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Introduction: Cognitive functioning is central to the ability to learn, problem

solve, remember, and use information in a rapid and accurate manner and

cognitive abilities are fundamental for communication, autonomy, and quality of

life. Transcranial electric stimulation (tES) is a very promising tool shown to improve

various motor and cognitive functions. When applied as a direct current stimulus

(transcranial direct current stimulation; tDCS) over the dorsolateral pre-frontal

cortex (DLPFC), this form of neurostimulation hasmixed results regarding its ability

to slow cognitive deterioration and potentially enhance cognitive functioning,

requiring further investigation. This study set out to comprehensively investigate

the e�ect that anodal and cathodal bipolar bihemispheric tDCS have on executive

function and working memory abilities.

Methods: 72 healthy young adults were recruited, and each participant was

randomly allocated to either a control group (CON), a placebo group (SHAM)

or one of two neurostimulation groups (Anodal; A-STIM and Cathodal; C-STIM).

All participants undertook cognitive tests (Stroop & N Back) before and after a

30-minute stimulation/ sham/ control protocol.

Results: Overall, our results add further evidence that tDCS may not be as

e�cacious for enhancing cognitive functioning as it has been shown to be for

enhancing motor learning when applied over M1. We also provide evidence that

the e�ect of neurostimulation on cognitive functioning may be moderated by sex,

with males demonstrating a benefit from both anodal and cathodal stimulation

when considering performance on simple attention trial types within the Stroop

task.

Discussion: Considering this finding, we propose a new avenue for tDCS research,

that the potential that sex may moderate the e�cacy of neurostimulation on

cognitive functioning.

KEYWORDS

transcranial direct cortical stimulation (tDCS), executive functions, working memory

(WM), left dorsolateral prefrontal cortex (DLPFC), neuromodulation

Introduction

Cognitive functioning is central to the ability to learn, problem solve, remember, and use

information in a rapid and accurate manner (Morley et al., 2015). Fiocco and Yaffe (2010)

highlighted that cognitive abilities are fundamental for communication, autonomy, and

quality of life. It has been well established that those who experience cognitive impairment

show a decreased ability to execute daily living activities, and are at increased risk of
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mortality, compared to those with no cognitive impairment

(Johnson et al., 2007). Two fundamental aspects of cognition are

executive functioning (EF) and workingmemory (WM) (Timmann

and Daum, 2007). EF involves the ability to focus attention, plan

and attend to task-relevant information in a ‘noisy’ environment

(Dubreuil-Vall et al., 2019). Borghini et al. (2018) emphasized the

importance EF has on cognitive functioning, and explain that a key

attribute of EF is the ability to ignore task-irrelevant information

and maintain focus of attention. In conjunction with EF, working

memory (WM) refers to the system that maintains newly acquired

information in the mind for rapid retrieval while performing

complex tasks such as reasoning, comprehension and learning

(Fregni et al., 2005; Baddeley, 2010; Logie, 2011; Grot et al., 2017;

Al Qasem et al., 2022).

To evaluate performance of EF and WM among individuals,

two well established tasks administered within the literature are

the Stroop Task (Stroop, 1935) and N-Back letter (Kirchner,

1958) task respectively. The Stroop task tests the ability to shift

one’s attention (Spreen and Strauss, 1998) in the presence of

distraction, or, alternatively to suppress irrelevant information and

maintain attentional focus. It is believed to provide a measure

of cognitive inhibition (Boone et al., 1990; Archibald and Kerns,

1999). Alternatively, the N-Back task, presents participants with

a continual stream of stimuli at fixed intervals, and participants

must determine whether each stimulus matches the one presented

‘N’ items before. An advantage of the test is that processing load

can be varied systematically by manipulating the value of N,

which alters both accuracy and reaction time (RT) (Jonides et al.,

1997).

The importance of WM and EF can be readily observed

among individuals suffering deficits in these cognitive abilities.

For example, both WM and EF deficits are among the most

common symptoms associated with Alzheimer’s disease (AD)

(Stopford et al., 2012). In addition to AD, deterioration in

EF and WM performance has been associated with numerous

neurological and mental disorders, including schizophrenia,

attention-deficit/hyperactivity disorder (ADHD), major depressive

disorder (MDD), bipolar affective disorder, mild cognitive

impairment (MCI), post-traumatic stress disorder, traumatic brain

injury, epilepsy, and neurodegenerative dementia and movement

disorders (Stegmayer et al., 2015; Maehler and Schuchardt,

2016; Grot et al., 2017; Le et al., 2017; Dubreuil-Vall et al.,

2019). Finally, aging is associated with deficits in WM which

reduce one’s ability to process and maintain task-irrelevant

information (Pelosi et al., 2000; Gruber et al., 2011; Le et al.,

2017). Due to the impact that WM and EF deficits have on

independence and quality of life as one ages or experiences

disease, significant research attention has been allocated toward

improving these cognitive abilities in clinical (Li et al., 2021),

aging (Giuli et al., 2016) and in young healthy populations

(Schmiedek et al., 2014). One tool that has emerged as a promising

candidate for augmenting cognitive abilities in these populations

is neurostimulation.

Among a variety of neurostimulation techniques that currently

exist, transcranial electric stimulation is a promising tool shown

to improve various motor (Abdelmoula et al., 2016; Angius

et al., 2016; Saruco et al., 2017; Toth et al., 2019) and cognitive

(Antal et al., 2001, 2004; Kwon et al., 2008; Sparing et al.,

2009; Fregni et al., 2015) functions. Most commonly applied as

a direct current stimulus (transcranial direct current stimulation;

tDCS), this form of neurostimulation has been shown to slow

cognitive deterioration (Murugaraja et al., 2017) and potentially

enhance cognitive functioning (Javadi and Walsh, 2012; Dubreuil-

Vall et al., 2019; Figeys et al., 2021), particularly when applied

over the dorso-lateral pre-frontal cortex. tDCS is a non-invasive

brain stimulation approach which applies a weak current ∼1–

2mA over a target region of the cortex to affect the excitability

of the underlying neurons. Typically, anodal stimulation involves

the depolarization of cortical neurons, thus increasing cortical

excitability (Kwon et al., 2008). Cathodal stimulation is understood

to have the opposite effect, decreasing cortical excitability (Thair

et al., 2017). However, this knowledge largely stems from work

investigating the impact of tDCS on motor networks. When

used to probe regions predominantly involved in cognitive

functioning, results are less clear, with some studies finding

positive cathodal effects with no anode effects (Jacobson et al.,

2012).

Considering the effects of tDCS specifically on EF and WM

abilities, limited work exists among young healthy adults, with

some concluding that anodal tDCS over the left DLPFC can

enhance WM, with no effect of cathodal stimulation (Fregni et al.,

2005; Baumert et al., 2020). Alternatively, anodal stimulation of

the left posterior parietal lobe has been shown to worsen working

memory performance (Talsma et al., 2017). For EF, conclusions

are also mixed with some studies claiming improvements in

response inhibition (Loftus et al., 2015; Friehs et al., 2021) while

others suggest stimulation leads to increased impulsivity (Shen

et al., 2016). While many tDCS studies have discussed targeting

the left DLPFC, the right DLPFC remains largely unexamined

with little evidence that this area might be involved in working

memory (Wu et al., 2014). Moreover, most tDCS paradigms

have primarily involved monopolar stimulation of the left DLPFC

as opposed to bipolar, bihemispheric monatages. In a study by

Waters et al. (2017), they demonstrate the role of the ipsilateral

hemisphere has in motor tasks and highlight the increased

efficacy of bihemispheric compared to unipolar stimulation.

This presents an opportunity as little work has examined the

effect of bipolar DLPFC tDCS on EF and WM performance

to date.

The purpose of this study is to test whether bihemispheric

tDCS over the left DLPFC can improve WM and EF abilities in

young adults, evaluated using the N-Back letter and Stroop tasks

respectively. We first hypothesize that sensitivity on the N-Back

task, and response times and accuracy on the Stroop task, will

improve between pre and post stimulation attempts for control (no

tDCS) and placebo (sham tDCS) groups. Secondly, we hypothesize

that those receiving bihemispheric tDCS with the anode placed

over the left DLPFC will show performance improvements on N-

Back and Stroop tasks over and above those observed for control

and sham groups. Finally, we hypothesize that those receiving

bihemispheric tDCS with the anode placed over the right DLPFC

will show blunted performance improvements between pre and

post N-Back and Stroop tasks compared to those observed for

control and sham groups.
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Methods

Participants

A total of 72 healthy young adults [36 female; age 22.97 ±

3.44 years (mean ± SD)] with no neurological disorders provided

informed written consent prior to participating in the study.

Participants were instructed to refrain from alcohol 24 h prior and

caffeine 6 h prior to participation in the study. Each participant was

randomly allocated to one of four groups such that nine male and

nine female participants were allocated to each group: a control

group (CON), a placebo group (SHAM) and two neurostimulation

groups (a-STIM and c-STIM; described below). The study was

approved by the university research ethics committee in accordance

with the declaration of Helsinki.

Cognitive tasks

Inquisit 5 software (Millisecond Software LLC) was used

to administer Stroop and N-Back Letter tasks and collect data

regarding participant performance.

Stroop task

The Stroop task has been extensively adopted for

neuropsychological testing (Scarpina and Tagini, 2017). During

the task, participants were presented with one of 4 words (“red,”

“green,” “black,” or “blue”) or a colored rectangle (in one of the

same 4 colors) on a white background. Words were also presented

in red, green, black, or blue colored font. Stimuli were categorized

into three different trial types. Congruent trials contained words

written in the same color font (i.e., “blue” presented in blue font).

Incongruent trials contained color words written in a font of a

different color (i.e., “blue” presented in green font). Control trials

were those containing colored rectangles. Participants responded

to a total of 84 trials during the task with seven trials involving

each of the four colors within each trial type. Participants were

instructed to always respond to the font color and not the word,

as accurately and quickly as possible. Participants pressed the

keys on the keyboard “d,” “f,” “j,” and “k” which corresponded

respectively to the answers red, green, blue and black. The key

bindings were represented at the top of the screen in gray ink

throughout the duration of the task. Errors and response times

(RT; in milliseconds) were recorded for each trial.

N-Back letter task

The N-Back Letter task used in this study was adapted to

include 0-back, 1-back and the 2-back blocks (3-back excluded).

During each block of the task, participants were presented with a

stream of the following consonants in white font on a black screen,

one after the other: B, C, D, F, G, H, J, K, L, M, N, P, Q, R, S, T, V, W,

Y, Z. Each letter was presented on the screen for 500ms, the screen

then remained blank for 3000ms until the next stimulus showed.

During the 0-Back block, the first consonant presented was

the target letter and participants had to remember this one letter

and indicate every time this letter appeared in the sequence of

presented letters by pressing the “A” key on the keyboard. For the

1-Back block, participants were asked to press the “A” key if the

current letter presented was the same as the letter shown previously

in the sequence. For the 2-Back block participants were asked to

press the “A” key if the current letter presented was the same as

the letter presented two letters before. The participants completed

a short practice sequence of each block once and then completed

3 test sequences of each block presented in order of difficulty (0-

Back → 1-Back → 2-Back). We recorded the number of hits

(correct recognition of the target letter), correct rejections (correct

recognition of a non-target letter), misses (failed recognition of a

target letter), and false alarms (indicating falsely that a non-target

letter was a target letter).

Transcranial direct current stimulation

Two identical bespoke neurostimulation devices designed by

Flow Neuroscience (FlowTM) (https://www.flowneuroscience.com)

were used to administer 2mA of bihemispheric tDCS to the DLPFC

of participants in the A-STIM and C-STIM groups. Those in the

A-STIM group used the device with the anode and cathode over

the left and right DLPFC respectively. Alternatively, those in the C-

STIM group used the device with the anode and cathode reversed,

that is, over the right and left DLPFC respectively. Saline sponges

were fixed to two 22.9 cm2 spheric electrodes (current density

= 0.09 mA/cm2) and current was delivered for 30min. Those

participants in the SHAM group wore the same headset as the

A-STIM participants, however, the current was only increased to

only 1mA and then back to 0mA over two 30s intervals, and then

remained off for the remainder of the 30min intervention. Finally,

those participants in the CON group wore the headset but it was

never turned on. To maintain a similar cognitive engagement of

participants across groups (Toth et al., 2019), all participants during

the 30min played tetris.

Protocol

Participants began by providing demographic information,

including their age, sex, color blindness, and concussion history.

Any participants who were color-blind or had had a concussion in

the last 5 years were excluded from participating (no participants

excluded). Following this, participants completed the Brunel Mood

Scale Questionnaire (BRUMS), to assess their current mood state.

Following completion of the BRUMS, each participant performed

baseline attempts of the Stroop and the N-Back tasks. The order of

presentation of the two tasks was randomized for each participant.

Following the baseline attempt at both cognitive tests, participants

completed the 30-min neurostimulation intervention according to

their group allocation (CON, SHAM, A-STIM, C-STIM). After

completing the intervention phase of the protocol, participants

completed the BRUMS a second time as well as a post test of

the Stroop and N-Back Letter tasks in the same order as they
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did at baseline. Finally, after completing the experiment, each

participant indicated whether they believed they had received

neurostimulation during the 30-min intervention.

Data processing

For each trial type of the Stroop task (Control, Congruent,

Incongruent) RTs within baseline or post tests were averaged across

like trials to provide an average RT for each participant. Errors were

counted to calculate the % of trials participants correctly responded

to for a given trial type (Percent Correct).

For the N-Back Task, 1-Back and 2-Back Hits, Misses, Correct

Rejections and False Alarms were used to calculate sensitivity on

these blocks of the task (D-Prime; d’). D-Primewas calculated as the

difference between the z transforms of the hit and false alarm rates

[d’ = z (Hit Rate) – z (FA rate)] (Macmillan and Creelman, 1990).

The hit rate was calculated as [hits/(hits + misses)]. Where the hit

rate was 1, an adjusted hit rate was calculated (n-0.5)/n, where n

refers to the number of target trials (for the task used in this study,

the number of target trials across three iterations of a given block

was 15). The False Alarm rate was calculated as false alarms/(false

alarms + correct negative). Where the false alarm rate was 0, an

adjusted false alarm rate was calculated as (0.5/n) where n refers to

the number of non-target trials (for the task used in this study, the

number of non-target trials across three iterations of a given block

was 30).

Data analysis

Data analyses were performed using SPSS version

28. Normality of data residuals were assessed through

observing Shapiro-Wilk statistics and histogram plots

and heterogeneity of variance was assessed using a

Levene’s test. Where variance heterogeneity was violated,

Greenhouse-Geisser corrections were applied. Where post-

hoc comparisons were made, Sidak alpha adjustments

were applied.

To assess the hypothesis that sensitivity on the N-

Back task, and response times and accuracy on the Stroop

task, would improve between pre and post stimulation

attempts for control (no tDCS) and placebo (sham

tDCS) groups, we performed separate paired samples

t-tests comparing baseline and post test scores for

each group.

To assess the hypothesis that anodal and cathodal stimulation

would respectively improve and disimprove Stroop and N-Back

task performance compared to those in the control and placebo

(sham) conditions, we performed 2-way (Sex by Condition)

ANCOVAs, with baseline scores inputted as a covariate in

the model.

Finally, we conducted 3-way (Sex by Condition by Session)

ANOVAs on each of the 8 mood categories assessed through the

BRUMS questionnaire. We note that the inclusion of sex in the

above two models was predicated on the ability to recruit equal

TABLE 1 Paired t-tests analysis of practice e�ects for Stroop and N-Back

tasks.

Task Metric Stimulus type Baseline vs. Post
(p-value)

Stroop Accuracy

(Percent

Correct)

Control 0.544

Congruent 0.029

Incongruent <0.001

Response

Time (RT; ms)

Control <0.001

Congruent <0.001

Incongruent <0.001

N-Back Sensitivity

(D-Prime; d’)

1-Back 0.927

2-Back 0.003

Bold values denote statistical significance p < 0.05.

numbers of males and female participants and effects examined

were exploratory.

Results

Practice e�ect

Paired t-tests revealed a practice effect for all measures of

the Stroop task except Accuracy (percent correct) on Control

trials (Table 1). It also revealed a practice effect for performance

on the 2-Back, but not 1-Back, block of the N-Back task

(Table 1).

Neurostimulation e�ect

For Stroop task metrics, a significant main effect of Condition

was observed for Accuracy on congruent trials [F(3,69) = 3.783,

p = 0.015, [[Mathtype-mtef1-eqn-1.mtf]]η2p = 0.157) as was a

significant interaction between sex and condition [F(3,69) =3.628,

p = 0.018, η
2
p = 0.151]. Post-hoc analysis showed that for Male

participants, accuracy on post test congruent trials was significantly

greater following both anodal and cathodal stimulation when

compared to those receiving no stimulation (Control) or a sham

stimulation (placebo) (ASTIM-Control p < 0.001; ASTIM-Sham

p = 0.008; CSTIM-Control p = 0.001; CSTIM-Sham p = 0.02)

(see Figure 1). No significant main effect of Sex, Condition or

interaction effect was found for any other Stroop task metric

(Table 2).

For N-Back task metrics, no significant main effect of sex,

Condition or interaction effect was found for either 1-Back or

2-Back performance (Table 2). A trend was observed however,

suggesting post test performance improvements on the 2-Back were

blunted by the anodal stimulation (Figure 1).

When observing results from each of the 3-way ANOVAs on

the 8 moods captured by the BRUMS questionnaire, we noticed a

significant effect of Time for Tension [F(1,62) =22.882, p < 0.001,

η
2
p = 0.27], Confusion [F(1,62) =5.489, p = 0.022, η2p = 0.081] and
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FIGURE 1

Post test stroop accuracy (A) and response times (B) on congruent trials of the Stroop task by male and female participants in each of the 4

stimulation groups. ANCOVA adjusted means are displayed with standard errors with covariate baseline score represented with the black circle. (C, D)

show adjusted means of sensitivity on Post test 1-Back and 2-Back levels of the N-Back task, with covariate baseline scores.

calmness [F(1,62) = 8.272, p= 0.006, η2p = 0.118], demonstrating all

participants overall were less tense, confused, and calm at post test

compared to baseline. We also observed a main effect of condition

for vigor [F(1,62) =5.489, p = 0.022, η2p = 0.081], happiness [F(1,62)
=5.489, p = 0.022, η

2
p = 0.081] and calmness [F(1,62) =5.489, p

= 0.022, η
2
p = 0.081], demonstrating participants in the CSTIM

group overall had lower vigor, happiness and calmness compared to

those in any other group. Finally, an interaction between time and

condition was observed for vigor [F (3,62) =3.332, p = 0.025, η2p =

0.139], such that an effect of time was observed for only those in the

ASTIM group. Specifically, baseline vigor was significantly higher

than post test vigor for the ASTIM group only. See Appendix 1 for

a statistical summary of BRUMS data.

Discussion

This study set out to examine the effect of anodal and

cathodal tDCS over the DLPFC on executive functioning and

working memory abilities, as evaluated using the color-word

Stroop and N-Back letter tasks respectively. In line with our

first hypothesis, we found performance on both the Stroop

and N-Back tasks to significantly improve between baseline

and post-tests, confirming the existence of a practice effect

for both cognitive tasks. We then evaluated whether anodal

and/or cathodal stimulation modulated post test performance on

either task compared to sham and control groups. We found

that for the Stroop task, both anodal and cathodal stimulation

significantly improved accuracy at post test compared to sham and

control conditions only for male participants, with no significant

difference observed for response time. On the N-Back task,

improvements were observed for 2-Back sensitivity in all groups

except those in the A-STIM group, where any practice effect

on the 2-Back level of the N-Back task appeared blunted. We

discuss the relevance of these findings considering the existing

work to date investigating the effect of neurostimulation on

cognitive abilities.

Overall, research investigating the effect of tDCS on executive

functioning and inhibitory control is mixed, particularly among

those studies utilizing the Stroop task as a cognitive tool. For

example, while Loftus et al. (2015) suggest anodal tDCS augments

performance through an observed reduction in response times,

they observe an appreciable increase in error rates following

tDCS, suggesting a strategy change rather than a cognitive
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TABLE 2 Statistical results from 2-way ANCOVAs on all metrics.

Test Metric Stimulus type E�ect df1 df2 F-value p-value E�ect size

Stroop Accuracy (% Correct) All Sex 1 69 0.006 0.941 0

Condition 3 69 1.102 0.355 0.051

Sex∗Condition 3 69 1.602 0.198 0.073

Control Sex 1 69 0.178 0.674 0.003

Condition 3 69 0.869 0.462 0.041

Sex∗Condition 3 69 0.282 0.838 0.014

Congruent Sex 1 69 0.514 0.476 0.008

Condition 3 69 3.783 0.015 0.157

Sex∗Condition 3 69 3.628 0.018 0.151

Incongruent Sex 1 69 0.19 0.665 0.003

Condition 3 69 0.512 0.676 0.025

Sex∗Condition 3 69 0.227 0.877 0.011

Response Time (ms) All Sex 1 69 0.851 0.36 0.014

Condition 3 69 1.858 0.146 0.084

Sex∗Condition 3 69 1.265 0.294 0.059

Control Sex 1 69 0.108 0.744 0.002

Condition 3 69 1.458 0.235 0.067

Sex∗Condition 3 69 1.159 0.333 0.054

Congruent Sex 1 69 0.232 0.632 0.004

Condition 3 69 1.864 0.145 0.084

Sex∗Condition 3 69 0.218 0.884 0.011

Incongruent Sex 1 69 2.21 0.142 0.035

Condition 3 69 1.082 0.364 0.051

Sex∗Condition 3 69 1.91 0.137 0.086

N-Back D-Prime (d’) 1-Back Sex 1 69 0.315 0.577 0.005

Condition 3 69 0.334 0.801 0.016

Sex∗Condition 3 69 0.461 0.71 0.022

2-Back Sex 1 69 1.685 0.199 0.027

Condition 3 69 1.355 0.265 0.062

Sex∗Condition 3 69 0.112 0.953 0.005

Bold values denote statistical significance p < 0.05.

performance advantage. Alternatively, in a study by Frings et al.

(2018), they report an increase in error rate following cathodal

stimulation with no effect of anodal stimulation. However, this

study failed to compare effects to a control condition and

their electrode montages were different to the bihemispheric

setup in this experiment. In previous studies by Fecteau et al.

(2007; 2014), they fail to report on the effect of tDCS on

overall response times, rendering the effect of tDCS inconclusive.

Finally, a recent study by Baumert et al. (2020) reported

improved response times across the various trial types of the

Stroop task. However, no baseline performance was recorded

and thus, one cannot say for certain that differences between

stimulation groups are not resulting from inherent differences

that would have existed following a baseline test prior to

any intervention.

In our study, we found that when using a bihemispheric

electrode montage, both anodal and cathodal stimulation (with

reference to the left-DLPFC), response times and error rates

(accuracy) were no different between conditions testing simple

attention (i.e., control trials) or more cognitively complex

inhibitory stimuli (i.e., incongruent trials). However, we did see

that for males specifically, both anodal and cathodal stimulation

reduced errors specifically on congruent trials compared to both

control and sham conditions, with no difference in response

time reductions across stimulation conditions. This finding is not

explained by differences in caffeine or alcohol consumption, as all

participants reported refraining from alcohol at least 24 h prior and

caffeine at least 4–6 h prior to testing. Moreover, we argue that this

finding is not explained by a placebo effect as 76% of participants in

the sham group reported thinking they were in a neurostimulation
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group upon performing a manipulation check at the conclusion of

the experiment.

Congruent trials are arguably the easiest trial type presented

during the Stroop task, as evidenced by the fact that response

times and error rates are the lowest compared to control and

incongruent trial types. This is believed to result from semantic

facilitation (La Heij et al., 1985; Parris et al., 2022). Moreover,

it has also been established on multiple occasions that during

the performance of many cognitive tasks, males often prioritize

speed over accuracy, with females adopting the opposite, more

cautious strategy of prioritizing accuracy (Lohman, 1986; Campbell

et al., 2018; Toth and Campbell, 2019). Our findings demonstrate

that during the post test (second attempt at the Stroop task),

accuracy decreases for males on congruent trials as response

times improve, suggesting males potentially gain confidence to

adopt a strategy that prioritizes response speed on ‘easier’ trials.

In this case, both anodal and cathodal stimulation appear to

facilitate the maintenance of accuracy performance while response

times improve. The novelty of this result is noteworthy, as the

aforementioned studies investigating the effect of neurostimulation

on cognitive ability did not consider the effect of sex due to

imbalances in participant recruitment (Loftus et al., 2015; 65%

female, Frings et al., 2018; 66% female, Baumert et al., 2020;

73% female). As a result, our finding, albeit exploratory, calls

into question the potential for sex to moderate the effect of

neurostimulation on cognitive functioning and merits further

research. Previous work has suggested differences in skull anatomy

to affect the delivery of current to the central nervous system

(Zamora et al., 2018; Kwan et al., 2019). However, this topic is only

more recently attracting research attention as it relates to tDCS

(Hunold et al., 2021; Sun et al., 2021).

When considering our N-Back results, we observed firstly

that cathodal stimulation over the left dlPFC did not augment

performance compared to sham or stimulation conditions. This

aligns with previous work suggesting there is little evidence for

cathodal stimulation to hinder working memory performance

(Zaehle et al., 2011; Mylius et al., 2012; Keshvari et al., 2013).

However, we did observe a trend for anodal stimulation to blunt the

practice effect evident for all other conditions. This potential effect

may need to be explored further or examined with increases in

stimulation dosage across multiple stimulation sessions. However,

recent work would suggest that repeated tDCSmay not enhance the

effect (Mashal and Metzuyanim-Gorelick, 2019). Overall, we did

not find any significant effect of a single session of tDCS on working

memory performance, a finding shared by others (Hoy et al., 2013).

Previous work has suggested that a bihemispheric bipolar

montage of tDCS can be more efficacious than unipolar montages

for motor tasks (Waters et al., 2017). However, we did not

find any evidence of an enhanced effect from our bihemispheric

montage over the dlPFC on cognitive ability. This may not

be due to the electrode montage, but the stimulus waveform

itself. It has been shown previously that transcranial alternating

current stimulation (tACS)may bemore efficacious for augmenting

cognitive performance as the sinusoidal waveform can be better

tuned to the underlying neural rhythms evident during cognitive

processing as observed using EEG (Kim et al., 2021). Thus, further

work investigating the effect of cathodal vs. anodal bihemispheric

tACS on cognitive abilities is warranted.

This study set out to comprehensively investigate the effect

that anodal and cathodal bipolar bihemispheric tDCS could have

on executive function and working memory abilities. Overall, we

provide further evidence that tDCS may not be as efficacious

for enhancing cognitive functioning as it has been shown to be

for motor learning. We also provide preliminary evidence that

the effect of neurostimulation on cognitive functioning may be

moderated by sex, with males demonstrating a benefit from both

anodal and cathodal stimulation when considering performance on

simple attention trial types within the Stroop task. In light of this

exploratory finding, we propose a new avenue for tDCS research,

that is to investigate the potential for sex to moderate the efficacy of

neurostimulation on cognitive functioning.
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