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Abstract—Generative systems for graphical assets have the po-
tential to provide users with high quality assets at the push of
a button. However, there are many forms of assets, and many
approaches for producing them. Quantitative evaluation of these
methods is necessary if practitioners wish to validate or com-
pare their implementations. Furthermore, providing benchmarks
for new methods to strive for or surpass. While most methods
are validated using tried-and-tested metrics within their own do-
mains, there is no unified method of finding the most appropriate.
We present a framework based on a literature pool of close to
200 papers, that provides guidance in selecting metrics to evaluate
the validity and quality of artefacts produced, and the operational
capabilities of the method.

Index Terms—Artificial intelligence, evaluation metrics, graph-
ical game assets, PCG.

I. INTRODUCTION

GRAPHICAL assets such as 2D images and textures, or
3D models and environments form a large portion of

digital game content. These assets are mostly created by artists,
designers and 3D modellers. More recently, content creators
have been using techniques such as photogrammetry and 3D
scanning to speed-up content creation, especially, at design and
prototyping stages. Procedural content generation has also been
widely used in digital games from the early years in titles such
as Rogue, Maze Craze and River Raid, to more recent examples
including. kkrieger and No Man’s Sky.

Procedural modelling algorithms [1], shape grammars [2],
[3], [4], and deep-learning [5], [6], [7] have all been used to
generate graphical assets. When specific content is desired, these
approaches can positively impact the effort and time required
for creating content, while retaining varying degrees of creative
control.
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These approaches require quantitative testing and validation,
however. While appropriate metrics are applied in assessing
these, there is no unified framework for metrics applicable
across the gamut of graphical asset generation methods. While
deep-learning approaches have a well developed collection of
applicable metrics [8] others are fragmented or otherwise con-
text specific.

This is a considerable challenge in using these approaches, as
the designers and developers struggle to find the right method(s)
for evaluating their approach aside from trial and error [9].
Each approach can be evaluated based on different aspects
and various characteristics. Currently, the body of knowledge
does not provide a clear guide in identifying suitable evaluation
methods for the requirements of designers, developers and their
projects.

In this paper a new framework is proposed, with the purpose
of providing guidance for practitioners in evaluating graphical
asset generation methods, aimed for use in game contexts. A
systematic literature search has been conducted, resulting in
a framework and analysis of existing metrics. The approach
to literature search is presented in Section II, followed by an
overview of the framework in Section III, and a breakdown
of metrics and their applications in Sections IV, V and VI.
Section VII will provide information on how to use the proposed
framework.

II. THE APPROACH TO SYSTEMATIC LITERATURE SEARCH

The systematic literature search, shown in Fig. 1, was initially
conducted via queries consisting of a selection of key words
over the four databases: ACM Digital Library, IEEE Xplore,
ScienceDirect and Springer. These initial key words consisted
of general terms in the PCG literature, alongside variations and
synonyms of the word “generation” or “creation,” and terms
“asset” and “content.” These words, Table I, were separated into
three semantic groups, from which queries were formed. Query
strings were formed by combining words between groups with
AND operators, and words within groups with OR operators.
For example: “(Parametric OR Inverse OR Grammar) AND
(Graphic OR Asset OR 3D OR Mesh) AND (Generation OR
Synthesis).” To decrease the number of queries needed, query
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Fig. 1. The systematic literature review process. *Search keywords are listed in Table I, and **inclusion/exclusion and quality criteria are listed in Table II.

TABLE I
THE SEARCH TERMS USED TO QUERY THE CHOSEN DATABASES WITH EXPANDED SEARCH TERMS IN GREY

TABLE II
THE INCLUSION, EXCLUSION AND QUALITY CRITERIA APPLIED TO THE LITERATURE SEARCH

strings each contained multiple terms from each group. In addi-
tion to this, a broad search query containing all terms was used.
The same queries were applied across all databases. To control
the scope of this research we limit our search to static forms of
asset by excluding animations and visual effects. As asset types
emerged from the first set of searches, these were added in a
secondary set of terms. The new terms, shown in grey within
Table I, were used to form new queries.

The titles and abstracts of results were evaluated against the
inclusion and exclusion criteria seen in Table II, and the results
that passed these criteria formed the pool of accepted literature.

The process of evaluation, for each query, was continued until
the query was exhausted. Queries were considered exhausted
once each result had been evaluated, or a full page of results
had not passed the criteria. The number of entries per page
varied between databases, therefore, per page entry counts were
recorded for each database.

Next, the methods and conclusions were evaluated against
the inclusion and exclusion criteria, and those that passed were
then evaluated against the quality criteria. After the first set of
queries were made and evaluated, the search terms were refined.
The search process then repeated using these new terms, and
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Fig. 2. A high-level view of the metrics framework, with a taxonomy of asset
types and techniques found in the literature.

additionally, the accepted literature was cross-referenced to find
more relevant literature. Following the same process, the search
was expanded to the following databases, as well, until results
were exhausted: Ebsco, Google Scholar, and ResearchGate to
ensure completeness.

III. EVALUATION METRICS FRAMEWORK

There are various metrics that can be applied to graphical
asset generation methods, depending on the type or format of
the asset, or the generative technique employed. We categorise
these metrics into three main classifications: Operation, Artefact
Validation, and Artefact Quality.

Methods for generating graphical assets take many forms.
These methods largely vary by target asset type and overall
technique employed. Fig. 2 shows the taxonomy of asset types
and techniques found in the literature, introduced in [10]; re-
lated with the high-level metrics framework, contributed here.
Methods for generating 2D and 3D assets work with vastly
different forms of data. 2D data may consist of bitmaps made
up of pixel values, or vector data that represents points in 2D
space. Whereas 3D data may consist of meshes, point-clouds
or voxels. The technique represents the general task that the
generator completes, but also relates to a particular arrangement
of input and output data types for a given method. Selecting
the correct metrics for evaluating a generative method requires
that the asset type and technique is known. For example, a
method that uses a sketch-based technique to produce 3D mesh
assets will take 2D bitmap or vector data as an input, and will
output mesh data. With this knowledge, appropriate operation,
artefact validation and artefact quality evaluation metrics can
be selected. Low-level diagrams in Figs. 3, 5, and 6 show the
expanded list of metrics found in the literature. Items are placed
under 3D and 2D groupings, and all ungrouped metrics have
been used in both 3D and 2D use cases. Exceptions relating
to specific approaches or formats are marked with tags which
are defined at the bottom of the figures. Metrics that occur only
once in the examined literature are marked white, and metrics

Fig. 3. The low level metric evaluation framework, focusing on operation
metrics, and the various contexts in which they are applied. Keys at the bottom
indicate their corresponding value within the diagram. White coloured boxes
indicate metrics that only occur once within the examined literature, while
grey coloured boxes indicate metrics that have more than one occurrence in
the examined literature.

that occur more than once in the examined literature are marked
grey.

As discussed in [10], the classification of asset and technique
type have been derived from the examined literature. 2D and 3D
assets are differentiated by the formats used to represent them, as
well as the types of asset commonly focused on in the literature.
Two broad classifications have been applied to both 2D and 3D
asset types, these are arrangement and individual. Arrangements
are groupings of other types of asset, as opposed to individual
asset types. For example, 2D layouts [11], [12], [13], [14] or
environments [15], [16] are arrangements of 2D assets such as
sprites. Techniques however, are separated into conceived and
synthesised types. The former includes methods that produce
assets from scratch, either by re-imagining an input in a different
modality (externally conceived), or methods in which the system
itself has full creative control (internally conceived). The latter
includes methods that manipulate or combine existing assets to
form new results. These include object placement algorithms,
part-wise synthesis, methods for interpolating between existing
assets, style transfer and parametric systems. At a high-level, we
group together individual 2D assets as sprites and maps, where
sprites consist of graphics that may be used as characters [17]
or objects [18] in a 2D world or user interface [13], and maps
consist of texture [19], normal [20] or height-maps [21] that are
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commonly applied in improving the rendering of mesh based 3D
assets. 3D assets may be arranged in an interior context, such
as room layouts [22] or in an exterior context such as a city
made up of buildings [23]. The high-level 3D categorisations
include scenery, hard-surface and characters/creatures. Scenery
groups together clouds [24], roads [25], terrain [26], trees [27]
and rocks [28]. Hard-surface groups buildings [2], furniture [29],
vehicles [5] and props [30]. While characters [31], faces [32],
hair [33] and organs [34] are grouped under characters/creatures.

Togelius et al. [35] put forth 5 desirable properties of PCG
methods in games. These are: Speed, generation time; Relia-
bility, the meeting of baseline expectations; Controllability, the
user’s ability to specify or steer content; Expressivity/Diversity,
the variety of possible artefacts; and Creativity/Believability, the
quality of artefacts. While it would be invaluable to have the
capability of addressing each of these properties via quantitative
means, we are able to cover 4 of these properties given the meth-
ods found in the literature. Artefact validation metrics assess
the Reliability and to some extent the Expressivity/Diversity of
the method via statistical aggregation. Artefact quality metrics
assess the Creativity/Believability of the the artefacts, and oper-
ation evaluation, namely performance metrics, cover the Speed
and scalability of the method. On the other hand, Controllability
is harder to quantify, and thus no metrics were observed in the
literature. We posit that this could be mapped to the method’s
technique classification by means of user degrees of freedom,
though it is difficult to determine what constitutes a meaningful
degree of freedom. For example, a sketch-based system affords
the user a large amount of control over the outcome in exchange
for a moderate degree of effort; whereas a seeded approach
may require close to zero user input and thus affords very little
control. A parametric approach may have varying degrees of
freedom depending on the parameters exposed to the user, but
whether or not these are meaningful controls is not objectively
identifiable. In Fig. 4 of [10] graphical asset generation input
types have been ranked in terms of complexity.

Artefact validation consist of objective and perceptual simi-
larity metrics. Objective similarity metrics assess the similarity
between outputs and corresponding ground-truths and are often
used in aggregate form for evaluation purposes. For these metrics
to be applied, the ideal (i.e. ground-truth), corresponding data
must exist for each output in the test. As such these metrics are
largely seen in deep-learning generative approaches where this
data is available as a matter of course. This naturally limits the
relevance of objective similarity metrics to externally conceived
methods, where the generator’s job is to reliably interpret data
of one form to another e.g. text-to-image or sketch-to-mesh.
Conversely, objective similarity metrics are counter-productive
if at all possible in cases where the generator should have creative
agency, as they punish variation and reward conformity. Some
common objective similarity metrics include, Mean squared
error (MSE) [36], [37], [38], [39], Root mean square error
(RMSE) [2], [3], [4], [40], [41] or Intersection over union
(IoU) [12], [42], [43], [44].

Perceptual similarity metrics offer an alternative approach to
validating artefacts, requiring less correspondence to ground-
truth data. This is achieved either through human perception, or

Fig. 4. Ground-truth datasets from the examined literature, arranged by asset
type.

standardised deep-learning models that behave as a proxy for
human perception such as Inception score (IS) [45] and Frechet
inception distance (FID) [46].

Artefact quality metrics assess the generator’s ability to pro-
duce high quality outputs. This includes human-centered mea-
sures, such as questionnaires and rating systems [47], [48], [49],
[50], and characteristic metrics that measure particular attributes
of assets.

Operation evaluation includes performance and controlla-
bility measures. Performance metrics assess resources, such as
memory [51], [52], [53] or time cost [29], [52], [53], [54], [55] of
a method. While these metrics are important during development
and testing, they are particularly important when applications go
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into production and release and run in real-time, as they have
direct implications for user-experience and usability.

It is in the best interest of researchers and practitioners to
evaluate the validity and the quality of artefacts as well as the
operability of their generative methods, in order to assess and
present the capability of their approach, and compare it with
existing alternatives. Sections IV, V and VI will cover artefact
validation, artefact quality and operation metrics respectively.

IV. ARTEFACT VALIDATION METRICS

A wide breadth of established metrics may be applied in
validating the capabilities of generative methods as shown in
framework Fig. 3. These artefact validation metrics assess the
degree to which generated artefacts match the intended asset
type. This can be achieved through objective or perceptual
similarity measures, which are presented in Section IV-A and
IV-B respectively. Section IV-C will present relevant procedures.

A. Objective Similarity Metrics

Objective similarity testing assumes that there is an exact
intended output for every input. Therefore only applying to
methods, often deep-learning based, that have the purpose of
reliably re-interpreting an input in some way. However, this is
not always a complete limitation. For example, with variational
autoencoders (VAEs), such metrics can validate how well the
method captures the desired features of a dataset, with the
method itself still being capable of producing novel and varied
outputs by sampling or interpolating between data points [19],
[44], [56]. Many games follow a specific art direction, with
requirements for the style of assets. Altogether, validating and
training a VAE on data that fits these requirements would help
ensure style consistency while still producing varied results. In
other words, objective similarity can help ascertain in these
cases, whether a method has successfully captured a target
search space.

Objective similarity metrics are applied in the comparison
between corresponding data points, such as mean absolute error
(MAE) [17], [51], [57], mean squared error (MSE) [36], [37],
[38], [39], root-mean-squared error (RMSE) [2], [3], [4], [40],
[41] and sum of squared errors (SSE) [23]. MAE aggregates
the absolute error of data-points, that is the positive difference
between corresponding values, while SSE and MSE square
these errors strengthening larger errors and diminishing smaller
errors. SSE aggregates via summation while MSE aggregates
via mean. The resulting values are in squared units, however.
RMSE negates this effect by taking the root of the resulting
value [8]. While each of these errors have their uses when train-
ing deep-learning methods, MAE and RMSE can be considered
more intuitive for evaluation purposes, as they share the same
unit as the data they are derived from.

Intersection over union (IoU) measures the overlap between
two volumes or regions, measuring the difference in shape and
positioning between two assets. This has be applied in 2D for
evaluating segmentation tasks [42] and layouts [12] or in 3D
for comparing shapes [43] or bounding boxes [44]. Chamfer
distance (CD) compares the difference between two sets of

points by averaging the difference between each point and its
closest point in the other set, thus not requiring a defined pairing
or matching set sizes. This can be applied to all point-based asset
formats such as point-clouds [58], and meshes [59]. Also used
for point-based formats, Hausdorff distance finds the greatest
difference between two sets of points [34], [60]. The F-score is a
measure that combines the precision and recall for generated and
ground-truth counterparts. This is used to score shape similarity
between the two, therefore measuring the reconstruction quality
of the method. This has been used to evaluate single-view [61],
[62], [63] and multi-view [59] reconstruction approaches. For
methods of interpolation, a separability score can be obtained to
measure how disentangled the latent space is [64]. To test how
well a deep-learning model generalises, irrespective to the set
of training data, K-fold cross-validation may be employed [24].
This method splits the dataset into K subsets. For each subset,
the model is trained on all other subsets, and tested using the
subset in question. The mean and variance across tests can then
be reported in the chosen evaluation metric. Zhao et al. [65]
utilise log-Likelihood analysis in assessing an adversarial au-
toencoder’s ability to capture the distribution of the training data.

Statistical tests may be necessary in the case of large deep-
learning models, providing insight into the capability of the
method through analysis over output distributions. These tests
are purely statistical analysis such as analysis of means and
standard deviations, and nearest neighbour classification and
regressions. 1-nearest neighbour accuracy (1-NNA) assesses the
similarity between two distributions using a 1-nearest neighbour
classifier. This classifies each sample as belonging to one of the
two groups, thus identical distributions should converge on an
accuracy of 50%, therefore the closer the value is to 50% the
better [66]. This approach takes into account the similarity in
both the quality and the variation or diversity of the two sets,
and has been used for 3D deep-learning approaches [67], [68],
[69], [70]. Jensen–Shannon divergence (JSD) is used to measure
the divergence between a ground truth and output distribution.
For example, this is applied in point-cloud evaluation [71], [72].
Ivanov et al. test that their results follow a normal distribution,
using Kolmogorov-Smirnov and Shapiro-Wilk tests [73].

Many similarity metrics are specific to 3D assets. For ex-
ample, earth mover’s distance (EMD) is used to measure the
difference between an output and a ground truth distribution.
This is used for point-clouds [74], voxels [75], and meshes [76].
Coverage scores the amount of similarity between two sets of
point-clouds or meshes, for example, between generated results
and a reference set [5], [69], [77]. Minimum matching distance
(MMD) [5], [69], [78] instead gives a better representation of
difference between the two sets, matching items by minimum
distance and yielding the average of these distances [79]. Mesh
reconstruction similarity can be calculated using point-wise
euclidean distance between target and generated meshes [80],
[81].

Surface distance metrics such as those used in [36], [82], [83]
densely compare 3D points as a measure of surface similarity.
Light field distance metrics use multi-view renderings of the 3D
assets to calculate shape similarity invariant to rotation [5], [84].
Whereas multi-view consistency error observes the distance
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between the same points at different viewing angles [85]. Here,
a normalised object coordinate space (NOCS) representation is
used. A NOCS discontinuity score is also introduced, to measure
the connectivity of the surface [85]. Öngün and Temizel [86]
introduce average absolute difference (AAD) and average voxel
agreement ratio (AVAR) metrics, which measure the agreement
between paired voxel shapes at different angles. For assessing
data in graph form, graph edit distance [87] can be used. This
represents the minimum amount of change required to transform
one graph to another, and thus how similar their topologies are.
A key aspect when generating characters is the joint angle. Mean
per joint position error (MPJPE), vertex error and quaternion dis-
tance error may be used to measure this [31]. For interior object
placement, bounding box displacement and angular errors have
been used as metrics for correct positioning and rotation [44].

In the task of reconstructing caricature faces in 3D, inter-pupil
and inter-ocular distance metrics have been used [88]. While
sliced Wasserstein distance is used to compare the difference
in ground-truth and generated face patch distributions [89], and
mean alignment error may be used to find the average difference
between vertex positions [90].

Alternatively, some similarity metrics are specific to 2D as-
sets. For example, peak signal-to-noise ratio (PSNR) can be
used to determine the strength of noise within an image, and
therefore can be a measure of visual quality [47], [91], [92].
Structural similarity (SSIM) measures the perceptual quality
based on high-level structure, comparing the output to a ground-
truth image [93]. This has seen widespread use across image
and texture generation approaches [19], [38], [47], [91]. Yadav
et al. [94] use the visual information fidelity (VIF) metric [95] to
assess the visual quality of their outputs. VIF measures the dif-
ference in visual information for the output image by assuming
the ground-truth image to be a perfect signal [95]. Alternatively,
when evaluating methods for generating normal maps, an angu-
lar or normal difference metric may be applied [20], [96]. These
are similar to other pixel-wise error metrics, in that distances
in pixel-wise values between two images are assessed. Angular
error is reported as angles in degrees, as each pixel on a normal
map represents a direction [20], while the normal difference
metric reports non-angular values [96].

Root-mean-squared deviation (RMSD) has been applied in
evaluating 2D layout generation by computing the discrepancy
between the positioning of elements in generated and ground
truth layouts [13].

B. Perceptual Similarity Metrics

While objective similarity is not always possible due to re-
quiring one-to-one ground-truth data, perceptual similarity can
be used to classify or score an artefact based on perceived
similarity to a visual reference. Perceptual similarity in its
simplest form may involve human-centered classification of
artefacts. Here, a human evaluator will be given visual references
to compare generated artefacts with, and tasked with judging
whether the artefact is ”real” or ”fake” [19], [97], or whether it
belongs to the target classification [47], [98], as mentioned in
Section V-C. Alternatively, a variety of automatic perceptual
similarity evaluators may be used. The Inception CNN model

has been shown to perform well at image classification and
detection tasks [99]. Since its introduction, subsequent versions
of the Inception model have been used for evaluating genera-
tive models, such as generative adversarial networks (GANs).
Metrics such as inception score (IS) [100], frechet inception
distance (FID) [46] and kernel inception distance (KID) [101]
each make use of the inner layers of the Inception model to
compare latent similarities. Though IS uses this to evaluate
the perceptual similarity of images with their expected class,
FID and KID compare a distribution of generated artefacts
with a ground-truth distribution. As a result, IS is limited to
the categories that Inception is trained on, (typically ImageNet
ILSVRC [102]) but requires no ground-truth data. However, FID
and KID are not limited to assessing pre-defined categories but
require a reference or ground-truth dataset for comparison. FID
utilises Frechet distance between the two image distributions,
and assumes that the two are Gaussian. This is applied to 2D
assets [7], [64], [103], [104], [105], [106], [107], 3D assets
via 3D classifiers [37], [108] or rasterisation to 2D form [109],
[110].The Frechet point cloud distance extends FID for applica-
tions in assessing the similarity of point-based 3D shapes [111].
This has been used to evaluate many deep-learning based 3D
point-cloud [71], [111], [112] and mesh [67] generators. KID
instead utilises the maximum mean discrepancy between the
image distributions, and does not assume a Gaussian form [101].
This has been used for evaluating faces in 2D [113] and for
evaluating 3D assets rendered in 2D form [114]. IS however,
does not take into account the statistical distribution of the data. It
has been used primarily in the evaluation of 2D approaches [50],
[113], [115], [116], [117], though it has been adapted for 3D as
the 3D Inception Score, which uses a 3D classification network
instead [118]. The 2D IS has also been applied to 3D assets that
have been rendered in 2D form [114].

For VAE based interpolation, a perceptual path length metric
is proposed [64]. This metric measures the perceptual distance at
points along a path in the latent space, determining how smooth
the interpolation is. For text-based generation methods, CLIP
score [119] or R-precision may be used to measure the alignment
between the output and the text prompt used to produce it. The
latter is calculated using a Deep Attentional Multimodal Simi-
larity Model (DAMSM) or CLIP-R-precision [120]. Extending
this concept to 3D, the ShapeGlot dataset [121] can be used to
train a similar alignment score model for text-3D generation
methods [122]. A similar metric for faces is proposed [89],
making use of features from a facial recognition network. For
2D tasks, learned perceptual image patch similarity (LPIPS)
can be applied. This metric is trained on the Berkeley-Adobe
Perceptual Patch Similarity (BAPPS) dataset, which consists of
human perceptual judgements across many sets of images [123].
In a similar way, some approaches use alternative pre-trained
fully convolutional networks (FCNs) as perceptual measures for
2D images [124], [125].

C. Evaluation Procedures

For methods that contain multiple sub-processes, e.g. deep-
learning approaches. Ablation studies are a common proce-
dure for assessing the effectiveness of these sub-processes or
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components [5], [18], [32], [44], [65], [126]. In an ablation study,
components are systematically assessed for their contribution to
the effectiveness of the method. This is achieved by removing
the component and evaluating the rest of the method without it.

When developing generative AI systems, developers require
a way to evaluate the quality and performance of their itera-
tions against each other and against other existing methods.
Benchmark datasets provide a controlled input to objectively
compare outputs and performance. The challenge of benchmark
datasets is that it might be difficult to always find a dataset that
closely matches the intended input/output of the method being
developed. Hence, may require slight adjustments to how the
method functions. For methods that require image data, a popular
dataset to use is ImageNet [190]. While general 3D datasets
include: ShapeNet [191], ModelNet [192] and Pix3D [193].
Part-wise 3D methods may use PartNet [194]. Datasets are also
available for certain specific object types, such as shoes (UT
Zappos50K [195]) and birds (CUB-200-2011 [196]). Fig. 4
shows the ground-truth datasets found in the literature, separated
into 2D and 3D data types, and grouped by asset type.

When conducting objective similarity validation, the dataset
must meet two requirements: 1) it must contain data that can
be used as an input into the generative system and 2) it must
contain corresponding ground-truth data in the same form as the
artefacts. When conducting validation via perceptual similarity,
wherein most methods compare 2D image data, as long as the
data can be arranged as such it can be used. For example, mesh
data could be rendered to create 2D data for perceptual compar-
ison, as seen in [67]. There are exceptions to this approach,
namely with captioning evaluation and 3D-text alignment in
which artefacts are scored on closeness to text descriptions.
Alternatively, when using IS no dataset is required, because
scoring is based on a pre-trained classifier.

V. ARTEFACT QUALITY

Artefact quality evaluation methods are categorised as human-
centered, or automatic quality metrics, shown in framework
Fig. 5. Human-centered quality metrics rely on human assess-
ment, while automatic quality metrics assess objective charac-
teristics of assets. The following Section V-A and V-B will cover
human-centered and automatic quality metrics respectively. Sec-
tion V-C will cover relevant evaluation procedures.

A. Human-Centered Quality Metrics

Human perception and opinion can be used to measure asset
quality. Such metrics are particularly valuable given the purpose
of graphical assets, and their integration into games or other
digital media where end-user experience and immersion are
paramount. However, these measures can be inconsistent, and
dependent on many factors. Thus, are best paired with more
objective forms of evaluation i.e. characteristic metrics. Human
perception is a common approach to evaluation in text-guided
generative methods for example [48], [49], [50].

A preference metric may be used, where human evaluators
choose the result that they prefer out of a selection of exam-
ples. These examples can consist of outputs from the method

Fig. 5. The low level evaluation metrics framework, focusing on artefact
quality metrics used in the literature, and the various contexts in which they are
applied. Keys in the bottom-most table are used to indicate their corresponding
value within the diagram. White coloured boxes indicate metrics that only occur
once within the examined literature, while gray coloured boxes indicate metrics
that have more than one occurrence in the examined literature.

being evaluated and outputs from existing alternative methods.
These questions can be posed as a general preference [47], or
preferences for certain aspects of the result [48]. Users may
alternatively rate or score the method on a scale [149], [197].

In assessing interior room layouts, [22] introduce a layout
accuracy metric, which observes the number of furniture pieces
a human evaluator chooses to move in a generated layout. In
other words, this is the number of placements that the human
evaluator is unsatisfied with.

B. Automatic Quality Metrics

Automatic characteristic metrics may be applied in examining
particular characteristics of generated assets. These metrics tend
to be specific to the type of asset and format used. To choose
or develop a characteristic metric, desired characteristics of an
artefact must first be determined. This will be be dependent
on the intended use case, and whether the characteristic can
be objectively measured. For example, symmetry score [118]
and mesh intersection ratio [62] are applied in quantifying the
symmetry and self-intersection of 3D assets respectively. For
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road networks, or graphs in general, connected node ratio and
density metrics [25] can be employed to examine the properties
of the networks. Jones et al. [132] introduce stability and rooted-
ness metrics for evaluating generated furniture assets, which use
physics interactions such as gravity and pushing forces to test
the generated shapes. While a measure of flood extent is used
for measuring the realism of terrains, as natural formations tend
to have a degree of drainage [131]. For 2D layouts a measure
of visual balance has been used; considering the distribution of
elements across the layout [14]. While the overlap and alignment
of elements have been used as measures for layout quality,
where the positioning of text and visuals are key. Here, a good
layout will have minimal overlap between elements and maximal
alignment [11], [12]. Where programming languages for shape
creation are concerned [1], the number of lines of code has been
used as a metric to determine the the language’s efficiency or
writing speed.

Depending on the use case, there may be certain desirable
quality requirements for the generated artefacts. For example,
to consider a 3D model ”game ready”, it may need to meet
geometric standards, such as having low self-intersection [62].
If the realism or functionality of a design is a concern, metrics
similar to stability or rootedness will be of more relevance [132].

C. Evaluation Procedures

For the task of collecting human feedback or observing hu-
man perceptions, questionnaires are the primary method em-
ployed. When receiving quantitative feedback from users, it
is common to obtain a scoring or ranking from participants.
This is obtained through a Likert-scale for example [166]. In
many cases Likert-scales are used to collect ordinal ratings,
or binary choice questions may be used for classification. For
text-to-image generation methods, DrawBench [48] may be used
to benchmark and compare the performance of one method with
another, providing a systematic list of prompts. For example, an
experiment may ask users to compare two images generated via
the same prompt, from different methods, and rate them in terms
of fidelity or image-text alignment [48].

When developing a questionnaire for evaluating a generative
method, consider general questionnaire design principles [198]
and practices for implementing Likert scale questions [199]. As
an alternative to rating, a questionnaire may present participants
with a reference asset (i.e. image or 3D model) and ask them
to choose between a number of assets based on similarity to the
reference [47], [98], where one image is the output of the chosen
method, and others are from comparative methods. Similarly, a
set of images from various methods can be ranked [197]. A
human classification score, or fooling rate may also be obtained
by presenting participants with a ”real” asset and a generated
result, and asking them to select the one that is ”real” [19],
[97]. Here, the ”real” asset does not necessarily have to be
a photograph or an exact match to the generated result. The
purpose is to see if the quality of the artefact can fool the
participant into believing that it was not generated. This also
acts as a form of artefact validation as, if the participant believes

Fig. 6. The low level metric evaluation framework, focusing on operation
metrics used in the literature. White coloured boxes indicate metrics that only
occur once within the examined literature, while gray coloured boxes indicate
metrics that have more than one occurrence in the examined literature.

the artefact is a ”real” example of a particular asset type, then it
must be identifiable as such.

VI. OPERATION METRICS

Fig. 6 presents the operation metrics used in the literature.
These consist of various performance metrics and controllabil-
ity. There are four performance metrics that can be applied to
most methods, these are: memory usage, speed, time complexity
and running cost. Alternatively, for grammars specifically, there
are two performance metrics that can be applied, encoded size,
and grammar precipitate. Memory usage and speed can be
observed by monitoring the hardware usage or efficiency during
runtime. In general, these metrics are dependent on the relevant
specifications of the machine used, so these should be reported
in any performance evaluation. It is often necessary to measure
the speed of an implementation. A faster approach can allow for
more content to be produced in a shorter amount of time. An
example of speed testing can be found in the work of [152],
where the method’s performance with different numbers of
inputs, and different hardware are compared. A common finite
hardware resource is volatile memory such as dynamic random
access memory (DRAM) for CPU based computation, and video
random access memory (VRAM) for GPU based computation.
These have been used as evaluation metrics in [51], [52], [53].
Memory usage provides a benchmark for the minimum system
memory required to run the method, determining the type of
device it may operate on. The scalability of a system can be
assessed by evaluating the time complexity of a method given the
inputs, as seen in [200] for example. This provides an indication
for the speed of a method depending on its scale or number of
inputs.

Running cost may be relevant for commercial projects or
content generation services, for example, Bhatt et al. [151]
report potential running cost of their generative method as a
cloud-based tool. For grammar based methods, an encoded
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TABLE III
USAGE OF 2D METRICS IN LITERATURE, ORGANISED BY GENERATIVE TECHNIQUE USED

size [156] or grammar precipitate metric [150] may be used,
determining the efficiency of the grammar encoding, and the
versatility of extracted rules respectively.

Characteristics such as parallelizability, distributability and
access to intermediate results [54], are contributing factors to
performance. Though the review did not yield any quantitative
measures for these, they should be considered per user need and
expertise. Memory usage, speed, time complexity and running
cost can all be impacted by these characteristics. Hence their
impact can be measured through these metrics. While not ob-
served in the literature, the controllability of a method could be
measured in user degrees of freedom. While more degrees of
freedom does not necessarily equate to more control, it could
suggest more variability of input. But more controls can come
at the cost of usability [201]. Instead, controllability could be
indicated via user studies or indirectly through general usability
assessment, such as System Usability Scale (SUS) [202].

VII. EVALUATION METRICS FRAMEWORK: USAGE

This section will present how to select appropriate evaluation
metrics from those found within the literature. Figs. 3, 4, 5 and
6 show the categorisation of validation metrics, ground-truth
datasets, quality metrics and operation metrics, while Tables III,
IV and V, show the literature organised by metric and technique
used for 2D, 3D and shared metrics respectively. It is evident that
some metrics are very popular for evaluating specific techniques,
while others are popular regardless of technique. For example,
PSNR has been used in five instances for evaluating image-based

2D reconstruction tasks, while FID has been used in a total of
30 instances evaluating text-based, image-based, seeded, style-
transfer and parametric generation tasks. There are many metrics
that, due to being context specific, are only used in one or two
instances, e.g. flood extent, stability, rootedness, inter-pupil and
inter-ocular distances.

Fig. 7 presents the selection procedure for operation, validity
and quality metrics. This process is about finding available meth-
ods to consider for all three metric types. In this process, relevant
metrics are first narrowed down by category based on various
limiting factors, and then the dimensionality of the asset type.
Visiting the relevant figure a list of metrics can be obtained from
headings related to the asset type, and more general metrics:
Figs. 3, 4, 5 and 6. These metrics can then be found in the
relevant tables, where the choice can be narrowed down based
on the technique and by observing their application in existing
examples cited: Tables III, IV and V. Metrics applied to the same
technique may be considered more relevant. If the intention is
to compare with existing methods, then a popular metric for that
technique should be chosen. To identify the technique a method’s
inputs and functionality should be considered, as discussed in
Section III. For artefact validation metrics, human-centered or
automatic approaches can be used. The purpose of artefact vali-
dation is to assess whether artefacts are of the intended asset type.
Artefact validation via objective similarity is only possible when
ground-truth data is available. In most cases, evaluation of a
method via ground-truth datasets is only possible with externally
conceived approaches in which there is a known intended result
for a given input e.g. conversion from sketch-to-mesh. Many of
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TABLE IV
USAGE OF 3D METRICS IN LITERATURE, ORGANISED BY GENERATIVE TECHNIQUE USED
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TABLE V
USAGE OF METRICS THAT DO NOT REQUIRE 2D OR 3D DATA SPECIFICALLY, WITHIN THE LITERATURE, ORGANISED BY GENERATIVE TECHNIQUE USED
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TABLE V
(CONTINUED.)
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Fig. 7. The process for selecting appropriate operation, validity and quality
metrics. Box colours match counterparts in Figs. 3–6.

such methods, often deep-learning based, will already use this
form of validation as a means to optimise the generative model
itself. Naturally, applying these metrics to the final generative
system using data previously unseen to the model will assess its
ability to perform the externally conceived task. To compare a
method with existing approaches a benchmark dataset may be
used, though the availability of a relevant dataset depends on
how popular the asset type is for other generative systems. For
example a generic 3D reconstruction task has many options for
benchmark datasets, while a method that produces a highly spe-
cific type of artefact may require a bespoke dataset. Perceptual
metrics require less direct conformity to a ground-truth. Here,
artefacts can be compared with datasets that represent the general
intended appearance of the artefacts. Metrics such as FID can be
used to assess visual similarity between generated artefacts and
a reference dataset without one-to-one correspondence. Alterna-
tively, IS does not require any ground-truth data, but can only be
used if the asset type belongs to the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) categorisation [102]. Human-
centered validation is achievable with any method, though it
may not always be feasible due to the time it takes to recruit and
access participants. The creator of a method designs or trains
their system based on their conception of what attributes define
the asset type. Human-centered perceptual similarity testing may
be used to confirm if others deem the artefacts to meet their
own conceptions. Typically a description, example or reference
will be provided as a point of comparison for the assessor. This
is not an assessment of quality, but a subjective assessment of

whether artefacts are perceived as what they should be, i.e. is
the method for generating chairs producing what can be deemed
a chair. Where possible, both automatic and human validation
metrics should be applied, though the former is only possible
with externally conceived methods.

Artefact quality evaluation metrics can either be automatic
or human-centered. These can be selected based on relevance
to a use case. Automatic quality evaluation can be achieved
through characteristic metrics. These are metrics that apply to
specific characteristics of an artefact, and will be dependent
on the asset type, data format or end use case of the artefact.
For example, assessing the stability of furniture under physics
simulation [132], or the quality of a mesh by the amount that it
intersects with itself [62]. These make assumptions about what
makes a quality asset e.g. a good chair will remain upright when
exposed to gravity, and a good mesh surface will not intersect
with itself. As such, it is difficult to systematically choose char-
acteristic metrics as it is highly context specific. Alternatively,
human-centered feedback through scoring can provide a more
subjective, opinion based assessment of the quality of artefacts.
Though finding participants and collecting this data will take
more time than automated testing. Both should be used where
possible.

Operation evaluation includes performance and controlla-
bility measures. Memory usage, speed and time complexity
can be applied to any generative algorithm. These measures
are beneficial for determining the resources required to use a
given method. Additionally, in the case of generative methods
as a cloud service, running cost may be assessed [151], while
grammar based methods may benefit from assessing grammar
precipitate [150] and encoded size [156]. Controllability should
be considered based on the context of use. While there are no
direct quantitative measures, users may be asked to indicate their
satisfaction with the controls, whether they are too limited to
achieve their goals, or too complex to comfortably use.

In most cases, multiple metrics of each category will be
relevant. Where feasible, applying every relevant metric will
provide the most precision in evaluating a method. This is not
always possible due to time constraints, therefore, in such cases
individual judgement should be used to prioritise which metrics
are used.

Algorithm 1 presents the process for selecting all three types
of metric based on the artefact asset type, the input type of the
method, and the evaluation aim.

To illustrate the use of this algorithmic approach, we present
a scenario where game developer A has produced a method
for generating 3D models of castles using a GAN architec-
ture. The method is using a seeded technique as the input is
a randomised vector. First, game developer A validates if the
outputs of the method are in fact ”castles”. They choose a
dataset and validation metric (E1) by first examining if there
are any ground-truth datasets available for buildings (E1C1).
Looking at buildings in Fig. 4, there is LiDAR data from the
U.K. environment agency, which has been used for finding roof
shapes [185]. This is not so relevant to their use case. Not finding
an existing similar dataset, they can use an unused portion of the
dataset they used for training. They proceed with selecting a
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Algorithm 1: Algorithm for Selecting Metrics.
1: procedure Selecting Evaluation Metricsasset_type, input_type, AIM �Prioritise metrics applied to same

technique/input_type, consider relevance of metrics based on the example uses in the literature.
2: if AIM = Does the generated asset look like what I wanted? then
3: returnDataset, V alidationMetrics← E1(asset_type, input_type)
4: �Choosing a validation metric.
5: if AIM = Are these assets ”good”? then
6: returnQualityMetrics← E2(asset_type, input_type)
7: �Choosing a quality metric.
8: if AIM = How operable is this approach? then
9: returnOperationMetrics← E3(asset_type)
10: �Choosing an operation metric.
11:
12: function E1: Artefact Validationasset_type, input_type
13: Dataset← E1C1(asset_type, input_type)
14: V alidationMetrics← E1C2(Dataset,asset_type, input_type)
15: returnDataset, V alidationMetrics
16:
17: function E1C1: Choose ground-truthasset_type, input_type
18: if Relevant dataset in Fig. 4 for given asset_type then
19: if input_type matches dataset input type then
20: returnDataset← dataset matching asset_type and input_type
21: returnDataset← dataset matching asset_type
22: if Ground-truth dataset can be created or has been used in training then
23: returnDataset← created or unused portion of training dataset
24:
25: function E1C2: Choose validation metricdataset, asset_type, input_type
26: if there is an expected output for every input_type then
27: if dataset contains asset_type and input_type then
28: if asset_type is 3D then
29: Metric options← Relevant 3D Objective similarity metrics
30: in Fig. 3 based on asset_type.
31: Metrics← Find metric options in Tables IV and V.
32: else if asset_type is 2D then
33: Metric options← Relevant 2D Objective similarity metrics
34: in Fig. 3 based on asset_type.
35: Metrics← Find metric options in Tables III and V.
36:
37: if dataset matches the intended general appearance of asset_type then
38: if asset_type is 3D then
39: Metric options← Relevant 3D Perceptual similarity metrics
40: in Fig. 3 based on asset_type.
41: Metrics← Find metric options in Tables IV and V.
42: else if asset_type is 2D then
43: Metric options← Relevant 2D Perceptual similarity metrics
44: in Fig. 3 based on asset_type.
45: Metrics← Find metric options in Tables III and V.
46: if consider human participation then
47: Metrics← Human Classification Score (Table V)
48: if asset_type belongs to an ILSVRC [102] category then
49: Metrics← Inception Score (Table V)
50: if appearance of asset_type can be put into words then
51: if asset_type is 3D then
52: Metrics← ShapeGlot (Table IV)
53: else if asset_type is 2D then
54: Metrics← ClipScore (Table III)
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55: returnMetrics
56:
57: function E2: Artefact Qualityasset_type, input_type
58: if consider human participation then
59: Metrics← Human classification or feedback (Table V)
60: if asset_type has measurable characteristics then
61: if asset_type is 3D then
62: Metric options← Relevant characteristic metrics in Fig. 5 based on asset_type
63: Metrics← Find metric options in Tables IV and V.
64: Metrics← Devise new characteristic metric/s based on use case.
65: else if asset_type is 2D then
66: Metric options← Relevant characteristic metrics in Fig. 5 based on asset_type
67: Metrics← Find metric options in Tables III and V.
68: Metrics← Devise new characteristic metric/s based on use case.
69: returnMetrics
70:
71: function E3: Operationasset_type
72: Metrics←Memory usage, speed and time complexity (Table V)
73: if consider human participation then
74: Metrics← User control satisfaction
75: if intended to be run as a service then
76: Assess running cost (Table V)
77: if asset_type is grammar based then
78: Assess grammar precipitate and encoded size (Table V)

validation metric (E1C2). As their technique is seeded, there is
no clear expected output for every input. Once they validate that
their dataset matches their intended artefact appearance, they
consider general or 3D perceptual similarity metrics as their
asset type is 3D. Due to the challenges of human participation,
they decide not to use human classification. Therefore, they
move on to other perceptual similarity methods which includes
Inception Score, where ”castles” is a category of ILSVRC,
Fig. 3 and Table V. Then, developer A proceeds to to assess
the quality of their artefacts (E2). As before, they reject human
participation and use an automatic characteristic metric. They
choose to measure mesh intersection ratio based on Fig. 5 and
Table IV, as self-intersecting geometry can look bad and waste
resources. Finally, to evaluate the operability of their method
(E3), developer A assesses the memory usage, speed and time
complexity. They once again reject human participation, so do
not assess controllability. They run their GAN solution locally,
not on cloud, and their method does not use grammars, therefore
they do not assess running cost or grammar metrics.

VIII. CONCLUSION

To evaluate graphical asset generation methods, appropriate
metrics are required. In this paper, a systematic survey of the
literature has been conducted, and a framework for metric se-
lection has been introduced. This framework addresses the need
for a centralised point of reference for quantitatively evaluating
graphical asset generation methods. In this framework, there
are three types of evaluation, artefact validation, artefact qual-
ity and operation evaluation. These three types of evaluation

include quantitative metrics that measure the efficacy, and facil-
itate comparison and benchmarking for methods that generate
graphical game assets. These metrics map onto five desirable
properties of PCG methods in games: Speed, Reliability, Expres-
sivity/Diversity and Creativity/Believablility. Though no quan-
titative measures were found for assessing the controllability of
methods in the literature, we suggest the consideration of user
degrees of freedom, based on a method’s input type. Though
further research should be conducted into how controllability
can be compared between methods.
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