1. INTRODUCTION

Noise mismatch occurs when the actual noise during data collection,
processing, or communication deviates from the anticipated model
used in system design or analysis. This can degrade system perfor-
mance, produce faulty estimates, and reduce reliability. Such issues
have been explored in various applications such as signal process-
ing [1], communication [2], medical diagnosis [3], image process-
ing [4], information theory [5–7], and machine learning [8, 9]. Prior
studies often used Kullback-Leibler (KL) divergence (also known
as relative entropy) to quantify the disparity between assumed and
actual noise distributions [10–12]. Despite its popularity, KL diver-
gence is not a true distance metric and is unbounded.

This paper explores the noise mismatch problem by leveraging
the Hellinger distance for theoretical analysis. The Hellinger dis-
tance, bounded between 0 and 1, offers several advantages over KL
divergence, such as symmetry, adherence to the triangle inequality,
and robustness against outliers and small probability differences, en-
hancing its overall robustness [13]. Specifically, we examine noise
mismatch in Gaussian channels. In particular, we assume that dur-
ing the analysis/design/training phase, the source signal is corrupted
by independent and identically distributed (i.i.d.) Gaussian noise
with a probability distribution of N (0, σ2

t Id). However, practical
scenarios often involve Gaussian noise with a different covariance
matrix, described by the distribution N (0,Σe). Consequently, we
introduce a noise-mismatched model to investigate the interplay be-
tween designed and practical noises. Using the Hellinger distance,
we examine the system’s behaviour under varying covariance matri-
ces, indirectly highlighting the system’s resilience against stochastic

(a) Analysis stage (b) Practical inference

Fig. 1. Noise mismatched model diagram in a general system: a)
System G is designed to receive the perturbed source signal x′ to
produce y; b) x̂ (source signal with random noise) outputs ŷ.

disturbances. Furthermore, we determine the optimal solution σ2
t for

the designed noise to ensure consistent system output under differ-
ent noisy conditions. The rest of this paper is organized as follows.
Section 2 formulates the problem. Section 3 states the main results.
Numerical results are presented in Section 4 and conclusions are fol-
lowed in Section 5.

Notations: Hereafter, the use of uppercase letters denotes ran-
dom variables or vectors, and the corresponding lowercase letters
signify their realizations. The notation N (µ,Σ) is employed to rep-
resent a multidimensional normal (Gaussian) distribution character-
ized by a mean vector µ and a covariance matrix Σ. In the context of
a given matrix A, the symbols Tr(A) and |A| are utilized to denote
the trace and determinant of A, respectively. Furthermore, λi(A)
signifies the i-the largest eigenvalue of the matrix A. 0d and Id de-
note d×d all-zero and identity matrices, respectivley. For symmetric
matrices A and B, A > B and A < B denote that A − B and
B −A are positive definite, respectively.

2. PROBLEM FORMULATION

Consider a clean source signal x ∈ Rd. During the design, analysis,
or training phase, a system G processes a noisy signal x′ = x+ e′,
as illustrated in Figure 1a. The term G can have varied interpreta-
tions across disciplines: it might be a “generative model” in machine
learning, a “channel” in communication, or an “imaging system” in
signal processing. The intentional noise e′ added during design is
i.i.d. Gaussian distributed, given by e′ ∼ N (0, σ2

t Id), and is inde-
pendent of the signal. In contrast, the inference stage introduces a
noise e to yield a signal x̂ = x+e, producing an output ŷ = G(x̂),
as depicted in Figure 1b. Our objective is to understand the system’s
response when the noise e deviates from the design noise e′.

The squared Hellinger distance is a special case of f -divergence,
a statistical measure often used to measure the differences between



two probability distributions. Given two probability distributions
P and Q on a measurable space X and let p and q represent the
Radon–Nikodym derivatives of P and Q, respectively. The squared
Hellinger distance is defined as [14]

DH(P∥Q) =
1

2

∫
X

(√
p(x)−

√
q(x)

)2

. (1)

In case when P and Q are two multivariate normal distributions with
p ∼ N (µ1,Σ1), q ∼ N (µ2,Σ2), DH(P∥Q) is given by [14]

DH2(P∥Q) =1− |Σ1|1/4 |Σ2|1/4∣∣Σ1+Σ2
2

∣∣1/2 · exp
{
− 1

8
(µ1−

µ2)
⊤
(
Σ1 +Σ2

2

)−1

(µ1 − µ2)

}
,

(2)

which can help us analyze the important mathematical properties of
the noise-mismatched model.

In what follows, we provide an in-depth analysis of the noise-
mismatched model, addressing key theoretical foundations:

• Under what circumstances does a designed system, introduc-
ing perturbed inputs via Gaussian noise, outperform a system
processing only the clean signal given mismatched channel
noise estimations?

• How does the system behave when the actual noise e has a
different distribution from e′?

• How can we optimize the value of σ2
t during design to en-

hance resilience against stochastic uncertainties?

3. SQUARED HELLINGER DISTANCE ANALYSIS FOR
NOISE MISMATCHED MODEL

Consider X ′ as the random variable corresponding to the Gaussian
noise corrupted source signal x′ and Y = G(X ′) as the corre-
sponding output signal. Likewise, let X̂ represent the actual noisy
input signal and Ŷ = G(X̂) its output. Based on the data process-
ing inequality [14], we have

DH(PX̂,Ŷ ∥PX′,Y ) = DH(PX̂∥PX′), (3)

DH(PŶ ∥PY ) ≤ DH(PX̂∥PX′), (4)

with equality in (4) if system G is invertible. This implies that
the Hellinger divergence of the altered input data distribution,
DH (PX̂∥PX′), remains consistent in the joint distribution of
shifted input and output data. Besides, DH (PX̂∥PX′) bounds
the f -divergence DH (PŶ ∥PY ) of the marginal target distributions.
Next, we study DH(PX̂∥PX′) to characterize the system’s robust-
ness to noise mismatch for Gaussian signals, as described in the
following theorem:

Theorem 1. Let x denote the clean source signal, e′ the noise used
in training/analysis/design, and e the actual input noise. Assume
that each is modeled as d-dimensional Gaussian vectors with proba-
bility distributions given by x ∼ N (µs,Σs), e′ ∼ N (0, σ2

t Id) and
e ∼ N (0,Σe), respectively. Define the squared Hellinger distance
function F as

F (σ2
t ,Σe) = DH

(
N (µs,Σs + σ2

t Id)∥N (µs,Σs +Σe)
)
.

Then, F (σ2
t ,Σe) possesses the following properties:

1. F (0,Σe) > F (σ2
t ,Σe) whenever Σe >

1
2
σ2
t Id.

2. Regarding the 1D case with fixed σ2
t and σ2

s , as σ2
e varies:

• F (σ2
t , σ

2
e) decreases when σ2

e < σ2
t and increases

when σ2
e > σ2

t .
• The curvature of F (σ2

t , σ
2
e) exhibits strict convexity

within the interval 0 ≤ σ2
e ≤ ϵ and becomes concave

when σ2
e > ϵ, in which ϵ = σ2

t + 2
√
10

5
(σ2

t + σ2
s).

3. For multi-dimensional cases where d > 1 and given that
Σe = σ2

eId, for a fixed σ2
t and as σ2

e changes

• F (σ2
t , σ

2
eId) decreases for σ2

e < σ2
t and increases

when σ2
e > σ2

t .
• The function F (σ2

t , σ
2
eId) is strictly convex in σ2

e if

σ2
L < σ2

e < σ2
t +

√
8

d+ 4
(λd(Σs) + σ2

t ),

in which σ2
L = max(0, σ2

t −
√

8
d+4

(λd(Σs)+σ
2
t ) and

it is strictly concave if σ2
e > σ2

t +
2
√
10

5
(σ2

t +λ1(Σs)),
in which λd(Σs) and λ1(Σs) represent the smallest
and largest eigenvalues of Σs, respectively.

4. For a fixed variance σ2
t and two distinct covariance matrices

Σe1 and Σe2, the following inequality is satisfied if either
Σe1 < Σe2 < σ2

t Id or σ2
t Id < Σe2 < Σe1,

F (σ2
t ,Σe1) > F (σ2

t ,Σe2). (5)

The outline of the proof can be found in the Appendix.
Property 1 indicates that when every eigenvalue of Σe is at least

σ2
t /2, the system’s Hellinger distance is smaller with Gaussian injec-

tion than without it. This suggests the importance of noise injection
in training/design. Properties 2-4 characterize the behaviour of F
as the true noise conditions diverge from the design’s assumptions.
For 1D signals (Property 2), F manifests a clear monotonicity and
undergoes convex/concave shifts depending on the actual noise vari-
ance. In higher-dimensional contexts where the noise is isotropic
(Property 3), F mirrors these patterns. Notably, the identified con-
vexity zone is merely a sufficient condition — the genuine convex re-
gion might extend beyond this. This convex nature reveals that minor
noise alterations in real-world scenarios yield pronounced system
changes within certain noise intensities. Property 4 illustrates that F
diminishes as the actual noise covariance matrix, Σe, edges closer
to the design’s anticipated noise level, σ2

t Id. Collectively, these in-
sights offer a theoretical foundation for comprehending how models
might behave in real-world situations with mismatched noise.

We now explore the optimal choice of σ2
t , to enhance the sys-

tem’s robustness against stochastic uncertainties. Corollary 1 fo-
cuses on the case when e is iid:

Corollary 1. Given an iid input noise e with Σe = σ2
eId and

a bounded variance 0 ≤ σ2
e ≤ M , define σ2

t,o as the optimal
noise level that minimizes the worst-case squared Hellinger distance
F (σ2

t , σ
2
eId):

σ2
t,o = argmin

σ2
t

{
max

0≤σ2
e≤M

F (σ2
t , σ

2
eId)

}
.

For this optimal level, it satisfies F (σ2
t,o,0d) = F (σ2

t,o,MId).
Moreover, when the source x is also iid with Σs = σ2

sId, σ2
t,o

simplifies to:

σ2
t,o = σ2

s

(√
1 +

M

σ2
s

− 1

)
. (6)



(a) σ2
t < σ2

t,o (b) σ2
t = σ2

t,o (c) σ2
t > σ2

t,o

Fig. 2. Geometric visualization of the max-min optimization for
σ2
t under the constraints of actual input iid Gaussian noise variance,

0 ≤ σ2
e ≤ 0.16. a), b), and c) depict the variations of F (σ2

t ,Σe)
with different values of σ2

t .

(a) iid noise (b) Non-uniform independent noise

Fig. 3. Visualization of Squared Hellinger distance for AR(1) source
signal model with Σs(k, l) = σ2

sρ
|k−l| (0 ≤ k, l ≤ d − 1). (a)

ρ = 0.9 and d = 16. e is isotrophic Gaussian noise with variance
σ2
e . (b) ρ = 0.95 and d = 2. e is nonuniform independant Gaussian

noise with covariance matrix Σe = diag(σ2
e,1, σ

2
e,2).

Proof. For brevity, we outline the main steps: Drawing from Prop-
erty 3 in Theorem 1, we deduce that for a fixed σ2

e , the function
F (σ2

t , σ
2
eId) is decreasing when σ2

t < σ2
e and increasing for σ2

t >
σ2
e . Since σ2

t,o satisfies F (σ2
t,o,0d) = F (σ2

t,o,MId), for the range
0 < σ2

t,o < σ2
t , F (σ2

t ,0d) > F (σ2
t,o,0d). Likewise, for σ2

t <
σ2
t,o < M , F (σ2

t ,MId) > F (σ2
t,o,MId). A visual representation

for the above argument is provided in Fig. 2. For iid source, (6) is
derived directly by setting F (σ2

t,o,0d) = F (σ2
t,o,MId).

Corollary 1 introduces a min-max optimization framework for
choosing the designed noise level σ2

t , enhancing resilience to dis-
crepancies between the presumed and actual noise distributions. For
a small M/σ2

s , a first-order Taylor series approximation of (6) sug-
gests σ2

t,o ≈ M/2. This can serve as an initial solution in compu-
tational searches for σ2

t,o in the case of a non-iid Gaussian source.

4. NUMERICAL RESULTS

4.1. Gaussian signal source

To enable readers have a quick check of Theorem 1, two exam-
ples of F (σ2

t ,Σe) are visualized in Figure 3. Here, we consider
an AR(1) signal model with covariance matrix Σs(k, l) = σ2

sρ
|k−l|

(0 ≤ k, l ≤ d− 1). Specifically,
Example 1: Figure 3a depicts a signal of length d = 16 and

ρ = 0.9. We plot F (σ2
t , σ

2
eId) in the range 0 ≤ σ2

e ≤ 0.6 using
σ2
t = 0.04j for 0 ≤ j ≤ 3. Observations from Figure 3a reveal that

(a) Gaussian noise (b) Colored Gaussian noise

Fig. 4. Comparison of FID scores for Horse → Zebra conversion
under a) iid Gaussian noise of variance σ2

e and b) Colored Gaussian
noise, with σ2

e denoting the average noise variance.

the behaviours of F (σ2
t , σ

2
eId) are consistent with the properties in

Theorem 1. Specifically, when σ2
t > 0, F (σ2

t , σ
2
eId) < F (0, σ2

eId)
holds for σ2

e > 0.5σ2
t , aligning with Property 1. Also, F (σ2

t , σ
2
eId)

first decreases and then increases in σ2
e , agreeing with the mono-

tonicity property. Moreover, it exhibits convexity near σ2
t and con-

cavity as σ2
e becomes large, as suggested by Property 3.

Example 2: In the second example, d = 2 and the covariance
matrix is Σe = diag(σ2

e,1, σ
2
e,2), where 0 < σ2

e,i ≤ 0.5 (i = 1, 2).
The injected noise has σ2

t = 0.16. The graphical representation is
shown in Figure 3b. Consistent with Property 4 of Theorem 1, F
decreases as both σ2

e,1 and σ2
e,2 approach 0.16.

4.2. Non-Gaussian signals

While our theory assumes Gaussian sources, our results provide
valuable insights for non-Gaussian signals. To illustrate, we ap-
ply Gaussian noise injection to unpaired image-to-image transla-
tion, specifically the Horse to Zebra dataset with a Cycle-GAN
model [15]. All image pixel values are normalized to [0, 1], and
Gaussian noise, N (0, 0.04Id), is applied to each training image.
The test images are corrupted by both i.i.d. Gaussian and colored
Gaussian noise of different intensities. The colored noise is gen-
erated by applying a 2D Gaussian filter for iid Gaussian noise,
featuring a 0.5 standard deviation and a 7 × 7 window size. The
training follows the original Cycle-GAN setup.

We evaluate translations with the popular FID (Fréchet Inception
Distance) score [16], which assesses the distributional gap between
translated and target images; lower scores indicate superior quality.
Results, alongside baseline counterparts, are in Fig. 4. Fig. 5 shows
pictures of noisy horse-to-zebra translations. Unlike the Squared
Hellinger distance, FID contrasts the mean and variance between
Gaussian feature distributions of real versus generated images. Nev-
ertheless, FID patterns closely resemble Hellinger divergence pre-
dictions. One can see that as noise intensity increases, our Gaus-
sian noise-injected model outperforms the baseline, especially when
σ2
e > σ2

t /2 = 0.02, reinforcing Property 1. Baseline performance
drops substantially as noise intensity becomes higher. In alignment
with Properties 3-4 from Theorem 1, our model’s FID is optimal
when training and test noise variances coincide; but deteriorates with
variance disparities, evident in Gaussian (Fig.4a) and colored Gaus-
sian noise contexts (Fig.4b). Notably, the Gaussian noise-injected
model faces challenges with clean data due to training noise bias, a
trade-off we aim to address in our future work.



Fig. 5. Horse-to-zebra translation with “Baseline” and noise-injected
CycleGAN under colored Gaussian noise.

5. CONCLUSION

This work provides theoretical and empirical insights into design-
ing robust systems under noise mismatch. Our analysis using the
Hellinger distance characterizes the impact of mismatch between
assumed i.i.d. Gaussian noise and actual arbitrary covariance Gaus-
sian noise, guiding the selection of optimal injected noise levels dur-
ing training/design to maximize robustness. Experiments with Cy-
cleGAN for image translation validate the theory, providing useful
guidance even for non-Gaussian settings. Overall, by accounting for
noise uncertainties through proper noise injection and optimization,
this research enables reliable system desgins that can withstand mis-
matches between simplified noise assumptions and reality.

A. PROOF OF THEOREM 1

Proof. Due to lack of space, we present proof details of Properties 1
and 2 and part of Property 3. The rest of the proof will be left in the
journal version.

Property 1: According to Eq. 2, DH(PX′ ,PX̂), and the
squared distence between DH(PX ,PX̂) are given by

F (σ2
t ,Σe) = 1− |Σs + σ2

t Id|
1
4 |Σs +Σe|

1
4∣∣∣Σs +

Σe+σ2
t Id

2

∣∣∣ 12 , (7)

F (0,Σe) = 1− |Σs|
1
4 |Σs +Σe|

1
4∣∣Σs +

Σe
2

∣∣ 12 . (8)

Using Eq. 7 and Eq. 8, the proof is equivalent to showing

|Σs|1/4 |Σs +Σe|1/4∣∣Σs +
Σe
2

∣∣1/2 <

∣∣Σs + σ2
t Id
∣∣1/4 |Σs +Σe|1/4∣∣∣Σs +
Σe+σ2

t Id
2

∣∣∣1/2
⇐⇒

∣∣∣Σs +
Σe+σ2

t Id
2

∣∣∣2∣∣Σs +
Σe
2

∣∣2 <
|Σs + σ2

t Id|
|Σs|

⇐⇒
d∏

i=1

(
1 +

1
2
σ2
t

λi

(
Σs +

Σe
2

))2

<

d∏
i=1

(
1 +

σ2
t

λi (Σs)

)

⇐⇒2

d∑
i=1

ln

(
1 +

1
2
σ2
t

λi

(
Σs +

Σe
2

)) <

d∑
i=1

ln

(
1 +

σ2
t

λi (Σs)

)
.

(9)

As Σe >
1
2
σ2
t Id, it is straightforward that Σs+

Σe
2
> Σs+

1
4
σ2
t Id.

Using Weyl’s inequality [17] for eigenvalues, we know that

λi(Σs +
Σe

2
) > λi(Σs) +

1

4
σ2
t .

Hence, the LHS (Left-Hand Side) of Eq. 9 can be bounded by [18]

2

d∑
i=1

ln

(
1 +

1
2
σ2
t

λi

(
Σs +

Σe
2

)) < 2

d∑
i=1

ln

(
1 +

1
2
σ2
t

λi (Σs) +
1
4
σ2
t

)
.

(10)
As λi(Σs) > 0, it can be easily shown that(

1 +
1
2
σ2
t

λi (Σs) +
1
4
σ2
t

)2

<

(
1 +

σ2
t

λi (Σs)

)
. (11)

By combining (10) and (11), we know that (9) holds and then
Property 1 is proved.

Property 2: For 1d case, one can derive that the first order par-
tial derivative ∂F (σ2

t ,σ
2
e)

∂σ2
e

with respect to σ2
e is

∂F (σ2
t , σ

2
e)

∂σ2
e

=

√
2(σ2

s + σ2
t )

1
4 (σ2

e − σ2
t )

4(σ2
s + σ2

t )
3
4 (σ2

e + 2σ2
s + σ2

t )
3
2

.

This implies that F (σ2
t , σ

2
e) is increasing for σ2

e > σ2
t and decreas-

ing for σ2
e < σ2

t . The second-order partial derivative is

∂F (2)(σ2
t , σ

2
e)

∂(2)σ2
e

=

√
2(σ2

s + σ2
t )

1
4ψ(σ2

t , σ
2
e)

16(σ2
e + σ2

s)
7
4 (σ2

e + 2σ2
s + σ2

t )
5
2

,

in which ψ(σ2
t , σ

2
e) = −5σ4

e + 10σ2
eσ

2
t + 8σ4

s + 16σ2
sσ

2
t + 3σ4

t . It
can be shown ψ(σ2

t , σ
2
e) > 0 when σ2

e < ϵ and negative otherwise,
with ϵ = σ2

t + 2
√
10
5

(σ2
t + σ2

s). This proves the convex/concave
properties of F (σ2

t , σ
2
e).

Property 3: For d > 1 and given Σe = σ2
eId, leveraging the

properties of determinants allows us to express the squared Hellinger
distance as F (σ2

t , σ
2
eId) = 1−

∏d
i=1 ζi(σ

2
s,i, σ

2
t , σ

2
e) in which

ζi(σ
2
s,i, σ

2
t , σ

2
e) =

(σ2
s,i + σ2

t )
1
4 (σ2

s,i + σ2
e)

1
4

(σ2
s,i + 0.5σ2

t + 0.5σ2
e)

1
2

,

and σ2
s,i is the i-th eigenvalue of Σs. From Property 2, it’s evident

that each ζi is increasing when σ2
e < σ2

t and decreasing behaviour
otherwise, which in turn indicates the monotonic nature of F .

To establish the concavity of F , we start by observing from
Property 2 that each function ζi(σ2

s,i, σ
2
t , σ

2
e) is positive and strictly

convex in σ2
e for σ2

e > σ2
t + 2

√
10

5
(σ2

t + σ2
s,1). We then invoke a

mathematical principle: for two positive, strictly convex functions p
and q defined on an interval I, if the derivatives p′ and q′ are both
negative across this interval, then their product, pq, remains convex
on I. This is justified as (pq)′′ = p′′q+2p′q′ + q′′ > 0 under these
conditions. Employing this principle and inductive reasoning, we
can ascertain that the product

∏d
i=1 ζi(σ

2
s,i, σ

2
t , σ

2
e) is strictly con-

vex for σ2
e > σ2

t + 2
√
10
5

(σ2
t + σ2

s,1). Consequently, F (σ2
t , σ

2
eId)

exhibits concavity within this domain. The proof of convexity will
be shown in the journal version.



B. REFERENCES

[1] François Chapeau-Blondeau and David Rousseau, “Noise-
enhanced performance for an optimal bayesian estimator,”
IEEE Transactions on Signal Processing, vol. 52, no. 5, pp.
1327–1334, 2004.

[2] Hao Wu, “LMMSE channel estimation in OFDM systems: A
vector quantization approach,” IEEE Communications Letters,
vol. 25, no. 6, pp. 1994–1998, 2021.

[3] Ryutaro Tanno, Daniel Worrall, Enrico Kaden, Aurobrata
Ghosh, Francesco Grussu, Alberto Bizzi, Stamatios Sotiropou-
los, Antonio Criminisi, and Daniel Alexander, “Uncertainty
modelling in deep learning for safer neuroimage enhancement:
Demonstration in diffusion MRI,” NeuroImage, vol. 225, pp.
117366, 01 2021.

[4] Darwin T Kuan, Alexander A Sawchuk, Timothy C Strand,
and Pierre Chavel, “Adaptive noise smoothing filter for images
with signal-dependent noise,” IEEE transactions on pattern
analysis and machine intelligence, , no. 2, pp. 165–177, 1985.

[5] Dongning Guo, Shlomo Shamai, and Sergio Verdú, “Mu-
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