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Predicting directional future stock price movements is very challenging due to the complex, stochastic,
and evolving nature of the financial markets. Existing literature either neglects other timely and granular
alternative data, such as media text data, or fails to extract and distill predictive multimodal features from
the data. Moreover, the time-varying cross-sectional relations beyond sequential dependencies of stock prices
are informative for forecasting price fluctuations, for which the modelling flexibility, however, is not adequate
in most of the previous studies. In this paper, we propose a novel Multiscale Multimodal Dynamic Graph
Convolution Network (Melody-GCN) to address these issues in stock price prediction. It contains three core
modules: (1) multimodal fusing-diffusing blocks that effectively integrate and align the numerical and textual
features; (2) a multiscale architecture that extracts and refines temporal features via a fine-to-coarse descending
path and a coarse-to-fine ascending path progressively; and (3) dynamic spatio-temporal graph convolutional
layers that learn the complex and evolving stock relations not only in between industries and individual
companies but also across time horizons. Extensive experimental results and trading simulations on two real-
world datasets demonstrate the superior performance of our proposed approach beyond other state-of-the-art
models.

1. Introduction stock prices contain valuable supplementary information for future
price fluctuations, such as the industry linkages that implicitly reflect
supply and demand chains in the entire company network, they are
not explicitly considered in most previous works. On the other hand,

graph convolutional networks (GCN) have been proven to be good at

Predicting directional future stock price movements is one of the key
investment activities of practitioners in the financial industry. It is of
paramount importance for funds’ daily portfolio and risk management.

Comprehensive studies in the applications of machine learning, deep
learning, reinforcement learning, etc., to relevant fields have achieved
promising outcomes and thereby attract growing research interests [1].
However, this task still remains very challenging due to the complex,
stochastic, and evolving nature of the financial markets. Some existing
literature overlooks the importance of readily available alternative
data, such as media text data, which is known to offer timely and
granular predictive information for the task. Others using this type of
data fail to extract and distill rich and useful predictive multimodal
features out of the data for the forecasting exercises. Moreover, even
though the time-varying cross-sectional and sequential relations beyond

processing sparse and non-grid data in various fields. Previous works
based on GCN [2,3] always require expert prior knowledge to calculate
the adjacency graphs in advance and set them fixed during training,
which was inflexible.

In this paper, we propose a Multiscale Multimodal Dynamic Graph
Convolution Network (Melody-GCN) to tackle the aforementioned chal-
lenges in the task of stock price prediction. The pipeline is shown in
Fig. 2. Intuitively speaking, the task aims to learn both local (short-
term) fine-grained features and global (long-term) coarse-grained pat-
terns from the price time series as well as the corresponding media text
data. However, the main issue here is the low signal-to-noise ratio in
both stock price time series and media text data in the information
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Fig. 1. The return ratio of four firms from 2018.08.02 to 2018.08.16. In sub-figure (a), UBS and COF belong to the banking industry. In sub-figure (b), DVN and MRO are oil and
gas production firms. It shows the existence of the cross-sectional and time-evolving “momentum spillover” effects of stock price movements (possibly through the risk-premium

channel), and how the stock prices potentially react to media news.

fusion process, for which we propose two ways to tackle relevant
problems.

The first is to use a multiscale approach to extract local (short-term)
features at the finest scale and gradually downsample and distill the se-
quences along the temporal axis in order to obtain smoother sequences
that carry more information from their neighbourhoods, building up
the descending path. Then they are upsampled and reconstructed back
towards the finer scales, forming the ascending path, so that the hidden
feature representations are adequately refined to produce rich and
accurate feature representations. Furthermore, to fully leverage the
supplementary information in media text data in the multimodal fea-
ture blending process, we develop Multimodal Fusing-Diffusing Blocks
(MMFDB) that produce converged features using a fusing module and
two separate diffusing modules with residual connections for exploiting
complementary features from the mixtures in order to update the orig-
inal numerical and textual features. Unlike the conventional manners
widely used in previous studies that concatenate multimodal features
from two independent streams, our proposed MMFDB repeatedly in-
tegrates and decouples two heterogeneous features until the relevant
features are distilled.

Second, the existence of inter-industry and inter-company ‘“momen-
tum spillovers” effects is economically meaningful, i.e., a firm-specific
shock may be gradually propagated through the supply and demand
chains and company-level networks, and ultimately contaminate the
entire economic system affecting all other industries. The shock trans-
mission gives rise to the observed lead-lag effects. For example, as
shown in Fig. 1, On August 7th, when the positive news of “UBS
maintains buy on COF” in the banking industry was announced, both
stocks rose. On August 15th, after the news of “DVN announces sale of
Delaware Basin Acreage” in the oil and gas industry was announced,
not only the stocks of two companies in the energy industry (oil and
gas), but also the two stocks in the banking industry fell.

Given this evidence, both spatial and temporal dependencies are
crucial for predicting stock prices. Dealing with stock price and me-
dia text data together will inevitably encounter asynchronous and
imbalanced issues between two-panel time series, and the extracted
features may be attributable to future stock price movements in differ-
ent horizons. To handle these problems, we design a set of dynamic
Spatio-Temporal Graph Convolutional Layers (STGCL) to simultane-
ously learn the complex and evolving dynamics of the inter-industry,
inter-company, and inter-day relations. Instead of using the predefined
linkages, our proposed STGCL addresses the learnability and optimality
of parameters via the adjacency matrices during the training process
without resorting to prior expert knowledge.

In summary, our contributions are summarized as follows:

+ We propose a novel Multiscale Multimodal Dynamic Graph Co-
nvolution Network (Melody-GCN) for stock price prediction.
The proposed multiscale framework captures the local fine-grained

and global coarse-grained features, the innovative Multimodal
Fusing-Diffusing Block (MMFDB) further effectively extracts and
aligns rich multimodal feature representations for the task, and
the adaptive Spatio-Temporal Graph Convolution Layer (STGCL)
are powerful in learning complex and evolving dynamics of the
inter-industry, inter-company, and inter-day relations simultane-
ously in a flexible manner.

Extensive empirical experiments on two real-world datasets using

various evaluation metrics justify the superior performance of our
proposed model beyond other methods.

To better interpret our contributions, we highlight them in comparison
with the related SOTA models in the following Related Work section.
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2. Related work

Traditional methods for predicting stock prices focus on time-series
analysis using statistical methods or conventional machine learning
algorithms that fail to account for nonlinearity and interactions among
predictors. Recent years have witnessed the popularity of deep learning
methods that have produced promising outcomes in the applications
to various fields, among which stock price prediction attracts notable
attention. Previous works build various models based on classical net-
works, like RNN [4], CNN [5], Transformer [6], and GCN [3]. In the
following, we will further divide them into individual and correlated
prediction methods and give a more detailed introduction. Our work
falls in the field of correlated prediction, and the contributions of our
proposed model are highlighted in comparison with the related SOTA
models.

2.1. Individual stock price prediction

Individual stock price prediction only uses the historical information
of single stocks, ignoring the correlations across stocks. In other words,
it simply explores sequential dependencies for the forecasting exercises.
Some of the studies focus on the price sequences [7,8], while others
involve other auxiliary information corresponding to stocks [9].

Specifically, among the first kind of methods, Zhang et al. [10]
propose a State Frequency Memory (SFM) Recurrent Network, which
decomposes the hidden state of data into multiple frequency com-
ponents, each component simulating a specific frequency of trading
pattern behind stock price fluctuations. Then, the future stock price
is predicted with a non-linear mapping function that combines these
components using Inverse Fourier Transform (IFT). Modelling multi-
frequency trading patterns can provide more accurate predictions for
various time ranges: short-term forecasts typically depend on high-
frequency trading patterns, while long-term forecasts should focus more
on low-frequency trading patterns. Ding et al. [7] use Transformer as
a basic network to predict the fluctuation of stock prices and make
improvements to the three problems existing in the original transformer
model. Firstly, the ability of the Transformer to perceive local rela-
tionships is enhanced by adding a multiscale Gaussian prior kernel.
Secondly, orthogonal regularization constraints are used to avoid re-
dundancy in the multi-headed self-attention system. At the same time,
a multi-level segmentation of the time series, “minute level - day level
- week level,” is implemented to learn the hierarchical characteristics
of the financial data. Experiments show that the proposed method has
the advantage of mining extremely long-term dependencies from stock
time series. Liu et al. [8] propose a bidirectional multiscale network
that extracts multiscale data representations from data obtained based
on wavelet transform and downsampling operation, respectively, to
improve the accuracy of prediction. Zhang et al. [11] point out that
the current prediction model is trained on a long-term dataset, which
performs best on average but cannot adapt to different markets in
different periods. To solve this problem, they propose a novel online
model optimization algorithm. A lightweight model library is built.
Each lightweight model in the library corresponds to different market
distributions. By designing an appropriate reward function, the algo-
rithm can accurately estimate the profits of each model through inverse
reinforcement learning. Then in real-time trading, the model can be
automatically selected, so that the trading strategy can automatically
adapt to the changes in the trading market.

In addition to the stock price sequence itself, other related infor-
mation, such as media texts, company annual reports, and earnings
calls, may also contain valuable signals for stock forecasting. Therefore,
many efforts have also introduced these data to provide auxiliary
information and strive to make more accurate predictions. Among
these methods, Ding et al. [12] propose an event-driven approach for
stock market forecasting. First, events are extracted from news text
and represented as dense vectors using a new neural tensor network.

Secondly, a deep convolutional neural network is used to simulate
the short-term and long-term effects of events on stock price fluc-
tuations. The experimental results show that compared to the most
advanced baseline methods, the model can achieve nearly 6% im-
provement in real-world datasets. Besides, trading simulation results
show that the system is more profitable than previous methods. To
address this challenge, the work mimics the learning process of humans
facing chaotic online news. Specifically, the work designs a hybrid
attention network with a self-paced learning mechanism to predict
stock trends based on sequences of recent relevant news. The stock
prediction and investment simulation experiments using this model on
real-world stock datasets have achieved good results. Liu et al. [9]
propose a hierarchical complementary attention network to capture
valuable complementary information from the news content in addition
to using the news title. This model uses a two-level attention mech-
anism to quantify the importance of words and sentences in a given
news item. In addition, a new measurement method was designed to
calculate attention weight to avoid capturing redundant information in
news headlines and content. Li et al. [13] point out that there are two
challenges in processing the multimodal stock and related media text
data, i.e., how to model the interactions between two modalities and
how to align the two heterogeneous modalities. They propose a tensor-
based event-driven LSTM approach to address this issue. Unlike them,
we design a sophisticated and efficient Multimodal Fusing-Diffusing
Block (MMFDB). First, these two heterogeneous data are aligned using a
fusion module, and then two independent diffusing modules are used to
explore their interactions and supplement each other with cross-modal
information.

2.2. Correlated stock price prediction

Correlated stock price prediction involves not only temporal depen-
dencies but also cross-sectional or spatial correlations. Related works
are mainly based on various variants of graph convolution networks
(GCN). Cao et al. [14] propose an end-to-end Spectral Temporary Graph
Neural Network, StemGNN, which processes data characteristics in the
spectral domain to predict stock price fluctuations. In StemGNN, Graph
Fourier Transform is used to model spatial dependencies between
stocks, while Discrete Fourier Transform is used to model temporal
correlations. Combining the features learned by these two modules, a
more discriminative data pattern can be obtained, allowing for effective
prediction through subsequent convolutional and learning modules. In
addition, StemGNN can automatically learn cross-sequence correlations
from data without using predefined prior knowledge.

Li et al. [15] propose an LSTM-based graph convolutional network
that uses correlation matrices between data to simulate the interactions
between stocks. Zhao et al. [3] propose a graph-based approach that
combines information from multiple perspectives, such as long-term
trends, short-term shocks, and unexpected events, into a heterogeneous
graph to learn the relationship between multiple stocks. Wang et al. [2]
propose a new hierarchical adaptive time relational network to char-
acterize and predict the movement of stock trends. On the one hand,
short-term and long-term data characteristics are gradually grasped
from stock trading sequences through a multiscale structure with stack
dilated causal convolution and gated paths. On the other hand, a
dual attention mechanism is proposed, which combines the Hawkes
process and specific target queries to detect important time points
based on individual stock characteristics. In addition, a multi-graphical
interaction module has been designed, integrating prior knowledge and
data-driven adaptive learning methods to capture inter-dependencies
between stocks.

Ye et al. [16] propose Multi-GCGRU, which combines a graph
convolution network and a gated recurrent unit to predict stock move-
ments. Specifically, they built a fixed graph based on financial domain
knowledge, corresponding with a dynamic graph with learnable param-
eters, to learn the cross-sectional spatial correlations. At each time step,
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Fig. 2. Pipeline of our proposed Multiscale Multimodal Dynamic Graph Convolution Network (Melody-GCN), that principally consists of a descending path and a symmetrical
reusing and an ascending path to extract and further refine the local (short-term) features and the global (long-term) features along the temporal axis for producing rich and
accurate feature representations. The stock price data and the media text data are preprocessed using technical analysis and pre-trained BERT before further fed into the Embedding
Spatio-Temporal Graph Convolution Block (STGCB), and the multimodal numerical and textual features are merged using the Multimodal Fusing-Diffusing Blocks (MMFDB).

the joint multi-graph convolution is used to extract spatial features,
and then the relationship between time frames is extracted using GRU.
Their model architecture is relatively simple in comparison to our
proposed model in the sense that (i) we design a dedicated mechanism
for deep mining of multi-granularity information, and (ii) we utilize
auxiliary information from the relevant media-text multimodality.

Yin et al. [17] propose a Graph Attention Long Short-Term Memory
(GALSTM) for learning the correlations between stocks and automat-
ically predicting their future prices. First, a multi-Hawkes process is
used to initialize the correlation graph between stocks. This process
provides a good training starting point. Then, an attention-based LSTM
is built to learn the weighting matrix of the graph for extracting rela-
tionships between time frames and making frame-to-frame forecasts. To
avoid (i) the potential accumulated errors of the LSTM-based methods
and (ii) the instability and gradient descent issues of frame-to-frame
forecasting in capturing long-term feature dependencies, we propose
the use of the multi-layer fully dynamic graph convolution for learning
the cross-sectional relations in our Melody-GCN, where the layers are
sequentially stacked and each layer of graph convolution learns an
adjacency matrix adaptively and distinctively from each other across
layers. Therefore, overall, more accurate discriminative features can
be extracted. Furthermore, our model utilizes STGCL to extract both
temporal and spatial features simultaneously, which is computationally
simpler and more efficient.

Cheng et al. [18] propose a multimodal graph neural network
that uses stock prices and media news to predict financial time se-
ries. This method introduces a two-stage attention mechanism, which
makes the model interpretable. Users can analyse the importance of
inner-modality and inter-modality data. Different from their work, we
build a fully dynamic and adaptive graph convolution network in a
multiscale architecture, enabling it to better extract multimodal data
characteristics.

3. Methodology

We consider the stock price prediction task with C corporations.
Each corporation has two kinds of input data, ie., the stock price
correlated numerical data § = {s‘l',s;,,_”s;,}izl e RD»*CXT 3nd the
media text data 7 € RP>C*7, Here s¢ € R indicates each company
contains D, kinds of numerical data every day, including open price,

high price, low price, close price, and other indicators, and T represents
the length of the look-back window. We define the label as the future
directional movements of the close prige at the T + £ day by the
indicator function y = { I (p"’ > pj) }L__I € RC. Given § and T as
input, we can construct a deep neural network 7 with parameters 6 :
y = T (S.7) to predict the movement. In the following subsections,
we will first introduce the overall architecture of our proposed Melody-
GCN, then we will show the details of the dynamic STGCB, and the
MMFDB.

3.1. The architecture of the Melody-GCN

Instinctively, not only stock time series but also media text se-
quences possess the properties of short-term local fluctuations and long-
term global trends. This motivates us to propose the UNet-like multi-
scale architecture, ie., Melody-GCN that extracts both features along
the temporal axis through bi-directional fine-to-coarse (descending)
and coarse-to-fine (ascending) paths. In particular, in the latter path,
the mixed and refined hidden features are upsampled progressively via
the accompanying ascending and reusing path. This procedure enriches
the feature representations for the classification head.

Descending Path. As shown in Fig. 2, the original price and text
data are first fed into the technical analysis and pre-trained BERT
modules respectively to acquire the preliminary features § and 7.
Then two corresponding STGCB embed them into hidden spaces. The
fine-to-coarse descending path with MMFDB and descending STGCB
perform feature extraction and abstraction from local to global levels
with emphases on the short-term fluctuations and long-term trends
respectively. Specifically, the descending blocks reduce the feature
maps along the temporal axis with the STGCB (as shown in Fig. 4) but
without residual connections, as the feature sizes of the outputs are not
identical to those of the corresponding inputs, and the MMFDB aligns
and integrates multimodal numerical and textual features.”

2 In the U-Net framework, the descending path aims to perform feature
extraction and abstraction from local to global levels. In this way, the temporal
feature information is extracted and merged based on the compressed intervals
of time in the downsampling so that, in each time step, these features represent
global-level information of the time span.
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Fig. 3. Ilustration of the dynamic STGCL. To aggregate and update the hidden features, the STGCL first project inputs into a high-dimensional space using a channel-wise affine
transformation, followed by three sequential graph convolution layers with learnable and dynamic adjacency matrices that adaptively learn the spatio-temporal corrections across

different industries, companies, and temporal points.

Reusing and Ascending Path. To bridge interactions among fea-
tures at different levels and better integrate them with each other,
features in the coarse-to-fine ascending path are first upsampled by
the ascending STGCB. Meanwhile, the hidden features encoded by the
descending blocks at the same scale levels are passed to the ascending
blocks via the reusing path. Finally, the enriched and refined features
are concatenated by the MMFDB.?

Classification Head. The finest features at the first scale output in
the reusing and ascending path are denoted by H, € RU*MxKxT and
H, € RP*M*KXT " tq which the channel-wise concatenation is applied.
Next, the STGCL projects the combined features into the up-or-down
bi-directional probabilities of stock price movements in the future day
y € R>*M*K that can be written as:

¥ = o (STGCL(H,©H,)) , @

where o(-) means the Sigmoid activation function.
Finally, the parameters are optimized by minimizing the cross-
entropy loss throughout N training samples as follows:

N M K

£= _% 2 2 E [ m i 108 Frym g+ @

n=1 m=1 k=1

(I - yn,m,k} k)g (I - j’nm.k) ]
3.2. Dynamic Spatio-Temporal Graph Convolution Block

To learn the inter-industry, inter-company, and inter-day stock cor-
relations simultaneously, we design the STGCB, which consists of two
dynamic STGCL. In particular, we divide C stocks into different clusters
according to the industry categories, resulting M industries and K com-
panies (K = C/M). Therefore, the sizes of numerical and textual data
become § € RPMXKXT and T g RPXMXKXT respectively. As shown in
Fig. 3, the STGCL first feeds the input data into a hidden space with the
channel-wise affine transformation, and then three graph convolution
layers in turn, which aggregate and update the inter-industry, inter-
company, and inter-day features respectively. Take the inter-industry
graph convolution process as an example, it builds the graph ¢ = (V. £)
by formulating the features of each industry as a vertex in V and the

3 The upsampled features in the ascending path along the temporal di-
mension correspond to the downsampled features in the descending path via
the reusing path. The reliance on the reusing path determines the order of
the descending and ascending paths. So, these paths are not designed to be
swapped.

correlations between each other as an edge in €. Consequently, the
learning of the relationships among industries is tied to a learnable
dynamic adjacency matrix A;4. Finally, let H™! € RPnXMxKxTin pe
the input features for the current STGCL, the outputs can be computed
as:

H' = STGCL(H'™)

- (3
=r (WTH: lAindAcomAday + h)

where W € RPn*Pout and b € [RPsw represent the parameters of
the affine transformation shared by all M.K, and T,. WT is the
transpose of W. The“A”s are adaptive adjacency matrices containing
inter-industry features denoted by ‘ind’, inter-company features de-
noted by ‘com’, and inter-day features denoted by ‘day’ with the sizes of
MxM, KxK, and T;,; XT,,;, respectively. p(-) is the optional operations,
including the batch normalization, the Tanh activation function, and
the dropout.

Moreover, to extract the hidden features more effectively and ag-
gressively, we sequentially stack two STGCL together and employ
residual connections across the modules if the sizes of inputs and
outputs are identical, which forms the STGCB, as shown in Fig. 4.*
Hence the STGCB could be calculated as

H' = STGCB(H' ") = STGCL, (STGCL, (H'"')) + AH""! @

where 4 is a binary scalar with the value of 0 or 1.
3.3. Multimodal fusing-diffusing block

A common strategy in most of the existing literature is to concate-
nate multimodal data without considering their interactions, which are,
however, highly important to promote the effectiveness of the features
learning in respect modes. To account for the multimodal interactions
and alignments, we design novel Multimodal Fusing-Diffusing Blocks
(MMFDB) as shown in Fig. 5. MMFDB first concatenate the price
features H"! and text features H!™!, and feed them into a fusing module
Ty made up of the STGCB to obtain converged multimodal features

# We address the over-smoothing problem in two ways: (1) We limit the
number of graph convolutions for each type of relation graph, i.e. industry,
company, and day. In our model, there are six layers of STGCB in total. (2) The
reusing path method can alleviate the over-smoothing problem by integrating
the features in the ascending and descending paths. Moreover, the features in
the descending path are only processed by a few graph convolution layers and
do not suffer from over-smoothing.
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one to augment their original single-modal features.

Hg,;. Then two diffusing modules 7y, and Tgie consist of the STGCB
extract supplementary features from the mixtures to update the original
single-modal data with residual connections. Finally, MMFDB output
the enriched and refined price features HL and text features H! as
follows:

Hy, = T (BT ORI,
H) = Ty (Hy) + H (5)
H = Tyiey (Hey) + Hy

where ©denotes the channel-wise concatenation, and the sizes of H; -1
H{™!, Hgy, H), and Hj are all DX M x K xT.

4. Experiment

To evaluate the performance of our proposed Melody-GCN, we con-
duct extensive experiments on two real-world datasets of multimodal
data, including a dataset we collected US40, and a commonly used
dataset ACL18 [19]. Both contain stock prices and media texts. In
the following subsections, we will briefly introduce the experiment
setup, followed by discussions on the experimental results and ablation
studies. Due to the page limit, more details could be found in the
supplementary material.

4.1. Experimental setup

Datasets. As shown in Table 1, the US40 dataset consists of price
sequences of 40 stocks across four industries (10 stocks for each in-
dustry) with a sample period from 2010.05.01 to 2020.04.30 (2518

trading days in total). The corresponding media texts were collected
from the headlines of daily news (34102 feeds in total). We use 30 days
of historical data to forecast the next day’s stock price movements. The
commonly used dataset ACL18 [19] has a much shorter sample period
than our collected one, but is larger in the number of cross-section
and media text feeds. It contains only 504 trading days in time series,
ranging from 2014.01.01 to 2015.12.31. As a result, the authors use
only 4 days of historical data to formulate the forecasts of the next day’s
stock price movements, and we follow this setup. 70 stocks across seven
industries (again, 10 stocks for each industry) are used for the task® To
construct a balanced panel, we drop stocks with less than 504 days
of data and industries with less than 10 stocks. The selection criterion
is the daily trading volumes, which are indicative of tradability and
execution liquidity. The media texts were collected from the tweets,
amounting to 87045 feeds.

Pre-processing Procedures. There are four prices for each trading
day in both datasets, i.e., open, high, low, and close prices. We convert
the non-stationary prices into stationary returns for modelling, and also
construct technical indicators out of the close prices as the price feature
inputs, i.e., Moving Average (MA), Standard Deviation (STD), Lower
Band (LB), Upper Band (UB), EMA (Exponential Moving Average),
Moving Average Convergence Divergence (MACD), and Short-Term
Reversal (STR), the calculation details are demonstrated in Table 2. On

5 The original dataset comprises 88 stocks across nine industries. The
industry-based clusters are one-to-one mappings between stocks and industry
categories. This is based on the de facto synergy effect concentrating in the
stocks within the same industry that the interconnected stocks exhibit stronger
co-movements inner-industry than inter-industry (chain effect).
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Table 1
Descriptive statistics of the US40 and the ACL18 datasets.
Datasel Us40 ACL18
Country U.s. u.s.
Trading Days 2518 504
From 2010.05.01 2014.01.01
To 2020.04.30 2015.12.31
Train 2010.05.01-2018.04.30 2014.01.01-2015.07.31
Validate 2018.05.01-2019.04.30 2015.08.01-2015.09.30
Test 2019.05.01-2020.04.30 2015.10.01-2015.12.31
Industries (K) 4 7
Companies (M) 40 70
Texls 34102 87045
Formation Days (T) 30 4

Table 2
Feature calculations of technical analysis, where w denotes
the window size, and p, indicates the close price of day .

Fealure Calculation

MA(w), TP

STD(w), Vs T (o~ MAG),)?
LB(w), MA(w), — STD(w)?

UB(w), MA(w), + STD(w)?

EMA(w), = p+ S EMAw),,
MACD, EMA(12), — EMA(26),

STR, In(p, —p,_;)

the other hand, for media text data, we first collect a large number
of raw financial news headlines, filter punctuation marks, and unim-
portant function words, and then filter out relevant news based on the
keywords in the stock name dictionary. Next, news headline sentences
are fed into the pre-trained BERT model, and the hidden features of the
last layer are used as the encoding of news. After that, relevant news
features are sorted according to the corresponding stocks and trading
days. If there is no corresponding news for a certain industry, company,
or trading day, we pad the sequence with zero. Finally, we get the
preliminary textual inputs 7 with a size of D, x M x K xT.

Metrics & Baselines. We employ five key performance metrics
for classification tasks, i.e., Accuracy, Precision, Recall, F1-score, and
Matthews Correlation Coefficient (MCC). In Particular, MCC is calcu-
lated as MCC = ———1PxXIN PPN . It indicates the correlation

VTPFP)(TP+FN)(TNAFP) TN+FN)

between the output classification and the ground truth categories, rang-
ing from —1 to 1. In other words, the better the samples are classified,
the closer the MCC is to 1, and vice versa, and if it returns 0, the model
is no better than randomly guessing. We compare our proposed model
with four categories of methods: (1) Random Guessing, i.e., guess ran-
domly according to the statistical frequencies of the ground truth label
in the training set. (2) Conventional machine learning methods (ML),
including SVM, Gaussian Naive Bayes (Gaussian NB), Random Forest,
and Ababoost. (3) Deep learning-based models with only price data
(i.e., Single-Modal, SM), including LSTM [20], EIIE [5], MGCGRU [16],
GAT [21], RAT [6] and FactorVae [22]. (4) Deep learning-based mod-
els with multimodal data (MM), including EDLSTM [13], SARL [23],
and DeepTrader [24]. Since our experiments differ from those of the
original publications, to run a fair horse race, we modify their published
codes for this task with identical setups.

Implementation Details. When training our Melody-GCN on the
US40 dataset, we apply a scale level of 3 to it with the hidden feature
dimension D of {64, 96, 128}, and the temporal length of {30, 15,
5} from the finest level to the coarsest level, respectively. While on
the ACL18 dataset, the scale level is set as 2, D are {96, 128}, and
temporal length are {4, 2}. Besides, the dimension of the initial price
data feature D, and textual data feature D, are 11 and 768, the dropout
rate is 0.1, and the mini-batch size is 16. We train our method on an
Nvidia GeForce RTX 3080 GPU for 500 epochs, using Adam optimizer

with a learning rate of le — 4. The results are averaged over five runs
of random seeds for all deep learning-based models.

4.2. Baseline comparisons

Classification Results.

Table 3 and Fig. 6 show performance comparisons among all com-
peting methods. Our model generates superior or competitive results
across all evaluation metrics on the two datasets.

As the random guessing ignores the semantic information of data,
the percentages of the corresponding TN, FP, FN, and, TP in the
confusion matrix are expected to be close to one quarter, and its MCC is
approximately 0, as shown in Fig. 7. The performance of the traditional
machine learning methods is no better than random guessing. By con-
trast, the deep learning-based methods significantly outperform “RG”
and “ML” models, even a simple LSTM outperforms the best of them by
a large margin. When multimodal data are leveraged, a similar model
could obtain performance gains. For example, the ACC of EDLSTM gets
an increase of 5.99% on the US40 dataset and 0.90% on the ACL18
dataset, compared with LSTM. As for GCN-based models, DeepTrader
also yields much better results than MGCGRU, due to its complex and
subtle model design. Meanwhile, our proposed approach gives the best
prediction on both datasets in terms of ACC, and other comprehensive
metrics, including F1-score and MCC.

In addition, we also conducted an in-depth analysis of the reasons
why the other two evaluation metrics, Precision and Recall on the
ACL18 dataset of Melody-GCN and the Recall on the US40 dataset
did not achieve the best. First of all, in terms of the Recall, Melody-
GCN was exceeded by EDLSTM and MGCGRU in the US40 dataset and
ACL18 dataset, respectively. The reason is that they both tend to judge
uncertain samples that are difficult to classify as positive, which leads
to a higher FP rate and a lower FN rate, as shown in Fig. 7, which
ultimately leads to the fact that although their Recall exceeds Melody-
GCN, their Precision is far lower than the latter. In the same way, on the
ACL18 dataset, DeepTrader tends to judge uncertain samples that are
difficult to classify as negative, which results in a lower FP rate and a
higher FN rate, as shown in Fig. 7(b). Therefore, although its Precision
exceeds MM-GCN, its Recall lags by a large margin. The above analysis
shows that there is a conflicting relationship between Precision and
Recall to a certain extent, and improving Precision is likely to be at the
cost of reducing Recall. From this perspective, the truly comprehensive
metrics that can more comprehensively represent the performance of
the model are the other three ones, and the Melody-GCN we proposed
achieves the best in other metrics, further confirming its effectiveness
and superiority.

Trading Simulation. To study the profitability of four deep-learn-
ing-based multimodal methods, we conduct the “only long” trading
strategy day by day (i.e., buy those which are predicted to have the
top-k largest rising probability with equal weights then sell them on the
next day). We evaluate the performance using Annualized Return (AR),
Annualized Volatility (AV), Sharp Ratio (SR), Maximum Drawdown
(MDD), and Calmar Ratio (CR), please refer to the supplementary mate-
rial for calculation details. Table 4 shows that our model produces the
best SR, MDD, and CR. Even though our model does not obtain the best
AR, AR should be evaluated against VR, i.e., the risk-adjusted return SR.
It is clear that although our model is not a multi-tasking design with
multiple risk objectives, it still offers the best comprehensive portfolio
choice, which, to some extent, alleviates the safety (risk) concerns. For
more aspects related to the model safety (risk), please see the section
of Limitation and Future Work.

In-depth Analysis of Model Performance: The above comparative
results validate the advantages of the proposed method from an exper-
imental perspective. In order to further explore what potential features
the model has learned, especially whether the dynamic STGCL can
effectively capture inter-industry, inter-company, and inter-day feature
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Table 3

Comparisons ol average scores with baselines on two datasets. All of the baselines except “Random Guessing” can be divided into three categories, that “ML” means machine
learning, while “SM™ and “MM" stands for the single-modal and multimodal respectively. Note that “1” means the larger the better, the best results are highlighted in bold. The
number after + represents the variance of the five runs result, showing the robustness of the model.

Us40 ACL1S
ACC 1 Precision 1 Recall 1 F1 1 MCC t ACC 1 Precision 1 Recall 1 F1 1 MCC t
Random Guessing 0.5057 0.5109 0.5191 0.5150 0.0111 0.5130 0.5045 0.5296 0.5153 0.0249
5VM 0.5089 0.5095 0.7642 0.6114 0.0143 0.5045 0.4917 0.5774 0.5190 0.0003
ML Gaussian NB 0.5011 0.5048 0.6844 0.5810 0.0019 0.5147 0.5018 0.5917 0.5330 0.0251
Random Forest 0.45901 0.4958 0.5158 0.5056 0.0203 0.5119 0.5027 0.5335 0.5134 0.0271
Adaboost 0.5031 0.5069 0.6267 0.5604 0.0036 0.5109 0.5028 0.5500 0.5207 0.0217
LST™M 0.7423 040 0.7400 015 0.7598 00149 0.7485, 0062 0.4846, 0114 0.7088 017y 0.7245 5150 0.6619,00145 0.6865, 00141 0.4214, 5 000
- FactorVae 0.7635,05, 07843, 07531000 07684, 0.5274,00  0.7203 00, 0.6928 100 0.7453 4000 0718l 0.8426,,,,
ElE 0.7735, 0012 0.7511 144 0.8421 410 0.7907 ,0.50m 0.5544 157 0.7185 17 0.7524 g 0.6486 4,15 0.6905, 05 0.4430,5124
MGCGRU 0.7905, 4 14 0.7810, 450 08191 gy 07975400 05831, 07150, 0.6726, 4004 07726, 0719100, 04370,
GAT 0.7963,, 150, 07771045 08162000 07962000 05936,  0.7207,,0. 07359, 07112, 07233,  0.4595,,.
RAT 0.8023, 0.7 HLIZHG A4S 0.8054, 0545 0.6059,.014 0.7311 s 0.7619 54 0.6795 4,206 0.7183, 0012 0.4656 5106
EDLSTM 0.7868,0, ) 0.7083 g 0.9833 4 0.8234, 4.5 0.6229, 5104 0.7152 0.7303 103 0.6681 4157 0.6978, 0575 04311 15
vy SARL 0.7968,000, 07422 400 0916300 082010, 06101, 07233, 0.7206 75 0.715 s 071820, 04464,
DeepTrader 0.8395,,,,,, 08377 400 0.8465, s 08421000, 06791,  0.7416,,, 0.8001,,0,,  0.6332,500 070690  0.4920,4,.,
Melody-GCN (ours)  0.8661 440 0.8644, 4, 0.8768,,0.0202 0.8692 047 0.7334, 0008 0.7585, 40045 0.7605 404 0.7435 00208 075190014 0.5169,50
1
0.9
0.8 |
0.7 |
0.6
0.5
0.4
0.3 ]
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0.1
o - -
ACC Precision Recall F1 MCC
0.1
W RG mSVM W Naive Bayes Random Forest ® Adaboost
W LSTM W FactorVae m EIE m MGCGRU W GAT
u RAT W EDLSTM ™ SARL " DeepTrader Melody-GCN (ours)
Fig. 6. The column chart of all results on the US40 dataseL
Table 4

The profitability results under the “only long” strategy (buy stocks with the top-k largest rising probability each day and sell them on the next day. The k is set 4 on the US40

dataset while 7 on the other, both 1/10 of the total stock number).

US40 ACL18

AR (%) 1 AV (%) | SR 1 MDD | CR 1 AR (%) t AV (%) | SR T MDD | CR 1
LSTM 0.9153 11.6056 0.0789 0.7671 1.3155 1.8408 6.9014 0.2667 0.1899 5.3628
FactorVae 5.4376 13.6374 0.4735 0.5132 2.0545 4.7475 7.5143 0.6348 0.1638 6.3948
EIIE 6.0097 12.4112 0.4842 0.4412 2.4027 4.6345 7.6713 0.6041 0.1407 7.4367
MGCGRU 8.0036 15.6229 0.5123 0.3042 3.5504 7.8315 9.1410 0.8567 0.0741 14.5521
GAT 12.7645 17.5422 0.7324 0.0982 11.4831 B8.7462 8.7691 0.9913 0.0824 13.1973
RAT 14.3637 19.3249 0.7433 0.0931 12.2839 9.1367 8.8407 1.0335 0.0736 14.8283
EDLSTM 12.4073 20.5435 0.6040 0.1001 11.2295 8.9632 8.9088 1.0061 0.0724 15.0501
SARL 14.4431 20.4063 0.7078 0.0884 12.9460 9.3338 9.6657 0.9656 0.1011 10.8144
DeepTrader 15.1839 19.5199 0.7779 0.0974 11.8258 9.8628 8.9040 1.1077 0.0856 12.8344
Melody-GCN (ours) 14.5136 10.7399 1.3513 0.0825 13.8804 9.0388 6.8851 1.3128 0.0716 15.2288

dependencies, here we visualize the learned adjacency matrices A;q,
Aom, and Ay, of the STGCL at the end of the Melody-GCN.
Robustness Checks. We train and test our proposed model together
with other baselines five times in the experiment. The results are
averaged over five runs of random seeds for all deep learning-based
models. One way to examine model robustness is to check the variance
of the results in different runs. In Table 3, the number after + represents
the variance of the results from five runs, indicating the robustness of

our proposed model. As we can see, compared with other models, the
variance of the performance metrics of our model is about the same
as other deep learning-based models. Specifically, for our model, the
variances of all metrics divided by their means have an average of
2.79% across two datasets. This is evident that the performance of our
model does not fluctuate significantly and exhibits notable robustness.
Another way to ensure model robustness is to test whether or not the
model survives changing or even unprecedented market conditions. As
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Fig. 7. The mosaic diagram of the classification results (in percentage) on the two datasets. Note that “RG™ means “Random Guessing”, and “GT" denotes Ground Truth.
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Fig. 8. The accumulated returns (scaled to the same risk level in terms of volatility) of all models during the S&P500 Index crash and wobbling periods in the test data.
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Table 5
The comparison of SR, MDD, and CR across all models during the S&P500 crash and wobbling periods in test data.
Us40 ACL18
SR 1 MDD | CR 1 SR 1 MDD | CR 1
LSTM 0.0738 0.7569 0.0076 0.5961 0.2319 0.1340
FactorVae 0.3905 0.6239 0.0588 0.5075 0.2828 0.0877
EIIE 0.8772 0.2453 1.1603 1.0268 0.0673 1.2626
MGCGRU 1.0655 0.0797 5.4729 1.36988 0.0056 35.2795
GAT 1.0873 0.0686 6.7674 1.3798 0.0062 30.9140
RAT 0.9158 0.1525 2.3597 1.3784 0.0053 42.6603
EDLSTM 1.1670 0.1281 5.0212 1.3714 0.0047 47.319
SARL 1.1781 0.1152 5.8195 1.3708 0.0050 39.7484
DeepTrader 1.1893 0.1271 5.4776 1.3808 0.0044 46.5825
Melody-GCN (ours) 1.1931 0.0968 7.1859 1.3816 0.0039 60.2015
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Fig. 9. Heatmap of the learned adjacency matrix {rom the STGCL at the end of the Melody-GCN. Sub-figure (a) shows the spatial corrections learned by the inter-industry and

inter-company graph convolution layers, and Sub-figure (b) and (¢) represent temporal dependencies learned by inter-day graph convolution layers.

both datasets used in this paper belong to the U.S. market, the market
portfolio S&P500 Index is an ideal indicator of the market state widely
used as a benchmark. For the US40 dataset, S&P500 suffered a huge loss
from 2020,/02/20 in the test data, and for the ACL18 dataset, S&P500
started to wobble from 2015/11/03 in the test data. These types of
market behaviour are often regarded as the dramatic switches of market
states. In particular, the market crash due to the outbreak of COVID-19
was an extreme event with huge impacts on the global economic and
financial system that is unseen to the models given the training data.
Thus, it is worth examining our model performance against the baseline
models and S&P500 Index during these periods. As shown in Fig. 8, our
model achieves better performance in terms of accumulated portfolio
returns (scaled to the same risk level in terms of volatility) in both crash
and wobbling periods of the S&P 500 Index. Moreover, we conduct a
performance comparison on multiple risk metrics, i.e., SR, MDD, and
CR, during both crash and wobbling periods in Table 5. Our model still
achieves the best performance in terms of two risk-adjusted metrics,
i.e., SR and CR, across two datasets. Although it does not achieve the
best outcome in terms of MDD in the US40 sample, the MDD should
be compared against the annualized return (AR), i.e., the CR metric,
which means that the MDD is best covered by the AR generated by our
model compared to all baselines. For more aspects related to the model
robustness, please see the section of Limitation and Future Work.

The leftmost sub-figure (a) of Fig. 9 represents the spatial depen-
dencies learned by the classifier at the end of Melody-GCN. Note that
the US40 dataset has 4 industries, each containing 10 companies. That
is to say, the inter-industry and inter-company spatial correlations cor-
respond to two matrices with a size of 4 x 4 and 10 x 10, respectively,
and we integrate the two into a unified 40 x 40 matrix. It can be
seen that the 10 companies in the banking industry are more affected
by their own industry, clothing industry, and oil and gas industry,
while the impact of the medical industry is less. At the same time, the
clothing industry is more affected by the medical industry, while the oil
and gas industry is the least affected by the medical industry. It turns
out that the inter-industry graph convolution and inter-company graph
convolution within the classifier of Melody-GCN have indeed learned
spatial semantic information. The middle sub-figure (b) represents the
temporal correlations learned by the inter-day graph convolution in the
classifier. Since the predictor maps the hidden features of the past 30
days to the fluctuation probability of the next 1 day, the size of the
matrix is 30 x 1. It can be seen that the features at different time
points in the historical sequence have different degrees of impact on
future price movement forecasts. In addition, in order to further explore
the interaction between all time points of the observed sequence, we
show the adjacency matrix accumulated from the previous inter-day
graph convolution next to the classifier. As shown in the far right sub-
figure (c), it can be seen that the model could assign different attention
weights to different time points.

4.3. Ablation study

To validate the design components of our proposed approach, we
conduct several ablation studies and give an in-depth analysis of five
critical elements as follows. The results in Table 6 and Fig. 10 are
obtained by training 200 epochs on the ACL18 dataset.

Number of Scales. We conduct experiments with one, two, three,
and four temporal scale levels, denoted as “L1”, “L2", “L3", and “L4”
respectively. It shows the increase of the scale level brings about better
performance to some degree, but when the scale levels increase to four,
the ACC drops back, due to the excessive redundancy of parameters.

Modal Setting. We make stock movement predictions from only
media text, only historical stock prices, and combined data of both
modalities. It shows the “Text” variant results in the worst results,
due to the sparsity of the media texts (according to Section 4.1,
34102/2518/4/10 = 0.3 which means each company has only one
related text in every three days on average). By contrast, the “Stock™
setting causes a drop of only 0.025 in ACC, which means the textual
data play an essential but less important role than the numerical price
data.

Fusing Manner. By simply concatenating the media text and the
price data together, and putting them holistically into the network
(“Concat™), the ACC sharply decreases compared with fusing them
through the specially designed MMFDB. Because the dense numerical
price data and the sparse media texts are entirely heterogeneous, an
ordinary model without any particular pre-processing module cannot
capture the crucial and enhanced complementary features from the
mixed ones.

Residual Connection. We discard all internal residual connections
(“w/o Res”) and find the ACC decreases than the default setting (“w/
Res™). It demonstrates that residual connections are of great importance
to re-extract the complementary features and make learning more
accessible.

Basic Operator. To validate the usefulness of our inter-industry,
inter-company, and inter-day STGCL, we replace it with the depth-wise
separable 2D convolution layer for spatial features accompanied with a
linear layer for temporal features, denoted as “SepConv”, and control
the number of parameters within a similar scale, so as to ensure a fair
comparison.

Table 6 shows that its ACC drops to 0.7938, even worse than that
of the single-modal “Stock” in the second group, which shows the
effectiveness of our STGCL.

In summary, all components of our Melody-GCN contribute to the
overall superior results, and the multimodal setting and the MMFDB
module play the most crucial roles compared with other elements.
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Table 6

Results from the five groups of ablation studies on the US40 dataset. Note that “=" indicates the default choices.

T d

@ Number of scale level @Modal setting ®Fusing connection ®Basic operator

L1 L2 L3* L4 Text Stock Both* Concat MMFDBE* w/0 Res w/ Res* SepConv STGCB*
ACC 1 0.7559 0.7769 0.8339 0.7256 0.5337 0.8089 0.8339 0.5377 0.8339 0.7506 0.8339 0.7938 0.8339
Precision 1 0.7676 0.7724 0.8336 0.7308 0.5441 0.8123 0.8336 0.5412 0.8336 0.7523 0.8336 0.7557 0.8336
Recall 1 0.7437 0.7977 0.8432 0.7375 0.4746 0.8107 0.8432 0.5616 0.8432 0.7567 0.8432 0.8749 0.8432
F11t 0.7537 0.7830 0.8369 0.7313 0.5049 0.8097 0.8369 0.5488 0.8369 0.7536 0.8369 0.8110 0.8369
MCC t 0.5139 0.5557 0.6689 0.4526 0.0682 0.6193 0.6689 0.0694 0.6689 0.5010 0.6689 0.5945 0.6689
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Fig. 10. Visualization of the experimental results from various ablative variants by training 200 epochs on the US40 datasel.

Table 7

Model complexity and time-consuming. The unit of the

unit of time consumption per epoch is seconds (S).

ber model par rs is millions (M) and the

Number of The time consumption
model parameters (M) per epoch (5)
LSTM 0.3136 8.2
FactorVae 1.1754 345
EIIE 2.6162 12.4
MGCGRU 1.7476 23.2
GAT 0.0481 6.7
RAT 0.0181 21.3
EDLSTM 0.0074 18.9
SARL 0.0073 7.5
DeepTrader 0.0117 19.5
Melody-GCN (ours) 2.5657 29.1

4.4. Complexity analysis

We compare our proposed model with the baselines in terms of
complexity and time consumption. The baseline models are parame-
terized according to implementation details in respective papers. As
shown in Table 7, in general, our proposed model has a larger number
of model parameters and higher time consumption per epoch than the
baselines, as our proposed model has more parameters and a deeper
network to extract the features from the stock price-related numerical
and the media text data. However, it performs much better in the task
of stock price prediction. Therefore, our proposed model has made a
good trade-off between model performance and complexity.

4.5. Limitations and future work

Our proposed model progressively extracts and aligns the numer-
ical and textual features via a fine-to-coarse descending path and a
coarse-to-fine ascending path. Moreover, we also leverage the interre-
lations among stocks to learn the complex and evolving relations not
only across industries and individual companies but also across time
horizons. However, there are still some limitations of our model as
follows.

Interpretability: Even though it explicitly considers the inter-
industry and inner-industry relations in modelling the dynamic se-
quential patterns and stock relations across both numeric and text
modalities, some relevant techniques can be incorporated in order
to improve the interpretability of the model. In particular, more and
more recent studies focus on enhancing the interpretability of the
stock price predictability, e.g., Shi et al. [25] carefully designs a deep
neural network (DNN) architecture with hierarchical factorization;
Deng et al. [26] resort to the external knowledge from the financial
domain using event embeddings; Yang et al. [27] employ multiple
sub-additive DNNs with each of them capturing only one particular
predictive mechanism; Yun et al. [28] propose a feature subset selec-
tion procedure to assess the feature-importance interpretability; Deng
et al. [29] rely on causal inference from the financial news graph;
among many others. Moreover, the white-box model that achieves
full mathematical interpretability via sparse rate reduction proposed
in [30] provides an ideal framework.

Robustness: Besides the aspects discussed in the section of Robust-
ness Checks, Generative Adversarial Networks (GAN) can be a powerful
tool given the limited data availability in financial markets. A trade-
off between adversarial robustness and predictive accuracy can be
made [31]. Simulations and training via GAN can produce more robust
sequential predictions that are not confined to be deterministic [32]
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in various finance applications, e.g., volatility modelling [33], exotic
options pricing [34], etc.. Similarly, learning feature representations
in financial markets that are characterized by low signal-to-noise ratio
via probabilistic models with inherent randomness, such as Variational
Autoencoder (VAE) and diffusion models, can also improve model ro-
bustness [35,36], e.g., for stock return prediction task, Duan et al. [22]
propose VAE-based dynamic factor model (which our model outper-
forms) and Koa et al. [37] incorporate a diffusion denoising process
into VAE, both achieve SOTA performance.

Safety (Risk): For stock price or trend prediction as a classification
task, Accuracy, Precision, Recall, Fl-score, and MCC are often used
as comprehensive evaluation metrics of model performance. However,
these metrics ignore the risks of the trading programme associated with
the predictions, i.e., the portfolio risks. From this perspective, a multi-
tasking framework is recommended in order to take the risk-adjusted
returns and downside risks into account, e.g., the recent work of Yang
et al. [38] simultaneously considers stock return and financial risk
in a multi-task forecasting setup. Although our proposed model also
achieves the best results in the risk-adjusted return metrics (i.e., SR and
CR), future work can be built analytically on a multi-objective model
that aims to strike a balance among multiple loss functions by learning
the gradient trade-offs [39], e.g., in predictive accuracy and risk-
adjusted reward metrics, with a weighted or ordered multi-objective
setup [40].

Given the limitations and inspiring recent literature highlighted
above, in our future work, we aim to design an interpretable framework
for robust stock price prediction with multi-tasking safety concerns on
balanced portfolio risks.

5. Conclusion

We have presented a novel multimodal multiscale spatio-temporal
GCN-based framework for the stock price prediction task. Our method
leverages the media texts along with the stock price data for more
valuable predictive information, and further integrates and aligns the
multimodal feature by the multimodal fusing-diffusing blocks. Besides,
the multiscale architecture fully distills and reconstructs the hidden
features, and the adaptive spatio-temporal graph convolutional lay-
ers extract the cross-sectional relations as well as the sequential de-
pendencies dynamically. Our proposed approach outperforms other
state-of-the-art models on two real-world multimodal datasets, and
the influences of its components are analysed in-depth and proved to
contribute to the overall superior performance. However, there are still
some limitations of our proposed model that we aim to tackle in the
research agenda, e.g., introducing an extra robustness module, building
on an interpretable multi-tasking framework with identified predictive
mechanisms and multiple weighted or ordered safety (risk) objectives.
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