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Evaluation metrics for intelligent generation of
graphical game assets: a systematic

survey-based framework
Kaisei Fukaya, Damon Daylamani-Zad and Harry Agius

Abstract—Generative systems for graphical assets have the potential to provide users with high quality assets at the push of a button.
However, there are many forms of assets, and many approaches for producing them. Quantitative evaluation of these methods is
necessary if practitioners wish to validate or compare their implementations. Furthermore, providing benchmarks for new methods to
strive for or surpass. While most methods are validated using tried-and-tested metrics within their own domains, there is no unified
method of finding the most appropriate. We present a framework based on a literature pool of close to 200 papers, that provides
guidance in selecting metrics to evaluate the validity and quality of artefacts produced, and the operational capabilities of the method.

Index Terms—Evaluation metrics, Graphical game assets, Artificial Intelligence, PCG
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1 INTRODUCTION

G RAPHICAL assets such as 2D images and textures, or
3D models and environments form a large portion of

digital game content. These assets are mostly created by
artists, designers and 3D modellers. More recently, content
creators have been using techniques such as photogramme-
try and 3D scanning to speed-up content creation, especially,
at design and prototyping stages. Procedural content gener-
ation has also been widely used in digital games from the
early years in titles such as Rogue, Maze Craze and River
Raid, to more recent examples including .kkrieger and No
Man’s Sky.

Procedural modelling algorithms [1], shape grammars
[2], [3], [4], and deep-learning [5], [6], [7] have all been used
to generate graphical assets. When specific content is de-
sired, these approaches can positively impact the effort and
time required for creating content, while retaining varying
degrees of creative control.

These approaches require quantitative testing and vali-
dation, however. While appropriate metrics are applied in
assessing these, there is no unified framework for metrics
applicable across the gamut of graphical asset generation
methods. While deep-learning approaches have a well de-
veloped collection of applicable metrics [8] others are frag-
mented or otherwise context specific.

This is a considerable challenge in using these ap-
proaches, as the designers and developers struggle to find
the right method(s) for evaluating their approach aside from
trial and error [9]. Each approach can be evaluated based on
different aspects and various characteristics. Currently, the
body of knowledge does not provide a clear guide in iden-
tifying suitable evaluation methods for the requirements of
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designers, developers and their projects.
In this paper a new framework is proposed, with the pur-

pose of providing guidance for practitioners in evaluating
graphical asset generation methods, aimed for use in game
contexts. A systematic literature search has been conducted,
resulting in a framework and analysis of existing metrics.
The approach to literature search is presented in section 2,
followed by an overview of the framework in section 3, and
a breakdown of metrics and their applications in sections 4,
5 and 6. Section 7 will provide information on how to use
the proposed framework.

2 THE APPROACH TO SYSTEMATIC LITERATURE
SEARCH

The systematic literature search, shown in figure 1, was ini-
tially conducted via queries consisting of a selection of key
words over the four databases: ACM Digital Library, IEEE
Xplore, ScienceDirect and Springer. These initial key words
consisted of general terms in the PCG literature, along-
side variations and synonyms of the word “generation” or
“creation”, and terms “asset” and “content”. These words,
table 1, were separated into three semantic groups, from
which queries were formed. Query strings were formed
by combining words between groups with AND operators,
and words within groups with OR operators. For example:
”(Parametric OR Inverse OR Grammar) AND (Graphic OR
Asset OR 3D OR Mesh) AND (Generation OR Synthesis)”. To
decrease the number of queries needed, query strings each
contained multiple terms from each group. In addition to
this, a broad search query containing all terms was used.
The same queries were applied across all databases. To
control the scope of this research we limit our search to
static forms of asset by excluding animations and visual
effects. As asset types emerged from the first set of searches,
these were added in a secondary set of terms. The new
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Fig. 1: The systematic literature review process. * Search keywords are listed in table 1, and ** inclusion/exclusion and
quality criteria are listed in table 2.

Group 1 Group 2 Group 3

Procedural* ”Deep Learning” Grammar Graphic* Generation
Algorithmic* Inverse Deep Asset Synthesi*
”Machine Learning” Stochastic Parametric 3D Modeling
ML Furniture Vehicle* ”3D Art” Modelling
Car* Building* Cloud* Content Creation
Environment Road* Tree* ”3D Model” Design
Terrain ”Normal map” ”Texture map” Mesh Production
Layout ”Height map” Character Shape Assemb*
Face Hair Organ “Text-to-image”
Sprite 2D

TABLE 1: The search terms used to query the chosen databases with expanded search terms in grey.

Inclusion Criteria Exclusion Criteria Quality Criteria
• Methods for generating graphical assets.
• Studies that compare methods for gener-
ating graphical assets.
• Studies that combine methods for gener-
ating graphical assets.
• Only the newest version of a publication
will be included where different iterations
are found.
• Literature published between 2016 and
2023.

• Studies concerning techniques for gener-
ating assets that are not distinctly graphical
assets, e.g., text, audio, animation.
• Studies that focus on functional require-
ments rather than visuals.
• Non-procedural methods.
• Survey papers.
• Review papers.
• Posters.
• Courses.

• The method is validated.
• The method is peer reviewed.

TABLE 2: The inclusion, exclusion and quality criteria applied to the literature search.

terms, shown in grey within table 1, were used to form new
queries.

The titles and abstracts of results were evaluated against
the inclusion and exclusion criteria seen in table 2, and the
results that passed these criteria formed the pool of accepted
literature. The process of evaluation, for each query, was
continued until the query was exhausted. Queries were con-
sidered exhausted once each result had been evaluated, or a
full page of results had not passed the criteria. The number
of entries per page varied between databases, therefore, per
page entry counts were recorded for each database.

Next, the methods and conclusions were evaluated
against the inclusion and exclusion criteria, and those that
passed were then evaluated against the quality criteria.

After the first set of queries were made and evaluated, the
search terms were refined. The search process then repeated
using these new terms, and additionally, the accepted liter-
ature was cross-referenced to find more relevant literature.
Following the same process, the search was expanded to the
following databases, as well, until results were exhausted:
Ebsco, Google Scholar, and ResearchGate to ensure com-
pleteness.

3 EVALUATION METRICS FRAMEWORK

There are various metrics that can be applied to graphical
asset generation methods, depending on the type or for-
mat of the asset, or the generative technique employed.
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We categorise these metrics into three main classifications:
Operation, Artefact Validation, and Artefact Quality.

Methods for generating graphical assets take many
forms. These methods largely vary by target asset type and
overall technique employed. Figure 2 shows the taxonomy
of asset types and techniques found in the literature, in-
troduced in [10]; related with the high-level metrics frame-
work, contributed here. Methods for generating 2D and 3D
assets work with vastly different forms of data. 2D data may
consist of bitmaps made up of pixel values, or vector data
that represents points in 2D space. Whereas 3D data may
consist of meshes, point-clouds or voxels. The technique
represents the general task that the generator completes,
but also relates to a particular arrangement of input and
output data types for a given method. Selecting the cor-
rect metrics for evaluating a generative method requires
that the asset type and technique is known. For example,
a method that uses a sketch-based technique to produce
3D mesh assets will take 2D bitmap or vector data as an
input, and will output mesh data. With this knowledge,
appropriate operation, artefact validation and artefact quality
evaluation metrics can be selected. Low-level diagrams in
figure 6, figure 3 and figure 5 show the expanded list of
metrics found in the literature. Items are placed under 3D
and 2D groupings, and all ungrouped metrics have been
used in both 3D and 2D use cases. Exceptions relating to
specific approaches or formats are marked with tags which
are defined at the bottom of the figures. Metrics that occur
only once in the examined literature are marked white, and
metrics that occur more than once in the examined literature
are marked grey.

As discussed in [10], the classification of asset and tech-
nique type have been derived from the examined literature.
2D and 3D assets are differentiated by the formats used
to represent them, as well as the types of asset commonly
focused on in the literature. Two broad classifications have
been applied to both 2D and 3D asset types, these are
arrangement and individual. Arrangements are groupings of
other types of asset, as opposed to individual asset types. For
example, 2D layouts [11], [12], [13], [14] or environments
[15], [16] are arrangements of 2D assets such as sprites.
Techniques however, are separated into conceived and syn-
thesised types. The former includes methods that produce
assets from scratch, either by re-imagining an input in a
different modality (externally conceived), or methods in
which the system itself has full creative control (internally
conceived). The latter includes methods that manipulate or
combine existing assets to form new results. These include
object placement algorithms, part-wise synthesis, methods
for interpolating between existing assets, style transfer and
parametric systems. At a high-level, we group together
individual 2D assets as sprites and maps, where sprites
consist of graphics that may be used as characters [17]
or objects [18] in a 2D world or user interface [13], and
maps consist of texture [19], normal [20] or height-maps
[21] that are commonly applied in improving the rendering
of mesh based 3D assets. 3D assets may be arranged in an
interior context, such as room layouts [22] or in an exterior
context such as a city made up of buildings [23]. The high-
level 3D categorisations include scenery, hard-surface and
characters/creatures. Scenery groups together clouds [24],

roads [25], terrain [26], trees [27] and rocks [28]. Hard-
surface groups buildings [2], furniture [29], vehicles [5] and
props [30]. While characters [31], faces [32], hair [33] and
organs [34] are grouped under characters/creatures.

Fig. 2: A high-level view of the metrics framework, with
a taxonomy of asset types and techniques found in the
literature.

Togelius et al. [35] put forth 5 desirable properties of
PCG methods in games. These are: Speed, generation time;
Reliability, the meeting of baseline expectations; Controlla-
bility, the user’s ability to specify or steer content; Expres-
sivity/Diversity, the variety of possible artefacts; and Cre-
ativity/Believability, the quality of artefacts. While it would
be invaluable to have the capability of addressing each
of these properties via quantitative means, we are able to
cover 4 of these properties given the methods found in
the literature. Artefact validation metrics assess the Reliability
and to some extent the Expressivity/Diversity of the method
via statistical aggregation. Artefact quality metrics assess
the Creativity/Believability of the the artefacts, and operation
evaluation, namely performance metrics, cover the Speed
and scalability of the method. On the other hand, Control-
lability is harder to quantify, and thus no metrics were ob-
served in the literature. We posit that this could be mapped
to the method’s technique classification by means of user
degrees of freedom, though it is difficult to determine what
constitutes a meaningful degree of freedom. For example, a
sketch-based system affords the user a large amount of con-
trol over the outcome in exchange for a moderate degree of
effort; whereas a seeded approach may require close to zero
user input and thus affords very little control. A parametric
approach may have varying degrees of freedom depending
on the parameters exposed to the user, but whether or not
these are meaningful controls is not objectively identifiable.
In figure 4 of [10] graphical asset generation input types
have been ranked in terms of complexity.

Artefact validation consist of objective and perceptual simi-
larity metrics. Objective similarity metrics assess the similar-
ity between outputs and corresponding ground-truths and
are often used in aggregate form for evaluation purposes.
For these metrics to be applied, the ideal (i.e. ground-truth),
corresponding data must exist for each output in the test.
As such these metrics are largely seen in deep-learning gen-
erative approaches where this data is available as a matter

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3398998

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

of course. This naturally limits the relevance of objective
similarity metrics to externally conceived methods, where the
generator’s job is to reliably interpret data of one form to
another e.g. text-to-image or sketch-to-mesh. Conversely,
objective similarity metrics are counter-productive if at all
possible in cases where the generator should have creative
agency, as they punish variation and reward conformity.
Some common objective similarity metrics include, Mean
squared error (MSE) [36], [37], [38], [39], Root mean square
error (RMSE) [2], [3], [4], [40], [41] or Intersection over union
(IoU) [12], [42], [43], [44].

Perceptual similarity metrics offer an alternative approach
to validating artefacts, requiring less correspondence to
ground-truth data. This is achieved either through human
perception, or standardised deep-learning models that be-
have as a proxy for human perception such as Inception
score (IS) [45] and Frechet inception distance (FID) [46].

Artefact quality metrics assess the generator’s ability to
produce high quality outputs. This includes human-centered
measures, such as questionnaires and rating systems [47],
[48], [49], [50], and characteristic metrics that measure partic-
ular attributes of assets.

Operation evaluation includes performance and controlla-
bility measures. Performance metrics assess resources, such
as memory [51], [52], [53] or time cost [29], [52], [53], [54],
[55] of a method. While these metrics are important during
development and testing, they are particularly important
when applications go into production and release and run
in real-time, as they have direct implications for user-
experience and usability.

It is in the best interest of researchers and practitioners
to evaluate the validity and the quality of artefacts as well as
the operability of their generative methods, in order to assess
and present the capability of their approach, and compare
it with existing alternatives. Sections 4, 5 and 6 will cover
artefact validation, artefact quality and operation metrics
respectively.

4 ARTEFACT VALIDATION METRICS

A wide breadth of established metrics may be applied in
validating the capabilities of generative methods as shown
in framework figure 3. These artefact validation metrics
assess the degree to which generated artefacts match the
intended asset type. This can be achieved through objective
or perceptual similarity measures, which are presented in
section 4.1 and 4.2 respectively. Section 4.3 will present
relevant procedures.

4.1 Objective similarity metrics

Objective similarity testing assumes that there is an exact
intended output for every input. Therefore only applying to
methods, often deep-learning based, that have the purpose
of reliably re-interpreting an input in some way. However,
this is not always a complete limitation. For example, with
variational autoencoders (VAEs), such metrics can validate
how well the method captures the desired features of a
dataset, with the method itself still being capable of produc-
ing novel and varied outputs by sampling or interpolating
between data points [19], [44], [56]. Many games follow

Fig. 3: The low level metric evaluation framework, focusing
on operation metrics, and the various contexts in which they
are applied. Keys at the bottom indicate their corresponding
value within the diagram. White coloured boxes indicate
metrics that only occur once within the examined literature,
while grey coloured boxes indicate metrics that have more
than one occurrence in the examined literature.

a specific art direction, with requirements for the style of
assets. Altogether, validating and training a VAE on data
that fits these requirements would help ensure style consis-
tency while still producing varied results. In other words,
objective similarity can help ascertain in these cases, whether
a method has successfully captured a target search space.

Objective similarity metrics are applied in the comparison
between corresponding data points, such as mean absolute
error (MAE) [17], [51], [57], mean squared error (MSE) [36],
[37], [38], [39], root-mean-squared error (RMSE) [2], [3], [4],
[40], [41] and sum of squared errors (SSE) [23]. MAE aggre-
gates the absolute error of data-points, that is the positive
difference between corresponding values, while SSE and
MSE square these errors strengthening larger errors and
diminishing smaller errors. SSE aggregates via summation
while MSE aggregates via mean. The resulting values are in
squared units, however. RMSE negates this effect by taking
the root of the resulting value [8]. While each of these errors
have their uses when training deep-learning methods, MAE
and RMSE can be considered more intuitive for evaluation
purposes, as they share the same unit as the data they are
derived from.

Intersection over union (IoU) measures the overlap be-
tween two volumes or regions, measuring the difference
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in shape and positioning between two assets. This has
be applied in 2D for evaluating segmentation tasks [42]
and layouts [12] or in 3D for comparing shapes [43] or
bounding boxes [44]. Chamfer distance (CD) compares the
difference between two sets of points by averaging the
difference between each point and its closest point in the
other set, thus not requiring a defined pairing or matching
set sizes. This can be applied to all point-based asset formats
such as point-clouds [58], and meshes [59]. Also used for
point-based formats, Hausdorff distance finds the greatest
difference between two sets of points [34], [60]. The F-score
is a measure that combines the precision and recall for
generated and ground-truth counterparts. This is used to
score shape similarity between the two, therefore measuring
the reconstruction quality of the method. This has been used
to evaluate single-view [61], [62], [63] and multi-view [59]
reconstruction approaches. For methods of interpolation, a
separability score can be obtained to measure how disen-
tangled the latent space is [64]. To test how well a deep-
learning model generalises, irrespective to the set of training
data, K-fold cross-validation may be employed [24]. This
method splits the dataset into K subsets. For each subset,
the model is trained on all other subsets, and tested using
the subset in question. The mean and variance across tests
can then be reported in the chosen evaluation metric. Zhao
et al. [65] utilise log-Likelihood analysis in assessing an
adversarial autoencoder’s ability to capture the distribution
of the training data.

Statistical tests may be necessary in the case of large
deep-learning models, providing insight into the capability
of the method through analysis over output distributions.
These tests are purely statistical analysis such as analysis
of means and standard deviations, and nearest neighbour
classification and regressions. 1-nearest neighbour accuracy
(1-NNA) assesses the similarity between two distributions
using a 1-nearest neighbour classifier. This classifies each
sample as belonging to one of the two groups, thus identi-
cal distributions should converge on an accuracy of 50%,
therefore the closer the value is to 50% the better [66].
This approach takes into account the similarity in both
the quality and the variation or diversity of the two sets,
and has been used for 3D deep-learning approaches [67],
[68], [69], [70]. Jensen–Shannon divergence (JSD) is used
to measure the divergence between a ground truth and
output distribution. For example, this is applied in point-
cloud evaluation [71], [72]. Ivanov et al. test that their results
follow a normal distribution, using Kolmogorov-Smirnov
and Shapiro-Wilk tests [73].

Many similarity metrics are specific to 3D assets. For
example, earth mover’s distance (EMD) is used to mea-
sure the difference between an output and a ground truth
distribution. This is used for point-clouds [74], voxels [75],
and meshes [76]. Coverage scores the amount of similarity
between two sets of point-clouds or meshes, for example,
between generated results and a reference set [69], [77], [78].
Minimum matching distance (MMD) [69], [78], [79] instead
gives a better representation of difference between the two
sets, matching items by minimum distance and yielding the
average of these distances [80]. Mesh reconstruction simi-
larity can be calculated using point-wise euclidean distance
between target and generated meshes [81], [82].

Surface distance metrics such as those used in [36], [83],
[84] densely compare 3D points as a measure of surface simi-
larity. Light field distance metrics use multi-view renderings
of the 3D assets to calculate shape similarity invariant to
rotation [78], [85]. Whereas multi-view consistency error
observes the distance between the same points at different
viewing angles [86]. Here, a normalised object coordinate
space (NOCS) representation is used. A NOCS discontinuity
score is also introduced, to measure the connectivity of the
surface [86]. Öngün and Temizel [87] introduce average
absolute difference (AAD) and average voxel agreement
ratio (AVAR) metrics, which measure the agreement be-
tween paired voxel shapes at different angles. For assessing
data in graph form, graph edit distance [88] can be used.
This represents the minimum amount of change required to
transform one graph to another, and thus how similar their
topologies are. A key aspect when generating characters
is the joint angle. Mean per joint position error (MPJPE),
vertex error and quaternion distance error may be used to
measure this [31]. For interior object placement, bounding
box displacement and angular errors have been used as
metrics for correct positioning and rotation [44].

In the task of reconstructing caricature faces in 3D, inter-
pupil and inter-ocular distance metrics have been used
[89]. While sliced Wasserstein distance is used to compare
the difference in ground-truth and generated face patch
distributions [90], and mean alignment error may be used
to find the average difference between vertex positions [91].

Alternatively, some similarity metrics are specific to 2D
assets. For example, peak signal-to-noise ratio (PSNR) can
be used to determine the strength of noise within an image,
and therefore can be a measure of visual quality [47], [92],
[93]. Structural similarity (SSIM) measures the perceptual
quality based on high-level structure, comparing the output
to a ground-truth image [94]. This has seen widespread
use across image and texture generation approaches [19],
[38], [47], [92]. Yadav et al. [95] use the visual information
fidelity (VIF) metric [96] to assess the visual quality of their
outputs. VIF measures the difference in visual information
for the output image by assuming the ground-truth image
to be a perfect signal [97]. Alternatively, when evaluating
methods for generating normal maps, an angular or normal
difference metric may be applied [20], [98]. These are similar
to other pixel-wise error metrics, in that distances in pixel-
wise values between two images are assessed. Angular error
is reported as angles in degrees, as each pixel on a normal
map represents a direction [20], while the normal difference
metric reports non-angular values [98].

Root-mean-squared deviation (RMSD) has been applied
in evaluating 2D layout generation by computing the dis-
crepancy between the positioning of elements in generated
and ground truth layouts [13].

4.2 Perceptual similarity metrics

While objective similarity is not always possible due to re-
quiring one-to-one ground-truth data, perceptual similarity
can be used to classify or score an artefact based on perceived
similarity to a visual reference. Perceptual similarity in its
simplest form may involve human-centered classification
of artefacts. Here, a human evaluator will be given visual
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references to compare generated artefacts with, and tasked
with judging whether the artefact is ”real” or ”fake” [19],
[99], or whether it belongs to the target classification [47],
[100], as mentioned in section 5.3. Alternatively, a variety
of automatic perceptual similarity evaluators may be used.
The Inception CNN model has been shown to perform well
at image classification and detection tasks [101]. Since its
introduction, subsequent versions of the Inception model
have been used for evaluating generative models, such as
generative adversarial networks (GANs). Metrics such as
inception score (IS) [102], frechet inception distance (FID)
[46] and kernel inception distance (KID) [103] each make use
of the inner layers of the Inception model to compare latent
similarities. Though IS uses this to evaluate the perceptual
similarity of images with their expected class, FID and KID
compare a distribution of generated artefacts with a ground-
truth distribution. As a result, IS is limited to the categories
that Inception is trained on, (typically ImageNet ILSVRC
[104]) but requires no ground-truth data. However, FID and
KID are not limited to assessing pre-defined categories but
require a reference or ground-truth dataset for comparison.
FID utilises Frechet distance between the two image dis-
tributions, and assumes that the two are Gaussian. This is
applied to 2D assets [7], [64], [105], [106], [107], [108], [109],
3D assets via 3D classifiers [37], [110] or rasterisation to 2D
form [111], [112].The Frechet point cloud distance extends
FID for applications in assessing the similarity of point-
based 3D shapes [113]. This has been used to evaluate many
deep-learning based 3D point-cloud [71], [113], [114] and
mesh [67] generators. KID instead utilises the maximum
mean discrepancy between the image distributions, and
does not assume a Gaussian form [103]. This has been used
for evaluating faces in 2D [115] and for evaluating 3D assets
rendered in 2D form [116]. IS however, does not take into
account the statistical distribution of the data. It has been
used primarily in the evaluation of 2D approaches [50],
[115], [117], [118], [119], though it has been adapted for 3D
as the 3D Inception Score, which uses a 3D classification
network instead [120]. The 2D IS has also been applied to
3D assets that have been rendered in 2D form [116].

For VAE based interpolation, a perceptual path length
metric is proposed [64]. This metric measures the percep-
tual distance at points along a path in the latent space,
determining how smooth the interpolation is. For text-based
generation methods, CLIP score [121] or R-precision may be
used to measure the alignment between the output and the
text prompt used to produce it. The latter is calculated using
a Deep Attentional Multimodal Similarity Model (DAMSM)
or CLIP-R-precision [122]. Extending this concept to 3D,
the ShapeGlot dataset [123] can be used to train a simi-
lar alignment score model for text-3D generation methods
[124]. A similar metric for faces is proposed [90], making
use of features from a facial recognition network. For 2D
tasks, learned perceptual image patch similarity (LPIPS) can
be applied. This metric is trained on the Berkeley-Adobe
Perceptual Patch Similarity (BAPPS) dataset, which consists
of human perceptual judgements across many sets of images
[125]. In a similar way, some approaches use alternative pre-
trained fully convolutional networks (FCNs) as perceptual
measures for 2D images [126], [127].

4.3 Evaluation Procedures
For methods that contain multiple sub-processes, e.g. deep-
learning approaches. Ablation studies are a common proce-
dure for assessing the effectiveness of these sub-processes
or components [5], [18], [32], [44], [65], [128]. In an ablation
study, components are systematically assessed for their con-
tribution to the effectiveness of the method. This is achieved
by removing the component and evaluating the rest of the
method without it.

Fig. 4: Ground-truth datasets from the examined literature,
arranged by asset type.
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TABLE 3: Usage of 2D metrics in literature, organised by generative technique used.

Quantitative Evaluation Metrics

Metrics Text-based Image-based Seeded
Object
placement

Patch based/
Partwise Interpolated

Style
transfer Parametric

Perceptual
similarity

LPIPS [92] [19], [95] [108]

FCN [126] [127]

Facial recognition
distance [90]

Characteristic Visual balance [14]

Objective
similarity

SSIM [92], [129]

[47], [93], [130],
[17], [19], [95],
[131] [38]

PSNR [92]
[47], [93], [130],
[95], [131] [15]

Visual information
fidelity [95]

Angular/Normal
difference [20], [98], [128] [44]

Overlap [11], [12], [14]

Alignment [11], [12]

RMSD [13]

TABLE 4: Usage of 3D metrics in literature, organised by generative technique used.

Quantitative Evaluation Metrics

Metrics Text-based Image-based Seeded
Object
placement

Patch based/
Partwise Interpolated

Style
transfer Parametric

Perceptual
similarity

Frechet
Point Cloud
Distance [110], [132] [67]

[71], [113], [114],
[56]

3D-text alignment
(ShapeGlot) [124]

Characteristic

flood extent [133]

Stability [134]

Rootedness [134]

Symmetry score [120]

Mesh intersection
ratio [62]

CNR [25]

Density [25]
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Objective
similarity

Coverage [67], [70], [135]

[68], [74], [114],
[71], [79], [113],
[72], [77], [136],
[5]

[56], [69]

Surface
distance [36], [83], [84]

Light Field Dis-
tance [5], [85]

EMD [132]

[70], [137], [138],
[34], [63], [76],
[18]

[68], [74], [79],
[71], [139], [140],
[72], [113] [56], [69] [75]

MMD [37] [5], [67], [70] [68], [79], [140] [69]

Correspondence
error [86]

Multi-view
consistency error [141]

NOCS
Discontinuity
score [141]

Graph edit
distance [112]

Average absolute
distance [87]

Average voxel
agreement ratio [87]

Euclidean
distance [81], [82], [142]

Angular error [20] [44]

Displacement
error [44]

Mean Per Joint
Position error [31], [142], [143]

Vertex error [144] [39]

Quaternion
distance error [31]

Inter-pupil
distance [89]

Inter-ocular
distance [89]

Mean alignment
error [91]

Sliced Wasserstein
distance [90]
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When developing generative AI systems, developers
require a way to evaluate the quality and performance
of their iterations against each other and against other
existing methods. Benchmark datasets provide a controlled
input to objectively compare outputs and performance. The
challenge of benchmark datasets is that it might be difficult
to always find a dataset that closely matches the intended
input/output of the method being developed. Hence, may
require slight adjustments to how the method functions.
For methods that require image data, a popular dataset to
use is ImageNet [192]. While general 3D datasets include:
ShapeNet [193], ModelNet [194] and Pix3D [195]. Part-
wise 3D methods may use PartNet [196]. Datasets are also
available for certain specific object types, such as shoes (UT
Zappos50K [197]) and birds (CUB-200-2011 [198]). Figure
4 shows the ground-truth datasets found in the literature,
separated into 2D and 3D data types, and grouped by asset
type. When conducting objective similarity validation, the
dataset must meet two requirements: 1) it must contain data
that can be used as an input into the generative system and
2) it must contain corresponding ground-truth data in the
same form as the artefacts. When conducting validation via
perceptual similarity, wherein most methods compare 2D
image data, as long as the data can be arranged as such it can
be used. For example, mesh data could be rendered to create
2D data for perceptual comparison, as seen in [67]. There
are exceptions to this approach, namely with captioning
evaluation and 3D-text alignment in which artefacts are
scored on closeness to text descriptions. Alternatively, when
using IS no dataset is required, because scoring is based on
a pre-trained classifier.

5 ARTEFACT QUALITY

Artefact quality evaluation methods are categorised as
human-centered, or automatic quality metrics, shown in frame-
work figure 5. Human-centered quality metrics rely on human
assessment, while automatic quality metrics assess objective
characteristics of assets. The following subsections 5.1 and
5.2 will cover human-centered and automatic quality met-
rics respectively. Section 5.3 will cover relevant evaluation
procedures.

5.1 Human-centered quality metrics

Human perception and opinion can be used to measure
asset quality. Such metrics are particularly valuable given
the purpose of graphical assets, and their integration into
games or other digital media where end-user experience
and immersion are paramount. However, these measures
can be inconsistent, and dependent on many factors. Thus,
are best paired with more objective forms of evaluation
i.e. characteristic metrics. Human perception is a common
approach to evaluation in text-guided generative methods
for example [48], [49], [50].

A preference metric may be used, where human eval-
uators choose the result that they prefer out of a selection
of examples. These examples can consist of outputs from
the method being evaluated and outputs from existing
alternative methods. These questions can be posed as a
general preference [47], or preferences for certain aspects

of the result [48]. Users may alternatively rate or score the
method on a scale [151], [199].

In assessing interior room layouts, [22] introduce a lay-
out accuracy metric, which observes the number of furniture
pieces a human evaluator chooses to move in a generated
layout. In other words, this is the number of placements
that the human evaluator is unsatisfied with.

5.2 Automatic quality metrics
Automatic characteristic metrics may be applied in examining
particular characteristics of generated assets. These metrics
tend to be specific to the type of asset and format used. To
choose or develop a characteristic metric, desired charac-
teristics of an artefact must first be determined. This will
be be dependent on the intended use case, and whether
the characteristic can be objectively measured. For example,
symmetry score [120] and mesh intersection ratio [62] are
applied in quantifying the symmetry and self-intersection
of 3D assets respectively. For road networks, or graphs in
general, connected node ratio and density metrics [25] can
be employed to examine the properties of the networks.
Jones et al. [134] introduce stability and rootedness metrics
for evaluating generated furniture assets, which use physics
interactions such as gravity and pushing forces to test the
generated shapes. While a measure of flood extent is used
for measuring the realism of terrains, as natural formations
tend to have a degree of drainage [133]. For 2D layouts
a measure of visual balance has been used; considering
the distribution of elements across the layout [14]. While
the overlap and alignment of elements have been used
as measures for layout quality, where the positioning of
text and visuals are key. Here, a good layout will have
minimal overlap between elements and maximal alignment
[11], [12]. Where programming languages for shape creation
are concerned [1], the number of lines of code has been used
as a metric to determine the the language’s efficiency or
writing speed.

Depending on the use case, there may be certain desir-
able quality requirements for the generated artefacts. For
example, to consider a 3D model ”game ready”, it may
need to meet geometric standards, such as having low self-
intersection [62]. If the realism or functionality of a design is
a concern, metrics similar to stability or rootedness will be
of more relevance [134].

5.3 Evaluation Procedures
For the task of collecting human feedback or observ-
ing human perceptions, questionnaires are the primary
method employed. When receiving quantitative feedback
from users, it is common to obtain a scoring or ranking
from participants. This is obtained through a Likert-scale for
example [168]. In many cases Likert-scales are used to collect
ordinal ratings, or binary choice questions may be used
for classification. For text-to-image generation methods,
DrawBench [48] may be used to benchmark and compare
the performance of one method with another, providing a
systematic list of prompts. For example, an experiment may
ask users to compare two images generated via the same
prompt, from different methods, and rate them in terms of
fidelity or image-text alignment [48].
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TABLE 5: Usage of metrics that do not require 2D or 3D data specifically, within the literature, organised by generative
technique used.

Quantitative Evaluation Metrics

Metrics Text-based Image-based Seeded Object
placement

Patch
based/
Partwise

Interpolated Style trans-
fer Parametric

Performance

Memory usage [53] [51] [52]

Speed

[2], [32], [33],
[41], [53], [84],
[89], [145], [146],
[147], [148],
[149], [150],
[151], [152],
[153], [154],
[155], [156],
[157]

[54], [158], [159]
[11], [13],

[22], [55],
[160], [161]

[133], [162]

[1], [26],
[27], [29],
[52], [163],
[164], [165],
[166]

Running cost [153]

Encoded size [158]

Grammar
precipitate [152]

Feedback
User score

[37], [42],
[48], [49],
[50], [167],
[168], [169]

[47], [127]

Layout
accuracy [22]

Perceptual
similarity

Classification
score [58] [170]

Captioning
evaluation [49], [50]

FID

[6], [37],
[48], [49],
[50], [92],
[110], [111],
[119], [124],
[171]

[5], [67], [95],
[105], [116],
[131], [145]

[7], [115],
[172]

[106],
[107], [108],
[109], [173]

[60], [64],
[112], [117]

Inception Score

[6], [50],
[92], [119],
[129], [132],
[168], [169],
[171], [174]

[151] [116], [118],
[120] [117]

Kernel
Inception
Distance

[116] [115]

Perceptual Path
Length [64]

Characteristic Lines of code [1]
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Objective
similarity

Hausdorff
distance [175] [34], [176] [60]

F-Score

[34], [59],
[61], [62],
[63], [175],
[177]

[140]

R-precision
[132], [168],

[169], [171],
[178]

IoU [37], [42],
[132]

[30], [34],
[36], [43],
[59], [61],
[83], [98],
[142], [154],
[175], [179],
[180], [181],
[182], [183],
[184], [185],
[186], [187],
[188]

[12], [15],
[44] [69]

Chamfer
Distance

[5], [18], [30],
[34], [43],
[53], [58],
[59], [63],
[70], [76],
[85], [128],
[137], [138],
[142], [177],
[179], [181],
[189]

[56], [68],
[71], [72],
[74], [79],
[113], [140]

MAE [17], [57] [51]

MSE [37] [33], [36] [38], [39]

RMSE

[2], [3], [17],
[23], [40],
[41], [57],
[190], [191]

[4]

Log RMSE [4]

K-fold
cross-validation [24]

Log-Likelihood [65]

Separability [64]

SSE loss [23]

1-NNA [67], [70] [68] [69]

JSD [135] [74], [79],
[140]

[71], [72],
[77], [113],
[136]

Kolmogorov-
Smirnov test [73]

Shapiro-Wilk
test [73]
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When developing a questionnaire for evaluating a gen-
erative method, consider general questionnaire design prin-
ciples [200] and practices for implementing Likert scale
questions [201]. As an alternative to rating, a questionnaire
may present participants with a reference asset (i.e. image
or 3D model) and ask them to choose between a number
of assets based on similarity to the reference [47], [100],
where one image is the output of the chosen method, and
others are from comparative methods. Similarly, a set of
images from various methods can be ranked [199]. A human
classification score, or fooling rate may also be obtained by
presenting participants with a ”real” asset and a generated
result, and asking them to select the one that is ”real” [19],
[99]. Here, the ”real” asset does not necessarily have to be a
photograph or an exact match to the generated result. The
purpose is to see if the quality of the artefact can fool the
participant into believing that it was not generated. This
also acts as a form of artefact validation as, if the participant
believes the artefact is a ”real” example of a particular asset
type, then it must be identifiable as such.

Fig. 5: The low level evaluation metrics framework, focusing
on artefact quality metrics used in the literature, and the
various contexts in which they are applied. Keys in the
bottom-most table are used to indicate their corresponding
value within the diagram. White coloured boxes indicate
metrics that only occur once within the examined literature,
while grey coloured boxes indicate metrics that have more
than one occurrence in the examined literature.

6 OPERATION METRICS

Figure 6 presents the operation metrics used in the lit-
erature. These consist of various performance metrics and
controllability. There are four performance metrics that can
be applied to most methods, these are: memory usage,
speed, time complexity and running cost. Alternatively, for
grammars specifically, there are two performance metrics
that can be applied, encoded size, and grammar precipitate.
Memory usage and speed can be observed by monitoring
the hardware usage or efficiency during runtime. In general,
these metrics are dependent on the relevant specifications
of the machine used, so these should be reported in any
performance evaluation. It is often necessary to measure the
speed of an implementation. A faster approach can allow
for more content to be produced in a shorter amount of
time. An example of speed testing can be found in the work
of [154], where the method’s performance with different
numbers of inputs, and different hardware are compared. A
common finite hardware resource is volatile memory such
as dynamic random access memory (DRAM) for CPU based
computation, and video random access memory (VRAM)
for GPU based computation. These have been used as eval-
uation metrics in [51], [52], [53]. Memory usage provides
a benchmark for the minimum system memory required
to run the method, determining the type of device it may
operate on. The scalability of a system can be assessed
by evaluating the time complexity of a method given the
inputs, as seen in [202] for example. This provides an
indication for the speed of a method depending on its scale
or number of inputs.

Running cost may be relevant for commercial projects or
content generation services, for example, Bhatt et al. [153]
report potential running cost of their generative method as a
cloud-based tool. For grammar based methods, an encoded
size [158] or grammar precipitate metric [152] may be used,
determining the efficiency of the grammar encoding, and
the versatility of extracted rules respectively.

Characteristics such as parallelizability, distributability
and access to intermediate results [54], are contributing
factors to performance. Though the review did not yield
any quantitative measures for these, they should be con-
sidered per user need and expertise. Memory usage, speed,
time complexity and running cost can all be impacted by
these characteristics. Hence their impact can be measured
through these metrics. While not observed in the literature,
the controllability of a method could be measured in user
degrees of freedom. While more degrees of freedom does
not necessarily equate to more control, it could suggest
more variability of input. But more controls can come at
the cost of usability [203]. Instead, controllability could be
indicated via user studies or indirectly through general
usability assessment, such as System Usability Scale (SUS)
[204].

7 EVALUATION METRICS FRAMEWORK: USAGE

This section will present how to select appropriate evalua-
tion metrics from those found within the literature. Figures
3, 4, 5 and 6 show the categorisation of validation metrics,
ground-truth datasets, quality metrics and operation met-
rics, while tables 3, 4 and 5, show the literature organised
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Fig. 6: The low level metric evaluation framework, focusing
on operation metrics used in the literature. White coloured
boxes indicate metrics that only occur once within the
examined literature, while grey coloured boxes indicate
metrics that have more than one occurrence in the examined
literature.

Fig. 7: The process for selecting appropriate operation, va-
lidity and quality metrics. Box colours match counterparts
in figures 3-6.

by metric and technique used for 2D, 3D and shared met-
rics respectively. It is evident that some metrics are very
popular for evaluating specific techniques, while others are
popular regardless of technique. For example, PSNR has
been used in five instances for evaluating image-based 2D

reconstruction tasks, while FID has been used in a total of 30
instances evaluating text-based, image-based, seeded, style-
transfer and parametric generation tasks. There are many
metrics that, due to being context specific, are only used in
one or two instances, e.g. flood extent, stability, rootedness,
inter-pupil and inter-ocular distances.

Figure 7 presents the selection procedure for operation,
validity and quality metrics. This process is about finding
available methods to consider for all three metric types.
In this process, relevant metrics are first narrowed down
by category based on various limiting factors, and then the
dimensionality of the asset type. Visiting the relevant figure
a list of metrics can be obtained from headings related to
the asset type, and more general metrics: figures 3, 4, 5
and 6. These metrics can then be found in the relevant
tables, where the choice can be narrowed down based on
the technique and by observing their application in existing
examples cited: tables 3, 4 and 5. Metrics applied to the same
technique may be considered more relevant. If the inten-
tion is to compare with existing methods, then a popular
metric for that technique should be chosen. To identify the
technique a method’s inputs and functionality should be
considered, as discussed in section 3. For artefact validation
metrics, human-centered or automatic approaches can be
used. The purpose of artefact validation is to assess whether
artefacts are of the intended asset type. Artefact validation
via objective similarity is only possible when ground-truth
data is available. In most cases, evaluation of a method via
ground-truth datasets is only possible with externally con-
ceived approaches in which there is a known intended result
for a given input e.g. conversion from sketch-to-mesh. Many
of such methods, often deep-learning based, will already use
this form of validation as a means to optimise the genera-
tive model itself. Naturally, applying these metrics to the
final generative system using data previously unseen to the
model will assess its ability to perform the externally con-
ceived task. To compare a method with existing approaches
a benchmark dataset may be used, though the availability
of a relevant dataset depends on how popular the asset
type is for other generative systems. For example a generic
3D reconstruction task has many options for benchmark
datasets, while a method that produces a highly specific
type of artefact may require a bespoke dataset. Perceptual
metrics require less direct conformity to a ground-truth.
Here, artefacts can be compared with datasets that represent
the general intended appearance of the artefacts. Metrics
such as FID can be used to assess visual similarity between
generated artefacts and a reference dataset without one-to-
one correspondence. Alternatively, IS does not require any
ground-truth data, but can only be used if the asset type
belongs to the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) categorisation [104]. Human-centered
validation is achievable with any method, though it may
not always be feasible due to the time it takes to recruit and
access participants. The creator of a method designs or trains
their system based on their conception of what attributes
define the asset type. Human-centered perceptual similarity
testing may be used to confirm if others deem the artefacts
to meet their own conceptions. Typically a description, ex-
ample or reference will be provided as a point of comparison
for the assessor. This is not an assessment of quality, but a
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Algorithm 1 Algorithm for selecting metrics.

1: procedure SELECTING EVALUATION METRICS(asset type, input type, AIM)
▷ Prioritise metrics applied to same technique/input type, consider rele-
vance of metrics based on the example uses in the literature.

2: if AIM = Does the generated asset look like what I wanted? then
3: return Dataset, V alidationMetrics← E1(asset type, input type)
4: ▷ Choosing a validation metric.
5: if AIM = Are these assets ”good”? then
6: return QualityMetrics← E2(asset type, input type)
7: ▷ Choosing a quality metric.
8: if AIM = How operable is this approach? then
9: return OperationMetrics← E3(asset type)

10: ▷ Choosing an operation metric.
11:
12: function E1: ARTEFACT VALIDATION(asset type, input type)
13: Dataset← E1C1(asset type, input type)
14: V alidationMetrics← E1C2(Dataset, asset type, input type)
15: return Dataset, V alidationMetrics

16:
17: function E1C1: CHOOSE GROUND-TRUTH(asset type, input type)
18: if Relevant dataset in figure 4 for given asset type then
19: if input type matches dataset input type then
20: return Dataset← dataset matching asset type and input type

21: return Dataset← dataset matching asset type

22: if Ground-truth dataset can be created or has been used in training then
23: return Dataset← created or unused portion of training dataset
24:
25: function E1C2: CHOOSE VALIDATION METRIC(dataset, asset type, in-

put type)
26: if there is an expected output for every input type then
27: if dataset contains asset type and input type then
28: if asset type is 3D then
29: Metric options← Relevant 3D Objective similarity metrics
30: in figure 3 based on asset type.
31: Metrics← Find metric options in tables 4 and 5.
32: else if asset type is 2D then
33: Metric options← Relevant 2D Objective similarity metrics
34: in figure 3 based on asset type.
35: Metrics← Find metric options in tables 3 and 5.
36:
37: if dataset matches the intended general appearance of asset type then
38: if asset type is 3D then

39: Metric options← Relevant 3D Perceptual similarity metrics
40: in figure 3 based on asset type.
41: Metrics← Find metric options in tables 4 and 5.
42: else if asset type is 2D then
43: Metric options← Relevant 2D Perceptual similarity metrics
44: in figure 3 based on asset type.
45: Metrics← Find metric options in tables 3 and 5.
46: if consider human participation then
47: Metrics← Human Classification Score (table 5)
48: if asset type belongs to an ILSVRC [104] category then
49: Metrics← Inception Score (table 5)
50: if appearance of asset type can be put into words then
51: if asset type is 3D then
52: Metrics← ShapeGlot (table 4)
53: else if asset type is 2D then
54: Metrics← ClipScore (table 3)
55: return Metrics
56:
57: function E2: ARTEFACT QUALITY(asset type, input type)
58: if consider human participation then
59: Metrics← Human classification or feedback (table 5)
60: if asset type has measurable characteristics then
61: if asset type is 3D then
62: Metric options← Relevant characteristic metrics in figure 5 based

on asset type
63: Metrics← Find metric options in tables 4 and 5.
64: Metrics← Devise new characteristic metric/s based on use case.
65: else if asset type is 2D then
66: Metric options← Relevant characteristic metrics in figure 5 based

on asset type
67: Metrics← Find metric options in tables 3 and 5.
68: Metrics← Devise new characteristic metric/s based on use case.
69: return Metrics
70:
71: function E3: OPERATION(asset type)
72: Metrics←Memory usage, speed and time complexity (table 5)
73: if consider human participation then
74: Metrics← User control satisfaction
75: if intended to be run as a service then
76: Assess running cost (table 5)
77: if asset type is grammar based then
78: Assess grammar precipitate and encoded size (table 5)

subjective assessment of whether artefacts are perceived as
what they should be, i.e. is the method for generating chairs
producing what can be deemed a chair. Where possible, both
automatic and human validation metrics should be applied,
though the former is only possible with externally conceived
methods.

Artefact quality evaluation metrics can either be auto-
matic or human-centered. These can be selected based on
relevance to a use case. Automatic quality evaluation can be
achieved through characteristic metrics. These are metrics
that apply to specific characteristics of an artefact, and will
be dependent on the asset type, data format or end use case
of the artefact. For example, assessing the stability of furni-
ture under physics simulation [134], or the quality of a mesh
by the amount that it intersects with itself [62]. These make
assumptions about what makes a quality asset e.g. a good
chair will remain upright when exposed to gravity, and a
good mesh surface will not intersect with itself. As such, it
is difficult to systematically choose characteristic metrics as
it is highly context specific. Alternatively, human-centered
feedback through scoring can provide a more subjective,
opinion based assessment of the quality of artefacts. Though
finding participants and collecting this data will take more
time than automated testing. Both should be used where
possible.

Operation evaluation includes performance and control-
lability measures. Memory usage, speed and time complex-
ity can be applied to any generative algorithm. These mea-
sures are beneficial for determining the resources required to
use a given method. Additionally, in the case of generative
methods as a cloud service, running cost may be assessed
[153], while grammar based methods may benefit from
assessing grammar precipitate [152] and encoded size [158].
Controllability should be considered based on the context of
use. While there are no direct quantitative measures, users
may be asked to indicate their satisfaction with the controls,
whether they are too limited to achieve their goals, or too
complex to comfortably use.

In most cases, multiple metrics of each category will be
relevant. Where feasible, applying every relevant metric will
provide the most precision in evaluating a method. This is
not always possible due to time constraints, therefore, in
such cases individual judgement should be used to prioritise
which metrics are used.

Algorithm 1 presents the process for selecting all three
types of metric based on the artefact asset type, the input
type of the method, and the evaluation aim. To illustrate
the use of this algorithmic approach, we present a scenario
where game developer A has produced a method for gen-
erating 3D models of castles using a GAN architecture.
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The method is using a seeded technique as the input is a
randomised vector. Firstly, game developer A validates if
the outputs of the method are in fact ”castles”. They choose
a dataset and validation metric (E1) by first examining if
there are any ground-truth datasets available for buildings
(E1C1). Looking at buildings in figure 4, there is LiDAR data
from the UK environment agency, which has been used for
finding roof shapes [187]. This is not so relevant to their use
case. Not finding an existing similar dataset, they can use an
unused portion of the dataset they used for training. They
proceed with selecting a validation metric (E1C2). As their
technique is seeded, there is no clear expected output for
every input. Once they validate that their dataset matches
their intended artefact appearance, they consider general
or 3D perceptual similarity metrics as their asset type is
3D. Due to the challenges of human participation, they
decide not to use human classification. Therefore, they move
on to other perceptual similarity methods which includes
Inception Score, where ”castles” is a category of ILSVRC,
figure 3 and table 5. Then, developer A proceeds to to assess
the quality of their artefacts (E2). As before, they reject
human participation and use an automatic characteristic
metric. They choose to measure mesh intersection ratio
based on figure 5 and table 4, as self-intersecting geometry
can look bad and waste resources. Finally, to evaluate the
operability of their method (E3), developer A assesses the
memory usage, speed and time complexity. They once again
reject human participation, so do not assess controllability.
They run their GAN solution locally, not on cloud, and their
method does not use grammars, therefore they do not assess
running cost or grammar metrics.

8 CONCLUSION

To evaluate graphical asset generation methods, appropriate
metrics are required. In this paper, a systematic survey
of the literature has been conducted, and a framework
for metric selection has been introduced. This framework
addresses the need for a centralised point of reference for
quantitatively evaluating graphical asset generation meth-
ods. In this framework, there are three types of evaluation,
artefact validation, artefact quality and operation evalua-
tion. These three types of evaluation include quantitative
metrics that measure the efficacy, and facilitate comparison
and benchmarking for methods that generate graphical
game assets. These metrics map onto five desirable proper-
ties of PCG methods in games: Speed, Reliability, Expres-
sivity/Diversity and Creativity/Believablility. Though no
quantitative measures were found for assessing the control-
lability of methods in the literature , we suggest the con-
sideration of user degrees of freedom, based on a method’s
input type. Though further research should be conducted
into how controllability can be compared between methods.
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[60] R. Konečný, S. Syllaiou, and F. Liarokapis, “Procedural modeling
in archaeology: Approximating ionic style columns for games,”
2016 8th International Conference on Games and Virtual Worlds for
Serious Applications, VS-Games 2016, pp. 1–8, 2016.

[61] Y. Lu, Y. Wang, and G. Lu, “Single Image Shape-from-
Silhouettes,” MM 2020 - Proceedings of the 28th ACM International
Conference on Multimedia, pp. 3604–3613, oct 2020.

[62] H. Li, W. Ye, G. Zhang, S. Zhang, and H. Bao, “Saliency Guided
Subdivision for Single-View Mesh Reconstruction,” Proceedings -

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3398998

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

2020 International Conference on 3D Vision, 3DV 2020, pp. 1098–
1107, 2020.

[63] N. Wang, Y. Zhang, Z. Li, Y. Fu, H. Yu, W. Liu, X. Xue, and
Y. G. Jiang, “Pixel2Mesh: 3D Mesh Model Generation via Image
Guided Deformation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 10, pp. 3600–3613, 2021.

[64] T. Karras, S. Laine, and T. Aila, “A style-based generator archi-
tecture for generative adversarial networks,” Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2019-June, pp. 4396–4405, 2019.

[65] Y. Zhao, B. Deng, J. Huang, H. Lu, and X. S. Hua, “Stylized adver-
sarial autoencoder for image generation,” MM 2017 - Proceedings
of the 2017 ACM Multimedia Conference, pp. 244–251, 2017.

[66] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Har-
iharan, “Pointflow: 3d point cloud generation with continuous
normalizing flows,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 4541–4550.

[67] X. Zheng, Y. Liu, P. Wang, and X. Tong, “Sdf-stylegan: Implicit
sdf-based stylegan for 3d shape generation,” in Computer Graphics
Forum, vol. 41, no. 5. Wiley Online Library, 2022, pp. 52–63.

[68] K.-H. Hui, R. Li, J. Hu, and C.-W. Fu, “Neural wavelet-domain
diffusion for 3d shape generation,” in SIGGRAPH Asia 2022
Conference Papers, 2022, pp. 1–9.

[69] x. zeng, A. Vahdat, F. Williams, Z. Gojcic, O. Litany, S. Fidler,
and K. Kreis, “Lion: Latent point diffusion models for 3d shape
generation,” in Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 10 021–
10 039.

[70] A.-C. Cheng, X. Li, S. Liu, M. Sun, and M.-H. Yang, “Autoregres-
sive 3d shape generation via canonical mapping,” in European
Conference on Computer Vision. Springer, 2022, pp. 89–104.

[71] Y. Li and G. Baciu, “HSGAN: Hierarchical Graph Learning for
Point Cloud Generation,” IEEE Transactions on Image Processing,
vol. 30, pp. 4540–4554, 2021.

[72] ——, “SG-GAN: Adversarial Self-Attention GCN for Point Cloud
Topological Parts Generation,” IEEE Transactions on Visualization
and Computer Graphics, 2021.

[73] G. Ivanov, M. H. Petersen, K. Kovalský, K. Engberg, G. Palamas,
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[162] V. Krs, R. Měch, M. Gaillard, N. Carr, and B. Benes, “Pico: pro-
cedural iterative constrained optimizer for geometric modeling,”
IEEE Transactions on Visualization and Computer Graphics, vol. 27,
no. 10, pp. 3968–3981, 2020.

[163] K. Golubev, A. Zagarskikh, and A. Karsakov, “Dijkstra-based
terrain generation using advanced weight functions,” Procedia
Computer Science, vol. 101, pp. 152–160, 2016.

[164] I. Antoniuk and P. Rokita, “Generation of complex underground
systems for application in computer games with schematic maps
and l-systems,” in Computer Vision and Graphics: International
Conference, ICCVG 2016, Warsaw, Poland, September 19-21, 2016,
Proceedings 8. Springer, 2016, pp. 3–16.

[165] K. Franke and H. Müller, “Procedural generation of 3d karst
caves with speleothems,” Computers & Graphics, vol. 102, pp. 533–
545, 2022.

[166] X.-z. Li, R. Weller, and G. Zachmann, “Astrogen–procedural
generation of highly detailed asteroid models,” in 2018 15th
International Conference on Control, Automation, Robotics and Vision
(ICARCV). IEEE, 2018, pp. 1771–1778.

[167] Z. Canfes, M. F. Atasoy, A. Dirik, and P. Yanardag, “Text and im-
age guided 3d avatar generation and manipulation,” in Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, 2023, pp. 4421–4431.

[168] T. Qiao, J. Zhang, D. Xu, and D. Tao, “Learn, imagine and create:
Text-to-image generation from prior knowledge,” Advances in
Neural Information Processing Systems, vol. 32, 2019.

[169] ——, “Mirrorgan: Learning text-to-image generation by re-
description,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 1505–1514.

[170] X. Wang and A. Gupta, “Generative image modeling using style
and structure adversarial networks,” in European conference on
computer vision. Springer, 2016, pp. 318–335.

[171] D. Peng, W. Yang, C. Liu, and S. Lü, “Sam-gan: Self-attention
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