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A B S T R A C T   

This research introduces a novel implicit continuous to discontinuous method to investigate the cross-scale 
failure process of discontinuous rock masses, including fine fracture creation, propagation, and rigid block 
contact. This method enables an intact rock to split and crush, with the local deformation/movement propa-
gating rapidly throughout the whole system. The method was applied to investigate the progressive slope failure. 
The results revealed that the number of failure elements within the slope increased rapidly at the primary 
fracture stage. The upper part of the failure band gradually shifted upward and backward towards the slope crest, 
where several tension cracks were clearly visible. Additionally, the failed zone became wider as the homogeneity 
coefficient m increased. Furthermore, the factor of safety (FoS) increased as the growth stage of m progressed, but 
it reached a constant value when m exceeded 8, indicating that the material became relatively uniform. Inter-
estingly, for slopes with varying elevation heights, the FoS decreased in a power function form as the ratio of the 
slope height to the width of the slope top surface increased. Overall, these findings shed light on developing the 
continuous-discontinuous computational model, with the application to study the progressive failure process of 
slopes.   

1. Introduction 

Geological disasters caused by rock failure are responsible for 
numerous casualties and economic losses worldwide. With an increasing 
number of infrastructures being built or designed in complex geological 
conditions, it is crucial to adopt multiple technical measures to ensure 
smooth project implementation. For instance, the construction of the 
Sichuan-Tibet Railway, which spans 1,838 km, reaches an altitude of 
4,400 m, and an elevation difference of over 3,000 m, involves crossing 
several great rivers and eight huge mountains with abnormally active 
tectonic movement. Furthermore, the increasing exploitation and utili-
zation of deep underground space and resources, such as coal, metal, 
and geothermal, necessitate new failure analysis models to account for 
observed characteristic mechanical behaviors of deep rocks (Deng et al., 
2022; Luo and Gong, 2022; Ma et al., 2022; Zhang et al., 2022), such as 
zonal disintegration. In these engineering practices, the creation, 
penetration, and propagation of cracks have posed a significant chal-
lenge in the field of rock mechanics (Feng et al., 2022; Chen et al., 2022; 
Wang et al., 2022a) due to the complex nature of rock media. 

Rock materials in nature are characterized by various defects such as 
voids, fissures, and cracks at micro, meso, and macro levels, which result 
from tectonic movements, internal liquid and gaseous substances, and 
long-term weathering and erosion. These complex and heterogeneous 
features make it difficult for conventional physical and mathematical 
models to accurately represent them. At the macro level, natural rock 
masses are often characterized by discontinuous structural planes that 
play a critical role in determining their mechanical response by 
providing potential slipping paths. Additionally, construction distur-
bances such as tunnel boring, hydraulic fracturing, and blasting can 
induce internal fracture development and weaken the strength of engi-
neered rock masses (Liang et al., 2014; Chen et al., 2018a; Chen et al., 
2018b; Gong et al., 2022), making the study of their nonlinear me-
chanical behaviors even more complex and variable. 

Over the past few decades, several effective methods have been 
developed for determining the safety indices of rock structures, which 
can be classified into four categories: (1) practical methods based on 
industry standards or expert experience, (2) qualitative assessment 
methods based on rock mass classification or highly-generalized 
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theoretical formulae, (3) methods that draw detailed conclusions using 
data analysis systems or traditional numerical techniques, and (4) 
methods that obtain in-depth conclusions using advanced numerical 
techniques or artificial intelligence. However, the safe and stable state of 
rock structures is not only dependent on the rock matrix but also on the 
discontinuous structural planes. Therefore, many researchers have 
proposed theories and analysis models, among which limit analysis 
methods for determining the ultimate load of slopes, such as the 
Morgenstern-Price method (Morgenstern and Price, 1965), the Bishop 
method (Bishop, 1955), the Spencer method (Spencer, 1967), the 
Swedish method (Fellenius, 1936), and the Janbu method (Janbu, 
1973), are representative examples. The application of these methods in 
practice is highly limited as some preconditions must be set in advance, 
such as the distribution law of internal forces, the division of slope strips, 
and the shape and position of the slipping surface. Additionally, as rock 
masses are complex geological materials, closed-form solutions do not 
exist for them, requiring the development of more powerful calculation 
technologies to accurately determine the safety indices of rock 
structures. 

Numerous numerical methods have been developed to simulate the 
stress, deformation, and failure mode of rocks and rock masses. The 
continuum methods, including the finite element method (FEM) 
(Rutqvist et al., 2001) and the extended/generalized finite element 
method (XFEM/GFEM) (Fries and Belytschko, 2010; Strouboulis et al., 
2000; Strouboulis et al., 2001), the finite difference/volume method 
(FDM/FVM) (Fallah et al., 2000; Wheel, 1996; Rodrigo et al., 2015), the 
boundary element method (BEM) (Brady and Bray, 1978), the rock 
failure process analysis method (RFPA) (Tang, 1997; Wang et al., 2022b; 
Yu et al., 2022), and the meshless method (MLM) (Zhang et al., 2000; 
Belytschko et al., 2000; Li et al., 2001), have made significant contri-
butions to the field. However, these methods have limitations in 
modeling structural planes, although incorporating joint elements 
(Goodman et al., 1968; Goodman, 1976; Ghaboussi et al., 1973), frac-
ture mechanics (Rybicki and Kanninen, 1977; Rice, 1968), or damage 
mechanics (Kachanov, 1999) can overcome some of these limitations. 
Nevertheless, new issues such as remeshing, robustness, and conver-
gence arise with these approaches (Deb et al., 2015). To investigate the 
effect of discontinuities, such as natural joints, fissures, and bedding 
(Harrison and Hudson, 1997), various discontinuum methods have been 
proposed, including the discrete element method (DEM) (Cundall, 
1971), the discrete fracture mesh method (DFN) (Long et al., 1982; Long 
et al., 1985; Robinson, 1984), the discontinuous deformation analysis 
(DDA) (Shi, 1988), and the manifold element method (NMM) (Yang 
et al., 2018; Zhang et al., 2018; Guo et al., 2019; Li et al., 2021). 
However, these methods have limitations in accurately calculating the 
fine stress/strain field and cross-scale fracture growth inside blocks/ 
particles and may suffer from poor computational efficiency and parallel 
performance. 

Additionally, several coupling approaches have been developed to 
model rock fracturing (Chen et al., 2022). For example, Xiang et al. 
(2022) simulated the rock erosion during water jet drilling using an 
immersed-body method. Guo et al. (2017) and Chen et al. (2020) 
investigated the fracture spacing and through-going fracture in layered 
rocks and the grain-scale failure of porous sandstone by the finite- 
discrete element method, respectively. Guo et al. (2020) developed a 
generic computational model for solving three-dimensional fragmenta-
tion problems of quasi-brittle materials. Tang et al. (2015) proposed the 
discontinuous deformation and displacement (DDD) method by 
combining the rock failure process analysis (RFPA) and the discontin-
uous deformation analysis (DDA). Using this method, Gong and Tang 
(2016) successfully reproduced the gradual slope sliding that occurred 
at the Alpetto Mine in Italy. In the DDD method, the complete model 
consists of an RFPA domain and a DDA domain. The RFPA module 
calculates crack creation and propagation, which can result in large 
displacements of elements. The elements that satisfy the large- 
displacement criterion are treated as DDA blocks automatically, 

allowing for contact and separation between adjacent elements. How-
ever, this method has definite boundaries between the RFPA domain and 
the DDA domain, which limits its applicability. Gong et al. (2018) used 
the DDD method with the gravity increase method to investigate the 
recession process of notched rocky cliffs. Gong et al. (2019) further 
developed the DDD method to model the mechanical behaviors of joints 
within highly jointed rock masses. Nonetheless, for modeling the cross- 
scale failure process of discontinuous rock masses, to develope an 
effective solving algorithm that involves global equilibrium equation 
assembly, topology update, contact loop search, and other factors, is still 
challenging. 

This study proposed a novel continuous to discontinuous method to 
analyze the cross-scale failure process of discontinuous rock masses, 
which includes the fine fracture creation, propagation, and penetration. 
To improve the stability and convergence, an implicit solving sequence 
was established. Furthermore, the assembly of contact matrices between 
adjacent subdomains into the global stiffness and loading matrices has 
been realized, and the mechanical contacts along the newly formed 
cracks can be characterized. Besides, structural surfaces with a certain 
thickness and without thickness can be simulated simultaneously. Then, 
the numerical tests were conducted to verify the correctness and validity 
of the proposed method in representing structural planes, describing 
nonlinear mechanical responses, and reproducing mesoscopic fracture 
propagation leading to rock failure. Additionally, the proposed method 
was applied to investigate the progressive failure process of a slope 
caused by gravity growth, providing insights into failure surfaces, 
deformation features, and instability mechanisms. 

2. Methodology 

2.1. The model and solution procedure 

In the proposed model, the rock mass is capable of fracturing or 
crushing. Under external loading, when the Mohr-Coulomb strength 
criterion is reached with a tensile cut-off, new cracks are initiated and 
propagate within the rock. With an increase in load, the rock can be 
fragmented into smaller pieces due to the coalescence of new cracks. 
These fragments have contactable boundaries where opening, sliding, 
and interlocking can occur because vertex-vertex contact, vertex-edge 
contact, and edge-edge contact can be calculated, as depicted in 
Fig. 1. In the program, new nodes are added, and the new contact loops 
are updated after element failure and fracturing occurs. 

At the start of the solution procedure, the rock mass model needs to 
be discretized into mesoscopic representative volume elements (RVEs). 
The strain and stress fields will then be calculated, and the fracture 
module will be used to control crack initiation and propagation based on 
the modified Mohr-Coulomb criterion with a tensile cutoff. If new 
element failure occurs, the program will search for new contact loops, 
and potential contacts can only occur between these loops. The edges of 
the failure elements will be transformed into newly generated contact 
interfaces, along which block detachment, slippage, friction, and locking 
can occur. The Newton’s law of motion and contact theory (Shi, 2015) 
will be used to analyze the dynamic motion and block interactions of the 
rock mass. The contact force between two adjacent fragments will act at 
the related contact point. When a fragment moves, the other fragments 
around it will move accordingly due to their interactions. This means 
that the change in local deformation/movement will rapidly spread 
throughout the entire system. The dynamic equilibrium of the system 
can be achieved automatically by solving the local equilibrium equation 
with the coupled algorithm in each time step. This process will be 
repeated until the maximum calculation number is reached. 

2.2. Assembly of equilibrium equations 

This section aims to explain how the potential energy generated by 
various forces, stresses, and strains can affect the global stiffness and 
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loading matrices in each calculation step, particularly in the assembly 
process of the global equilibrium equation. As an example, the assembly 
process of the global stiffness matrix will be discussed, and the load 
matrix can be assembled in a similar manner based on the specific 
mapping relationship of each submatrix. 

Fig. 2 illustrates a mesh system composed of three blocks, each 
consisting of two or three triangular mesh elements. The interactions 
between the blocks occur through three pairs of contacts: edge-to-edge 
contact between Blocks 1 (B1) and 2 (B2), vertex-to-edge contact be-
tween Block 1 (B1) and 3 (B3), and vertex-to-edge contact between 
Block 2 (B2) and 3 (B3). To obtain the stiffness submatrices of the inner 
elements for each block (B1, B2, and B3), the potential energy of all 
submatrices except for contact forces is minimized. The corresponding 
stiffness submatrices are then added to obtain the stiffness submatrices 
of the three blocks (termed ‘Block-sum’), as depicted in Fig. 3. The total 
block stiffness matrix is obtained by assembling the three block stiffness 
submatrices. To consider mechanical contacts, the contact stiffness 
submatrices are calculated by minimizing the potential energy caused 
by normal spring, tangential spring, or friction, as illustrated in Fig. 4. 
The total contact stiffness matrix (termed ‘Contact-sum’) is obtained by 
adding up the three contact stiffness submatrices. The global stiffness 
matrix is obtained by adding up the total block and contact stiffness 

matrices, as also shown in Fig. 4. The darker color in Figs. 3 and 4 in-
dicates the higher frequency of the corresponding matrix element being 
updated during the assembly process of the global stiffness matrix. It is 
worth noting that since the block system may generate some sub- 
potential energy, all potential energy items, except for contact forces, 
are considered as a whole and recorded once, as shown in Fig. 3. 
Additionally, the dimension of the global stiffness matrix may vary in 
different calculation steps due to the possibility of generating new joint 
interfaces. 

2.3. Displacement function 

In the proposed method, triangular elements are used as the solution 
targets, and the basic unknown variables are the displacement compo-
nents of element nodes. Consider a triangular element Em with three 
nodes, i, j, and k, numbered in a counterclockwise order. The displace-
ment of any point (x, y) within the element can be uniquely determined 
by the six displacement components of the three nodes, as: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u =
(

fi(x, y) fj(x, y) fk(x, y)
)

⎧
⎪⎪⎨

⎪⎪⎩

ui

uj

uk

⎫
⎪⎪⎬

⎪⎪⎭

v =
(

fi(x, y) fj(x, y) fk(x, y)
)

⎧
⎪⎪⎨

⎪⎪⎩

vi

vj

vk

⎫
⎪⎪⎬

⎪⎪⎭

(1)  

where the displacement components of the three nodes along the x-axis 
and y-axis are (ui,vi), (uj, vj) and (uk,vk), respectively. 

The force–displacement relationship can be expressed as: 
⎧
⎨

⎩

fi(x, y)
fj(x, y)
fk(x, y)

⎫
⎬

⎭
=

1
⃒
⃒
⃒
⃒
⃒
⃒

1 xi yi

1 xj yj

1 xk yk

⃒
⃒
⃒
⃒
⃒
⃒

⎡

⎣
xjyk − xkyj xkyi − xiyk xiyj − xjyi

yj − yk yk − yi yi − yj
xk − xj xi − xk xj − xi

⎤

⎦

⎧
⎨

⎩

1
x
y

⎫
⎬

⎭

(2)  

where the coordinates of the three nodes along the x-axis and y-axis are 
(xi,yi), (xj, yj) and (xk,yk), respectively. 

2.4. Global equilibrium equation 

To begin with, the potential energy equations arising from various 
forces and stresses, such as strain potential energy, initial stress potential 
energy, point load potential energy, volume load potential energy, 

Fig. 1. Schematic diagram of the proposed model.  

Fig. 2. The numerical framework of three blocks in contact in the pro-
posed model. 
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inertia force potential energy, contact spring strain potential energy, and 
friction potential energy, are compiled. Next, the partial derivative 
equations for each potential energy component along the x-axis and y- 
axis are computed. The resulting sub matrices are then added to their 
respective positions in the global equilibrium equation. Furthermore, at 

each time step, the changes in each potential energy component can be 
updated to achieve automatic equilibrium of the system. 

The element stiffness matrix is defined over the integral domain 
where the element is located. Let Sm be the area of the element Em. The 
element stiffness matrix can then be expressed as follows: 

Fig. 3. Assembly of block stiffness matrix.  

Fig. 4. Assembly of contact matrix and global stiffness matrix.  
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Km
e = Sm

⎧
⎨

⎩

Bi
T

Bj
T

Bk
T

⎫
⎬

⎭
D[Bi Bj Bk ] (3)  

where D represents the element elastic matrix, which is a combination of 
elastic modulus and Poisson’s ratio in isotropic plane stress or plane 
strain problems. The matrix 

[
Bi Bj Bk

]
is expressed as: 

[Bi Bj Bk ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂fi(x,y)
∂x

0 ∂fj(x,y)
∂x

0 ∂fk(x,y)
∂x

0

0
∂fi(x,y)

∂y
0

∂fj(x,y)
∂y

0
∂fk(x,y)

∂y

∂fi(x,y)
∂y

∂fi(x,y)
∂x

∂fj(x,y)
∂y

∂fj(x,y)
∂x

∂fk(x,y)
∂y

∂fk(x,y)
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)  

To compute the initial stress matrix in the proposed method, the po-
tential energy generated by the updated initial stress must be calculated. 
This is because the method employs a step-by-step solving approach, 
where the stress computed in the previous step is used as the initial stress 
for the current step. The matrix can be expressed as follows: 

Fm
σ = − SmBT σ0

m = − Sm

⎧
⎨

⎩

Bi
T

Bj
T

Bk
T

⎫
⎬

⎭

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ0
x

σ0
y

τ0
xy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5)  

where the initial stresses along the x-direction, y-direction, and the shear 
stress in the plane coordinate system are denoted as σ0

x , σ0
y and τ0

xy, 
respectively. 

In the proposed model, the point load matrix differs from the tradi-
tional finite element method in that load points can be any point inside 
elements, not only element nodes. For instance, if a load point acts on 
the point (x0, y0) inside the element Em, with px and py being the two 
components of the point load along the x-axis and y-axis, respectively, 
the corresponding matrix can be expressed as follows: 

Fm
p =

⎧
⎨

⎩

[Ni(x0, y0)]
T

[
Nj(x0, y0)

]T

[Nk(x0, y0)]
T

⎫
⎬

⎭

{
px
py

}

(6)  

with 

(Ni(x,y) Nj(x,y) Nk(x,y))=
[ fi(x,y) 0

0 fi(x,y)

fi(x,y) 0

0 fi(x,y)

fi(x,y) 0

0 fi(x,y)

]

(7) 

In the displacement constraint matrix, all constraint points are 
imposed on the corresponding element nodes as boundary conditions, 
and their movements are restricted by two rigid springs. If the constraint 
point (x0, y0) is located inside the element Em, the displacement 
constraint matrix can be expressed as follows: 

Km
c = k

⎧
⎨

⎩

[Ni(x0, y0)]
T

[
Nj(x0, y0)

]T

[Nk(x0, y0)]
T

⎫
⎬

⎭
(Ni(x0, y0) Nj(x0, y0) Nk(x0, y0) ) (8)  

where k is the stiffness of two rigid springs along the x and y directions at 
the constraint point. 

For the body load matrix, it can be expressed as follows: 

Fm
b =

⎡

⎢
⎣

∫∫

A

⎧
⎨

⎩

[Ni(x0, y0)]
T

[
Nj(x0, y0)

]T

[Nk(x0, y0)]
T

⎫
⎬

⎭
dxdy

⎤

⎥
⎦

{
fx
fy

}

(9)  

where the operator ‘∬A’ represents the double integral over the area A of 

the element Em; fx, fy are the volume forces per unit area acting on the 
element Em. 

In dynamic calculations, the inertia force matrix needs to be 
considered. In the proposed method, this matrix is analogous to the mass 
matrix in finite element analysis and plays a significant role in main-
taining the overall balance of the model in each time step. The inertia 
force matrix for the current time step can be expressed as follows: 

Km
m ==

4M
Δt2

⎡

⎢
⎣

∫∫

A

⎧
⎨

⎩

[Ni(x, y)]T[
Nj(x, y)

]T

[Nk(x, y)]T

⎫
⎬

⎭
(Ni(x, y) Nj(x, y) Nk(x, y) )dxdy

⎤

⎥
⎦

(10)  

where Δt is the time step, and M is the mass per unit material area. 

2.5. Block contact matrix 

To improve the deformability of a single block and refine the stress 
distribution within it, the proposed program embeds multiple elements 
into the model block, allowing it to be broken down into smaller blocks 
during the calculation. Elements that meet the strength criteria are 
treated as failure elements, and their edges form new joints, enabling 
opening, sliding, and locking between elements. Contact processing in 
the proposed method only involves boundary loops that comprise joints. 
In the 2D coordinate system, three types of contacts need to be consid-
ered, namely node-to-node, node-to-edge, and edge-to-edge contacts. 
When the contact search algorithm detects an existing contact point, it 
calculates the normal and tangential intrusion distances at that point. 
The normal spring, tangential spring, or friction is then added at this 
point, and the corresponding stiffness matrices are included in the global 
equilibrium equation. Clearly, P1 is the vertex belonging to the element 
Em; P2P3 is the entry edge belonging to the element En with a length of l. 
The points P1, P2, P3 are sequentially named in the counter-clockwise 
direction from the positive x-axis direction to the positive y-axis direc-
tion. The coordinates of point Pk (k = 1, 2, 3) are defined as (xk, yk). kn is 
the normal spring stiffness. The normal stiffness matrices can be 
expressed as follows: 

Kmm
kn = kn

⎧
⎨

⎩

Hm(1)
Hm(2)
Hm(3)

⎫
⎬

⎭

(
HT

m(1) HT
m(2) HT

m(3)
)

(11)  

Kmn
kn = kn

⎧
⎨

⎩

Hm(1)
Hm(2)
Hm(3)

⎫
⎬

⎭

(
GT

n(1) GT
n(2) GT

n(3)
)

(12)  

Knm
kn = kn

⎧
⎨

⎩

Gn(1)
Gn(2)
Gn(3)

⎫
⎬

⎭

(
HT

m(1) HT
m(2) HT

m(3)
)

(13)  

Knn
kn = kn

⎧
⎨

⎩

Gn(1)
Gn(2)
Gn(3)

⎫
⎬

⎭

(
GT

n(1) GT
n(2) GT

n(3)
)

(14)  

where 
⎧
⎨

⎩

Hm(1)
Hm(2)
Hm(3)

⎫
⎬

⎭
=

1
l

⎧
⎨

⎩

[Nm(1)(x1, y1)]
T

[Nm(2)(x1, y1)]
T

[Nm(3)(x1, y1)]
T

⎫
⎬

⎭

T{
y2 − y3
x3 − x2

}

(15)  

⎧
⎨

⎩

Gn(1)
Gn(2)
Gn(3)

⎫
⎬

⎭
=

1
l

⎧
⎨

⎩

[Nn(1)(x2,y2)]
T

[Nn(2)(x2,y2)]
T

[Nn(3)(x2,y2)]
T

⎫
⎬

⎭

T{
y3 − y1
x1 − x3

}

+
1
l

⎧
⎨

⎩

[Nn(1)(x3,y3)]
T

[Nn(2)(x3,y3)]
T

[Nn(3)(x3,y3)]
T

⎫
⎬

⎭

T{
y1 − y2
x2 − x1

}

(16) 

Simultaneously, the corresponding load matrices can be expressed 
as: 
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Fm
kn = − kn

S0

l
H = − kn

S0

l

⎧
⎨

⎩

Hm(1)
Hm(2)
Hm(3)

⎫
⎬

⎭
(17)  

Fn
kn = − kn

S0

l
G = − kn

S0

l

⎧
⎨

⎩

Gn(1)
Gn(2)
Gn(3)

⎫
⎬

⎭
(18)  

where 

S0 =

⃒
⃒
⃒
⃒
⃒
⃒

1 x1 y1
1 x2 y2
1 x3 y3

⃒
⃒
⃒
⃒
⃒
⃒

(19) 

In the tangential direction, the tangential spring will be added along 

P2P3
⇀ 

at P0. Let kt be the tangential spring stiffness, the spring stiffness 
matrices can be expressed as follows: 

Kmm
kt = ktHHT =

⎧
⎨

⎩

Hm(1)
Hm(2)
Hm(3)

⎫
⎬

⎭

(
HT

m(1) HT
m(2) HT

m(3)
)

(20)  

Kmn
kt = ktHGT =

⎧
⎨

⎩

Hm(1)
Hm(2)
Hm(3)

⎫
⎬

⎭

(
GT

n(1) GT
n(2) GT

n(3)
)

(21)  

Knm
kt = ktGHT =

⎧
⎨

⎩

Gn(1)
Gn(2)
Gn(3)

⎫
⎬

⎭

(
HT

m(1) HT
m(2) HT

m(3)
)

(22)  

Knn
kt = ktGGT =

⎧
⎨

⎩

Gn(1)
Gn(2)
Gn(3)

⎫
⎬

⎭

(
GT

n(1) GT
n(2) GT

n(3)
)

(23) 

Simultaneously, the corresponding load matrices can be expressed as 
follows: 

Fm
kt = − kt

S0

l
H = − kt

S0

l

⎧
⎨

⎩

Hm(1)
Hm(2)
Hm(3)

⎫
⎬

⎭
(24)  

Fn
kt = − kt

S0

l
G = − kt

S0

l

⎧
⎨

⎩

Gn(1)
Gn(2)
Gn(3)

⎫
⎬

⎭
(25) 

In the proposed method, sliding occurs at a contact point when 
Coulomb’s law of friction is satisfied at the discontinuous interface. To 
account for physical friction along the sliding interface, the friction- 
induced potential energy must be considered. Specifically, when the 
point P1, which belongs to element Em, enters the edge P2P3 belonging to 
element En at entry point P0, the magnitude of the friction force can be 
calculated based on the normal pressure, while the direction of the 
friction force can be determined by projecting P1P0 along the vector 

P2P3
⇀

. Then, the load matrix caused by the friction F at P1 on the element 
Em can be described as: 

F′
f = − FH = − F

⎧
⎨

⎩

Hm(1)
Hm(2)
Hm(3)

⎫
⎬

⎭
(26) 

Meanwhile, the load matrix caused by the friction F at P0 on the 
element En can be described as: 

F″
f = FG = F

⎧
⎨

⎩

Gn(1)
Gn(2)
Gn(3)

⎫
⎬

⎭
(27) 

To prevent block overlapping or embedding, a penalty function 
method is used in the proposed program. To ensure that each contact 
point maintains a state of no tension and no embedment throughout the 
calculation process, an open-close iteration (Doolin and Sitar, 2002) is 

incorporated into the program. Some researchers have recommended 
setting the penalty spring stiffness to 10–1000 times greater than the 
elastic modulus (Shi, 1988). However, setting a high penalty spring 
stiffness can lead to an ill-conditioned global stiffness matrix, which can 
adversely affect solution convergence. Therefore, the current program 
employs a soft contact process (Cheng, 1998) that allows some degree of 
mutual embedding. This approach is consistent with field observations 
where chisel marks are frequently observed at rock interfaces. 

The above explanations provide a detailed account of the theoretical 
formulas employed in the proposed method. Firstly, the element 
displacement function is introduced, with node displacements of trian-
gular elements serving as the fundamental unknowns. Next, the global 
equilibrium equation is obtained by assembling all the element stiffness/ 
load matrices. To ensure that all potential energy contributions are 
accounted for in the simulation, element submatrices caused by different 
forces, strains, and stresses can be calculated by minimizing the corre-
sponding potential energy. In addition, submatrices induced by normal 
spring, tangential spring, and friction are derived to reflect the me-
chanical contact between adjacent blocks. These formulas form the 
theoretical basis for the implementation of the program. Notably, as a 
whole-process analysis method, the proposed method incorporates both 
the displacement function and the control equation as well as the rele-
vant kinematics and contact theory. The code has been written in the C 
programming language. 

2.6. Block fracturing process 

Two main steps are involved in generating new cracks in the pro-
posed method: (1) separating the element edges and common nodes of 
the elements that meet the strength criteria from the adjacent elements. 
This means that when a grid line becomes a joint, the adjacent elements 
on both sides of it are separated, and new nodes are added; (2) updating 
the contact boundaries in the new mesh. Since the search for contact 
boundaries needs to be performed in every calculation step, a valid 
contact searching algorithm is essential for the computational efficiency 
of the method. 

To ensure the high efficiency of the proposed program, a simple and 
fast searching algorithm has been developed. For better understanding, 
the basic terms are defined: (1) Internal node: the nodes located inside 
the model block; (2) External node: the nodes located at the boundaries 
of the model block; (3) Contact loop: the directional joint circuits inside 
or along the boundaries of the model block; (4) Loop search direction: 
when moving along a circuit, if the material wrapped by the circuit is 
always on the left-hand side of the travel direction, this direction is 
termed the loop search direction, as shown in Fig. 5; (5) Upper node: for 
an external node, the first node encountered along the loop search di-
rection of a contact loop; (6) Lower node: for an external node, the first 
node encountered along the opposite loop search direction of a contact 
loop. 

The contact searching loop is illustrated in Fig. 6. Since all contact 
loops are composed of external nodes, the first step is to identify all 
external nodes in the model prior to calculation. Then, the searching 
process can commence along the loop search direction from any unused 
external node. For the current node, if the number of its upper node 
matches the number of the starting node of the current search, the search 
will terminate, and the sequence number of the involved external nodes 
of this loop will be stored. If not, the current node will be replaced by its 
upper node until the loop is closed. 

3. Numerical implementations 

3.1. The stress–strain relationship and strength criterion 

Drawing on the statistical damage theory (Liang, 2005), the linear 
elastic constitutive relationship of each element holds until failure. Once 
the threshold stress is reached, the failed element will follow a strain- 
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softening relationship in accordance with the strength criterion as 
shown in Fig. 7. Although the constitutive relationship of Representative 
Volume Elements (RVEs) is linear elasto-brittle-plastic, the macroscopic 
mechanical behavior of the entire model can be intricate due to the non- 
uniform distribution of input parameters. 

In the modelling, the elastic modulus of each damaged element will 
be systematically weakened in proportion to the intensity of damage, as 
follows: 

E = (1 − ω)E0 (28)  

where ω is the damage index; E and E0 are the elastic moduli of an 
element at the damaged state and initial state, respectively. It should be 
noted that in this study, the simulated finite elements and the damage 
are considered to be isotropic (Tang et al., 2002). 

Under tension (see the curves in the third quadrant of Fig. 7), the 
damage index ω is defined as: 

Fig. 5. An illustration of contact searching loop.  

Fig. 6. Contact loop search scheme.  
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ω =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ε > εt0

1 −
λεt0

ε εtu < ε ≤ εt0

1 ε ≤ εtu

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(29)  

where λ is the residual strength coefficient, which is defined as λ = ftr/
ft0 = ftr/(E0εt0); ft0 and ftr are the uniaxial peak and residual tensile 
strengths, respectively; εt0 is the threshold tensile strain at the elastic 
limit state; εtu is the ultimate tensile strain at failure. 

Under compression (see the curves in the first quadrant of Fig. 7), 
shear damage will appear if the stress state of the element meets the 
compression-shear strength criterion. The damage variable ω is defined 
as: 

ω =

⎧
⎨

⎩

0 ε < εc0

1 −
λεc0

ε ε ≥ εc0

⎫
⎬

⎭
(30)  

where λ is defined as λ = fcr/fc0 = fcr/(E0εc0); fc0 and fcr are the uniaxial 
peak and residual compressive strengths, respectively; εc0 is the 
threshold compressive strain. 

When an element is subjected to a multiaxial stress state and meets 
the compression-shear strength criterion, shear damage will also occur. 
To account for the influence of multiaxial stresses, the threshold 
compressive strain εc0 can be calculated as follows, based on the work of 
Tang et al. (2002). 

εc0 =
1
E0

[

fc0 +
1 + sinφ
1 − sinφ

σ3 − μ(σ1 + σ2)

]

(31)  

where φ is the internal friction angle; μ is the Poisson’s ratio; σ1, σ2 and 
σ3 are the maximum, intermediate and minimum principal stresses, 
respectively. 

The studies conducted by Hoxha and Homand (2000) and Meglis 
et al. (1995) suggest that the process of rock fracturing involves the 
coupling of various failure modes, such as tensile failure, compression- 
shear failure, crack opening, and crack slipping. To describe this 
coupling process, the modified Mohr-Coulomb strength criterion with a 
tensile cut-off was adopted, as shown in Fig. 8. 

In this approach, an element will be considered to have failed if 
either the Mohr-Coulomb criterion or the maximum tensile stress cri-
terion is satisfied, as follows: 

Mohr-Coulomb strength criterion: 

τ ≥ c+ σtanφ or fc0 ≤ σ1 −
1 + sinφ
1 − sinφ

σ3 (32)  

where τ and σ are the shear and normal stresses, respectively; c is the 
cohesion. 

Maximum tensile stress criterion: 

σ3 ≤ ft0 (33)  

3.2. Statistical distribution of material parameters 

The heterogeneity of material properties is a significant character-
istic of rock masses that can greatly influence their nonlinear deforma-
tion and progressive failure (Manthei, 2005). To account for the 
influence of mesoscopic rock heterogeneity on complex macroscopic 
behaviors, the material parameters of RVEs within the model can be 
assumed to follow a given statistical distribution function based on 
statistical strength theory. The Weibull distribution has been widely 
used by researchers to describe the probabilistic distribution of rock 
material parameters (Weibull, 1951; Basu et al., 2009; Sanchidrian 
et al., 2014; Fu et al., 2017; Nassar et al., 2018). This distribution can be 
expressed as: 

Fig. 7. The constitutive stress–strain relationship of elements under uniaxial 
compression or tension loading. 

Fig. 8. The Mohr–Coulomb strength criterion with a tensile cut-off.  

Fig. 9. Weibull distribution of material properties under different homogeneity 
coefficients. 
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f (p) =
m
p0
(

p
p0
)

m− 1exp− (
p
p0
)

m (34)  

where p represents a specific mechanical property of mesoscopic ele-
ments, such as elastic modulus, cohesion, or strength; p0 is the mean 
value of the parameter p; m (where m > 1) is the homogeneity coefficient 
that reflects the shape of the probability density function. The distri-
bution densities of the mechanical parameter p under different homo-
geneity coefficients m are depicted in Fig. 9. 

Based on a given probability density function, a non-uniform model 
consisting of multiple RVEs can be created numerically using the Monte 
Carlo method. As illustrated in Fig. 10, for an average elastic modulus of 
50 GPa, four representative numerical samples with homogeneity co-
efficients “m” of 1.5, 5, 10, and 20 are generated according to the 
Weibull distribution. It can be observed from Fig. 10 that as the ho-
mogeneity coefficient “m” decreases, the elastic modulus of each 
element shows significant variability. However, as “m” increases, the 
distribution of elastic moduli tends to become more uniform. When “m” 
reaches 100, the sample becomes nearly uniform, with all elements 
having elastic modulus values close to 50 GPa. Fig. 11 reveals that the 
overall macroscopic mechanical behavior of the inhomogeneous rock 
sample can be complex due to the non-uniform distribution of material 
parameters, even though the constitutive relationship of RVEs is linear 
elasto-brittle-plastic. 

4. Model calibration and application 

In this section, the proposed method in this study was calibrated by 
simulating uniaxial compression and direct shear tests of rock mass. 
Subsequently, the calibrated method was utilized to investigate the 
evolution of slope failure and mass movement, as well as the formation 
of slope failure surfaces. 

4.1. Modelling of uniaxial compression test 

To validate the performance of the proposed method in simulating 
the initiation, propagation, and nucleation of rock cracks, a numerical 
rock sample with dimensions of 150 mm in height and 75 mm in 
diameter was subjected to uniaxial compression loading. The physical 
and mechanical parameters, including elastic modulus, cohesion, and 
tensile strength, were assumed to follow a Weibull distribution with a 
homogeneity coefficient (m) of 1.5. The model was divided into 8,100 
elements, with the bottom boundary fixed along the normal direction, 
and subjected to downward loading with a displacement-control rate of 
0.02 mm/s. This loading rate can be considered quasi-static/static, and 
any dynamic effects can be ignored, as suggested by previous studies (Ha 
et al., 2015; Li and Wong, 2012). The details of the model and its pa-
rameters are provided in Table 1. 

Fig. 12 illustrates the crack initiation and propagation processes 

Fig. 10. Numerical samples with different homogeneity coefficients m (each sample contains 50 × 50 elements).  
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observed during the uniaxial compression test. Initially, due to the non- 
uniform distribution of material properties, some finite elements in 
weak regions experienced damage, representing potential crack initia-
tion locations and influencing subsequent crack propagation, as shown 
in Fig. 12 (a). Subsequently, as micro-cracks developed and nucleated 
within the sample, a longer crack located at the lower right side and a 
shorter one at the middle right side of the sample can be clearly observed 
in Fig. 12 (b). Notably, there were evident stress concentrations at the 
propagating front of these cracks, which promoted the continuous up-
ward and downward development of the cracks. As the cracks evolved, 
the concentrated stresses were released and transferred to the new crack 
tips. 

Fig. 12 (c) shows that as the load increased, the two initially inde-
pendent cracks eventually connected with each other at the middle of 
the sample, forming a more complex crack distribution pattern. At the 
same time, due to the influence of material heterogeneity, the strength 
of mesh elements in some regions can be higher than that of the sur-
rounding ones. This mechanism resulted in the formation of a small 
isolated rock block near the boundary at the lower right corner, where 
high stresses were observed. This phenomenon highlights an important 
advantage of the proposed model with the coupled solving algorithm, as 
it allows for deformable rock to be broken into fragments without 
making assumptions about where and how cracks are initiated and 
propagated. Furthermore, after the two main cracks nucleated, the 
newly formed crack continued to propagate towards the upper left 
corner, ultimately resulting in the separation of the original rectangular 
specimen into two large pieces, and the dip angle of the main failure 
surface is 54.61◦ as depicted in Fig. 12 (d). The numerical results ob-
tained from the proposed method are consistent with the well- 
documented finite element method (RFPA) and discrete element 
method (DEM) models by Tang et al. (2000) and Shimizu et al. (2010), 
as shown in Fig. 12 (e) and (f). 

4.2. Modelling of direct shear test 

The rock properties under direct shear loading were analyzed using 
the proposed program and compared with experimental data. The 2D 
model had dimensions of 200 mm × 200 mm, as shown in Fig. 13 (a), 
and was divided into 55,162 elements. 

The physical and mechanical parameters are listed in Table 2, among 
which the elastic modulus, cohesion, and tensile strength, were assumed 
to follow a Weibull distribution with a homogeneity coefficient (m) of 5. 
The left and bottom boundaries of the lower half of the model were fixed 
along the corresponding normal direction, while the top boundary was 
subjected to a normal stress σp, and the right boundary of the upper half 
of the model was horizontally loaded with a ratio of 0.0025 mm/s, as 
illustrated in Fig. 13. As the shear strain increased, cracks progressively 
developed within the rock sample. Initially, cracks were initiated at both 
sides of the model near the boundary between the upper and lower 
halves of the model, due to shear concentration and strain localization. It 
is evident that shear stress concentrated at the crack front, governing the 
occurrence and propagation direction of the cracks. Subsequently, 
micro-cracks propagated and nucleated to form several larger cracks in 
the middle. These cracks eventually became interconnected and split the 
rock sample into two major blocks. 

At the failure state, the normal and shear stresses acting on the rock 
sample were recorded and analyzed. The shear strengths of the rock 
samples obtained from numerical and experimental tests for different 
normal loadings are summarized in Fig. 14. While some data scattering 
exists, the numerical results closely match the experimental data. The 
overall trend indicates that the shear strength increased with the normal 
stress, which is consistent with the principles of classic rock mechanics. 

4.3. Model application in investigating progressive slope failure 

The proposed method, which combines damage mechanics, contact 
mechanics, and kinematics, is well-suited for modeling slope failure 
processes that involve crack creation and growth at small deformation 
states, as well as block contact and collision at large displacement states. 
To investigate the failure characteristics of a landslide, a slope with a 
height of 25 m and a slope inclination of 2.5V:1H was configured, as 
shown in Fig. 15. 

The material properties of the slope are listed in Table 3. The nu-
merical model consisted of approximately 50,000 elements. The left 
side, right side, and bottom of the model were fixed along the corre-
sponding normal direction, while the top was left free. The gravity of the 
slope was gradually increased step by step, and when the gravity 

Fig. 11. Typical macroscopic stress–strain relationship for testing inhomogeneous rock.  

Table 1 
Physical-mechanical properties of the rock specimen for uniaxial 
compression.  

Parameter Value 

Elastic modulus E (GPa) 50 
Poisson’s ratio ν 0.2 
Homogeneity coefficient m 1.5 
Cohesion c (MPa) 100 
Internal friction angle φ (◦) 20 
Uniaxial tensile strength ft0 (MPa) 7  
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reached a certain level, the penetrating failure surface occurred. At this 
moment, the factor of safety (FoS) of the slope was determined as the 
ratio of the increased gravity to the original gravity. Subsequently, the 
gravity in the numerical model was kept constant during slope sliding. 

Fig. 16 illustrates the progressive failure and mass spreading process 
of the slope. In Fig. 16 (a), it can be observed that as gravity increased, a 
set of micro-cracks was initiated at the slope toe region due to stress 
concentration. The shear zone gradually increased in size as the cracks 
propagated and nucleated towards the slope crest. Meanwhile, several 
tension cracks can be observed near the slope crest and inclined surface 
in Fig. 16 (b) due to tensile failure of mesh elements, which is the main 
feature of deep-seated slope failure. Fig. 16 (c) shows that an obvious 

Fig. 12. Rock fracturing under uniaxial compression: (a)–(d) the crack initiation and propagation processes simulated by the proposed method; (e) the failure mode 
simulated by RFPA (Tang et al., 2000); (f) the failure mode simulated by DEM (Shimizu et al., 2010) (Note: εa represents the axial strain). 

Fig. 13. Rock fracturing process under direct shear loading (Note: εs represents the shear strain).  

Table 2 
Physical-mechanical properties of the rock specimen for direct 
shear.  

Parameter Value 

Elastic modulus E (GPa) 96.3 
Poisson’s ratio ν 0.3 
Homogeneity coefficient m 5 
Cohesion c (MPa) 53.7 
Internal friction angle φ (◦) 22.59◦

Uniaxial tensile strength ft0 (MPa) 9.62  
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arc-shaped failure surface was finally formed as the major inner crack 
nucleated with the upper tension cracks, resulting in the formation of a 
large landslide body. Simultaneously, multiple major tension cracks 
within the sliding body split the rock mass into several large blocks. 

In Fig. 16 (d) and (e), the mass spreading along the failure surface 
caused the blocks at the lower part of the sliding body to gradually 
separate from the main body due to rigid block displacement. Subse-
quently, in Fig. 16 (f), the large blocks at the lower part of the sliding 
body are further broken into smaller blocks due to strong squeezing and 
collision. However, the blocks at the upper part of the sliding body could 
still remain relatively intact, indicating that the sliding body is broken 

into numerous small fragments, with some large rocks surviving until 
the late stage of sliding. These observed features are consistent with field 
observations of landslides (Yu et al., 2021). 

To quantify the slope damage during the initial fracturing process (i. 
e., before sliding), the cumulative number of damaged elements within 
the slope model is shown in Fig. 17. The slope damage started to occur at 
the load time of 0.6250 s. Then, the number of failed elements remained 
relatively small until the load time reached 0.6542 s. After that, the 
damaged elements increased rapidly within a short time from 0.6542 s 
to 0.6953 s until the interconnected failure plane was formed. It 
remained unchanged during the initial stage of sliding, and as expected, 
more damage would occur during the subsequent land sliding and 
collision, as shown in Fig. 16 (e) and (f). 

To understand the influence of material heterogeneity on the for-
mation of failure surface, the same model configuration and loading 
history were applied to models with homogeneity coefficients set to 5, 8, 
and 11, respectively. These values represent slopes with increasing ho-
mogeneous material properties. The simulation was repeated 20 times to 
account for possible variations in slope responses for each input ho-
mogeneity coefficient. The results are shown in Fig. 18. 

From Fig. 18, it is evident that a wide spread distribution of failure 
surfaces existed, indicating the variability and uncertainty of natural 

Fig. 14. Shear strength comparison between simulation and experiment.  

Fig. 15. Numerical model configuration of slope failure modelling.  

Table 3 
Physical-mechanical properties of the slope media.  

Parameter Value 

Density ρ (kg/m3) 2700 
Elastic modulus E (GPa) 10 
Poisson’s ratio ν 0.25 
Homogeneity coefficient m 5 
Cohesion c (MPa) 1.1 
Internal friction angle φ (◦) 25◦

Uniaxial tensile strength ft0 (MPa) 0.8  
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slope failure. Near the slope toe region, material heterogeneity had little 
influence on the failure pattern, and these curves were closely distrib-
uted. However, near the slope crest zone, the locations of tension cracks 
showed great scattering, and the failed zone became increasingly wider 
as the homogeneity coefficient increased. This phenomenon was 
because slopes with relatively homogeneous material properties had 
more integrated structures that could better resist shallow slope failures. 
The final failure mode at higher gravity loading tended to be deep-seated 
large-scale landslides. For tests with low homogeneity coefficients, 
many weak elements existed in the model, resulting in easy failure under 
gravity loading and shallow slope surface failures. 

Fig. 18 (b) summarized the mean FoS for all tests using different 
homogeneity coefficients (m). It could be observed that the value of FoS 
increased quickly during the initial growth stage of homogeneity coef-
ficient, but it remained stable for relatively uniform slopes when m 
exceeded 8. The overall trend could be best fitted with a logarithmic 
function for heterogeneous slopes, i.e., FoS = 1.0935ln(m)+2.3764 (m 
< 8), followed by a linear function for relatively homogeneous slopes, i. 
e., FoS = 0.0167 × m+4.8346 (m ≥ 8). 

Furthermore, to investigate the influence of slope height on the slope 

failure mode, a series of simulations were conducted using the numerical 
model with the same slope inclination but different heights. The ho-
mogeneity coefficient was kept constant at 5, and the slope heights were 
set to 10.0 m, 17.5 m, and 25.0 m, respectively. For each slope height, 20 
simulations were run. Fig. 19 (a) shows the comparison of the obtained 
failure surface distribution as affected by different slope heights. It can 
be observed that the location of tension cracks at the slope crest grad-
ually moved leftwards with increasing slope height. This phenomenon 
was due to the fact that the upper part of a sliding surface is generally 
caused by tensile failure, while the middle and lower parts are induced 
by compression-shear failure. The length of the shear-resistant surface 
increased with the rising slope height, leading to the backward move-
ment of tensile failure areas. Meanwhile, when the slope height was 
small, the upper part of the failure band was relatively narrow, while it 
became wider as the slope height increased. This phenomenon was 
attributed to the high tensile stress concentrations being limited to a 
small area at the back of the slope with decreasing slope height, resulting 
in narrower potential failure paths. Fig. 19 (b) shows that the factor of 
slope safety decreased with the increase of the ratio of the slope height 
(h) to the width (w) of the crest surface, following a power law function 

Fig. 16. Snapshots of progressive slope failure and evolution mass spreading.  
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as FoS = 3.8718× (h/w)
− 0.879. 

5. Conclusions 

In this study, a novel implicit continuous to discontinuous method 
was proposed based on the rock mechanics, computational mechanics, 
and contact mechanics. This newly developed method was then used to 
investigate the cross-scale failure process of discontinuous rock mass, 
involving fine fracture creation, propagation, and penetration. The 

major conclusions of this study can be summarized as follows:  

(1) The potential energy equations associated with all forces or 
stresses, including strain, initial stress, point load, volume load, 
inertia force, contact spring strain, and friction, were deduced. 
The partial derivative equations of each potential energy 
component along the x-axis and y-axis were calculated. Specif-
ically, submatrices induced by normal spring, tangential spring, 
and friction were derived to capture the mechanical contact 

Fig. 17. Number of damaged elements during the formation of slope failure surface.  

Fig. 18. Influence of the material heterogeneity on (a) the location of failure surface and (b) the factor of safety.  

Fig. 19. Influence of the slope height on (a) the failure surface and (b) the factor of safety.  
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between adjacent blocks. Subsequently, the manner in which 
these obtained submatrices can be incorporated into the corre-
sponding positions of the global equilibrium equation was 
determined. In the developed method, the change of each po-
tential energy component at each time step can be updated, and 
the system can automatically reach equilibrium by solving the 
global equilibrium equation.  

(2) In the proposed program, an intact rock is endowed with the 
ability to split and crush. Initially, the rock can deform in various 
forms under applied loads. As the load increases, and the strength 
criterion is satisfied, new crack initiation or crack propagation 
can occur within the rock. With further increase in load, the rock 
can be fragmented into smaller pieces due to the coalescence of 
new cracks. The boundaries of these small rocks are contactable, 
allowing for opening, sliding, and locking to occur. Especially, 
when a grid line becomes a joint, its adjacent elements on both 
sides are separated, and the contact boundaries in the new mesh 
are updated by the developed searching algorithm.  

(3) The proposed method has proven to be effective in modeling the 
progressive failure process of slopes. It is observed that high 
concentrated stresses can trigger crack initiation, and the 
continuous process of crack propagation and nucleation ulti-
mately leads to slope failure. The number of failure elements 
within the slope increased rapidly during the primary fracture 
stage. The lower part of the sliding body is susceptible to frag-
mentation into smaller blocks due to strong squeezing and colli-
sion, while some larger and harder rocks may remain intact until 
the later stages of sliding.  

(4) The failed zone widened and the factor of safety (FoS) increased 
as the homogeneity coefficient increased. FoS remained an 
almost constant value when m exceeded 8, indicating a relatively 
uniform material behavior. Notably, in slopes with varying 
elevation heights, the FoS decreased in a power function form 
with an increasing ratio of slope height to the width of the slope 
crest surface. Besides, because of the solving overhead at each 
time step, the proposed method can be computationally expen-
sive for highly non-linear questions. Simultaneously, the 
computational efficiency depends on the total number and length 
of cracks existing inside a numerical model and is influenced by 
the cracking degree during calculation. Additionally, the pro-
posed method has limitations in dealing with fine cracks 
considering that cracks are modelled at the element level. These 
questions need further investigation. 
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