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Abstract
The increasing interest in climate change risks, environmental degradation, corporate social
responsibility, and environmental, social, governance principles has motivated the recent
soaring focus of policymakers, market practitioners, and academics on sustainable invest-
ments. In this vein, we investigate the cross-country interconnectedness among sustainability
equity indices. Using a bivariate Dynamic Conditional Correlations-Mixed Data Sampling
(DCC-MIDAS) specification, we study the short- and long-run time-varying dependence
dynamics betweenEuropean and five international (Australia, Brazil, Japan, US, andCanada)
sustainability benchmarks. Our cross-country dynamic correlation analysis identifies the
interdependence types and hedging characteristics in the short- and long-run across the
business cycle. The significant macro- and crisis-sensitivity of the sustainability correla-
tion pattern unveils strong countercyclical cross-country sustainability interlinkages for most
index pairs and crisis periods.We further reveal the high- and low-frequency contagion trans-
mitters or interdependence drivers in the macro environment during the 2008 global financial
turmoil, the European sovereign debt crisis, and the recent pandemic-induced crash. Finally,
we demonstrate that climate change risks and policy considerations are potent catalysts for
both countercyclical and procyclical cross-border sustainability spillovers.

Keywords Climate change risk · Contagion · DCC-MIDAS · Economic policy uncertainty ·
ESG investment · Financial/health crisis · Sustainability interdependence

1 Introduction

Sustainable development and green transition have become primary objectives in modern
societies globally. Policymakers, concerned about climate change risks and environmental
degradation, urge corporations for responsible corporate strategies to safeguard the environ-
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ment (Huang et al., 2017; Nechi et al., 2020; Tsai et al., 2023; EBA, 2022; Aloui et al., 2023).
Green finance and transformation, climate change physical and transition risks are at the epi-
center of corporate governance priorities (Garefalakis & Dimitras, 2020; Giannarakis et al.,
2020; Kalaitzoglou et al., 2021; Behl et al., 2022). Similarly, investors have started targeting
at corporate securities with high ESG (environmental, social, governance) standards to fulfill
strong sustainability mandates (Jawadi et al., 2019; Benedetti et al., 2021; Liagkouras et al.,
2022; Semmler et al., 2022; Boubaker et al., 2023).

Against this backdrop, we investigate the cross-border co-movement of major sustain-
ability benchmarks through a time-varying (dynamic) correlations econometric framework.
Sustainability interlinkages are still underresearched in the relevant bibliography, and our
study fills this notable literature gap with significant implications. The interconnectedness of
sustainable equity markets, measured by their volatilities and correlations, is crucial for both
market practitioners and policymakers. On the one hand, ESG investment and risk managers
try to hedge their positions and maximise their diversification benefits by investing in sus-
tainable equities of multiple countries and use correlation analytics, a critical input for their
risk assessments (Naeem et al., 2021; Chai et al., 2022; Liagkouras et al., 2022; Rizvi et al.,
2022; Yadav et al., 2022). On the other hand, policymakers proactively act to curb the risk
of financial contagion when cross-market correlations explode in response to a crisis shock
since this directly jeopardises financial stability through systemic stress episodes (Lin et al.,
2018; Zhu et al., 2018; Cerqueti et al., 2021; Miled et al., 2022; Benkraiem et al., 2022).

In this vein, we delve into cross-country sustainable equities interdependence. Our
objective is to study the interlinkages among national sustainability benchmarks through
the DCC-GARCH-MIDAS (Dynamic Conditional Correlations-Generalised Autoregressive
Conditional Heteroskedasticity-Mixed Data Sampling). The specification of Colacito et al.
(2011) quantifies the stock index dependence dynamics by computing their short- and long-
run dynamic conditional correlations, in contrast to the simpler one of Engle (2002), which
allows for short-run dynamics only. We use the Dow Jones Sustainability indices (DJSI)
for Europe, Australia, Brazil, Japan, US, and Canada and estimate five bivariate models
combining the European DJSI with each of the other five national indices. Short-run (daily)
and long-run (monthly) correlations measure the interconnectedness of Europe’s sustainable
corporations’ stock performance with the other countries’ sustainable firms.

Our empirical analysis of the cross-border interlinkages first focuses on the behaviour
of our time series across three crisis periods, the 2008 Global Financial Crisis (GFC), the
European Sovereign Debt Crisis (ESDC), and the Covid-19 pandemic-induced crisis (COV).
The correlations’ analysis and crisis response define the interdependence types among the
sustainability indices and their hedging characteristics. We diagnose contagion or flight-to-
quality phenomena (interdependence types) and hedge, diversifier, or safe haven properties
(hedging features) of sustainable financial markets by distinguishing between short- and
long-run horizons. Secondly, we reveal the high- and low-frequency driving forces of the
DJSI daily and monthly correlations. Global macro-financial fundamentals (uncertainty-
related fundamentals, credit conditions, economic activity, inflation), climate change risks,
news sentiment, and policy considerations are among the determinants of cross-country
sustainability co-movements.

Our findings demonstrate stronger connectivity between European and North American
indices and a weaker link of Europe with Japan, Australia, and Brazil. Financial contagion
is the interdependence type identified for most sustainability pairs and crisis episodes. Most
correlations rise after the crisis shock. Flight-to-quality phenomena and safe haven proper-
ties are not observed given the in-crisis average values of the DCC time series, while we
measure lower interdependence during ESDC for the pairs of Europe with Japan and Brazil
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in the short run and with Japan only in the long run. All indices act as diversifiers rather than
hedges, given the correlation properties in the whole sample under investigation. Moreover,
the daily (high-frequency) and monthly (low-frequency) drivers of the cross-border sustain-
ability co-movement are found in the macro environment. Global macro-financial variables
are significant determinants of the dynamic correlation pattern in the short and long run. Eco-
nomic policy uncertainty (EPU) and crisis shocks are further found to magnify the impact
of the macro drivers on all cross-border correlations with various degrees of macro- and
crisis-sensitivity across countries.

Overall, the present paper’s contribution to the sustainable finance literature is manifold.
There are only a few recent studies on ESG ratings and sustainable investments depen-
dences that measure the connectivity between ESG benchmarks and further asset classes
(see, for example, Chen and Lin (2022), Zhang et al. (2022), and the literature therein).
Hence, adding to this burgeoning strand of the economics and finance bibliography, our
study is the first to distinguish between short- and long-run dynamics among cross-border
sustainability indices. We further fill the literature gap by unveiling the common high- and
low-frequency determinants of these time-varying correlations, and by scrutinising their sen-
sitivity to macro fundamentals and crisis shocks. Our results on the interdependence types,
the hedging features, and the macro- and crisis-relevance of sustainability investing have
important implications for market practitioners and policymakers. Lower interdependences
and macro- or crisis-vulnerability can ensure higher diversification benefits for investors and
a milder threat for financial stability and systemic risk build-ups for policymakers. Conta-
gion and strong macro effects lower the hedging potential and effectiveness of cross-country
sustainability investment strategies and trigger regulatory authorities to devise stabilising
policies that mitigate contagion turbulence.

The remainder of the study is structured as follows. Section2 presents the theoretical
framework of our paper, reviews the related literature, and develops the hypotheses to test
our research questions. In Sect. 3, we describe themethodological approach and the data used.
Section4 analyses and discusses the estimations of the sustainability interdependences, the
correlation determinants, and the macro/crisis-sensitivity of our findings. Finally, the last
Section concludes our empirical analysis.

2 Theoretical framework

The recent growing literature on sustainable investments is mainly related to sustainable eco-
nomic development and finance, green transition, and environmental responsibility research,
given the urgent concerns about climate change and environmental degradation (Benedetti et
al., 2021; Kumar et al., 2022; Boroumand et al., 2022). Existing studies mostly investigate the
portfolio performance and valuations of investment strategies based on high ESG standards
or sustainability indices in stock and bond markets (El Ghoul & Karoui, 2017; Aouadi &
Marsat, 2018; Joliet & Titova, 2018; Oikonomou et al., 2018; Rossi et al., 2019). They com-
pare such ‘green’ investments with the more conventional ‘brown’ ones and explore, among
others, ESG effects on corporate/accounting numbers, firm valuations, or fund exposures.

Stemming from the financial connectedness and integration bibliography (Forbes &
Rigobon, 2002; Baur, 2012), there are a few recent studies that explore interdependences
among ESG leaders’ performance benchmarks (stock or bond indices) and other asset classes
(other aggregate or sectoral equities and bonds, commodities, emissions etc.). For instance,
Zhang et al. (2022) investigate the volatility spillovers among ESG stock indices, renewable
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energy sectoral equities, green bonds, sustainability indices, and emissions futures, while
Chen and Lin (2022) focus on spillovers among global ESG leaders. Such ESG interdepen-
dence studies (see also, Reboredo, 2018; Jin et al., 2020; Le et al., 2021) use short-runmetrics
for the quantification of spillovers, causality, or interconnectedness without answering the
question about the driving forces of these dependences. Therefore, we fill a notable gap in the
literature in three ways: first, by focusing on the cross-border interdependences of sustain-
able equities without considering further asset classes; second, by analysing and comparing
short- versus long-run interconnectedness dynamics with time-varying MIDAS conditional
correlations; and third, by identifying the high- and low-frequency correlation determinants
and their macro- and crisis-sensitivity.

Moreover, taking into consideration existing research on financialmarkets’ co-movements
(see, for example, Christodoulakis & Satchell, 2002; Engle & Figlewski, 2015; Karanasos
et al., 2016; Naeem et al., 2021), on asset hedging properties (Baur & Lucey, 2009, 2010),
and the recent studies on the drivers of financial interdependences (Karanasos & Yfanti,
2021; Yfanti et al., 2023), we hereby develop the theoretical hypotheses we will test in
our empirical analysis. On the one hand, based on the dynamic sustainability correlation
time series computed by the DCC-MIDAS model, we can conclude on the interdependence
types among DJSIs and their hedging characteristics, as well. On the other hand, our macro-
sensitivity regression analysis will reveal the correlationmacro determinants and their impact
on countercyclical or procyclical DJSI interlinkages.

Against this backdrop, the first two hypotheses are as follows:

Hypothesis 1 (H1): Contagion is characterised by a significant increase and positive level of
correlations in crisis periods.

Hypothesis 2 (H2): Flight-to-quality is characterised by a significant decrease and negative
level of correlations in crisis periods.

According to Forbes and Rigobon (2002) and Baur and Lucey (2009), contagion is a
significant rise in correlations with a positive (on average) in-crisis level in response to
a crisis shock. Flight-to-quality episodes occur when correlations significantly drop during
crises with a negative (on average) in-crisis level. By testing the statistical properties of short-
and long-run correlations across the crisis subsamples, we will accept or rejectH1 and/orH2
and identify contagion or flight-to-quality phenomena. When the correlation change is not
significant, or the in-crisis correlation level does not follow the level rule of H1 and H2, we
can conclude that there are higher or lower interdependence phenomena (see Table 1, Panel
A, for all possible scenarios given correlation changes and levels during crises). Turning to
the hedging features, we will follow Baur and Lucey (2010). Regarding the first two hedging
properties, we will define diversifiers and hedges based on the whole sample average of the
correlation time series. Diversifiers are the (not perfectly) positively correlated assets, while
hedges are negatively correlated or uncorrelated. Finally, for safe havens, we will focus on
crisis subsamples to find pairs that are negatively correlated or uncorrelated during crises.
The safe havens are mostly associated with flight-to-quality periods (H2).

Moving to the correlation drivers andmacro-sensitivity,wedevelop the last twohypotheses
as follows:

Hypothesis 3 (H3): Economic worsening increases correlations (contagion or higher inter-
dependence in crisis).

Hypothesis 4 (H4): Economicworsening lowers correlations (flight-to-quality or lower inter-
dependence in crisis).
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According to hypotheses 3 and 4, we will test the correlation determinants across the
business cycle dynamics (see Table 1, Panel B). When the macro-financial proxies portray an
economic slowdown, the correlations will either increase or decrease during crisis periods.
In the first case of increasing correlations, that is contagion or higher interdependence, the
cross-border sustainability correlation pattern is countercyclical (H3). In the second case
of decreasing correlations, that is flight-to-quality or lower interdependence, the dynamic
correlation pattern is procyclical ( H4).

Motivated by recent studies on correlation macro determinants (Karanasos & Yfanti,
2021; Yfanti et al., 2023), we will include global proxies that capture the various aspects
of the macro environment where financial markets operate (see also the next Sect. 3.1 for
the data description of the macro variables). Economic policy (EPU) and financial uncer-
tainty (FU), news sentiment (NW), and confidence (CONF) are among the most striking
features of the economic stance. Agents’ feelings like uncertainty, confidence, optimism, or
pessimism define the expectations and perceptions about the economy and play a decisive
role in nowcasting the economic performance (Bekaert et al., 2013; Baker et al., 2016; Berger
et al., 2023). News and sentiment reflected by news dissemination are equally catalytic for
the economy (Buckman et al., 2020; Shapiro et al., 2020). Furthermore, disease (DIS) and
climate change (CC) risks are important in the macro environment, given that such exoge-
nous forces threaten economic activity and financial markets (Baker et al., 2020; Gavriilidis,
2021). The credit channel (CR) is a further major aspect of the economy that contributes
significantly to economic fluctuations (Gilchrist & Zakrajšek, 2012). The last macro proxies
used are economic activity (EA), freights (FT), and price dynamics (PR), which complete
the macro environment canvas we use to identify correlations’ determinants (Engle et al.,
2013; Conrad et al., 2014; Mobarek et al., 2016).

In Table 1, Panel B, we present the expected signs of the macro coefficient estimates under
each hypothesis. For countercyclical correlations (H3), the variables increasing in economic
worsening will be estimated with a positive sign (EPU, FU, DIS, CR, CC), and the ones
decreasing are expected to have a negative sign (NW, CONF, EA, FT, PR). The opposite
signs hold for procyclical pairs (H4). Finally, under the umbrella of H3 and H4, we will
further test the moderating role of EPU and the crisis effect on the macro impact of the
correlation determinants. We expect that uncertainty and crisis shocks magnify the influence
of the macro fundamentals on the time-varying interdependences, in line with Pastor and
Veronesi (2013) and Karanasos and Yfanti (2021), among others.

3 Data description andmethodological approach

In this Section, we present the DJSI and macro dataset we use and the methodological
framework of our empirical study. We first describe our dataset, the DJSI returns applied
as the DCC-MIDAS input, and the macro fundamentals identified as the correlation drivers.
Second, we detail the DCC-MIDAS model to be estimated for the computation of the time-
varying cross-border sustainability correlations. We will analyse the statistical properties of
the short- (daily) and long-run (monthly) correlation time series of Europe’s DJSI with the
other countries’ indices in order to diagnose the interdependence types and hedging features
of the sustainability benchmarks. The correlation time series are used as dependent variables
in the macro-sensitivity regressions. We intend to identify the determinants of DJSI co-
movements and their crisis-vulnerability. Hence, we finally describe the regression analysis
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Table 1 Theoretical framework of sustainability interdependences

Panel A. Hypotheses on the types of sustainability interdependence

H1 Contagion Correlations increase and positive in-crisis

H2 Flight-to-quality Correlations decrease and negative in-crisis

in-crisis correlations

change ↓ / level −→ positive average level negative average level

significant increase Contagion (H1) Higher interdependence

insignificant increase Higher interdependence Higher interdependence

significant decrease Lower interdependence Flight-to-quality (H2)

insignificant decrease Lower interdependence Lower interdependence

Panel B. Hypotheses on the macro-sensitivity of sustainability interdependence

H3 Contagion or Higher
Interdependence

Economic worsening increases correlations

H4 Flight-to-quality or Lower
Interdependence

Economic worsening decreases correlations

Macro impact sign

Macro determinant H3 H4

Economic uncertainty (EPU) + −
Financial uncertainty (FU) + −
Disease risk (DIS) + −
Credit conditions (CR) + −
Climate change risk (CC) + −
News sentiment (NW) − +

Confidence (CONF) − +

Economic activity (EA) − +

Freights (FT) − +

Prices (PR) − +

The table presents the theoretical underpinningsof the sustainability interdependences. Panel Asummarises our
hypotheses on theinterdependence types (H1 & H2). Panel B recapsour hypotheses on the macro-sensitivity
ofsustainability interdependences (H3 & H4).
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Table 2 Data description

Panel A. Dow Jones Sustainability Indices (DJSI)

EU: Europe, AUS: Australia, BRA: Brazil, JP: Japan, US: United States of America, CA: Canada

Panel B. Macro fundamentals
Variable Description Macro impact

EPUt/τ US Economic policy uncertainty index (d/m) EPU: Economic uncertainty

I V t S&P 500 Implied volatility (VIX) index (d) FU: Financial uncertainty

I Dt Infectious disease equity market volatility tracker (d) DIS: Disease risk

C I SSt US Composite indicator of systemic stress (d) CR: Credit conditions

KCFSI τ US Financial stress index of the Kansas City Fed (m) CR: Credit conditions

CPU τ Climate policy uncertainty index (m) CC: Climate change risk

NSI t News sentiment index (d) NW: News sentiment

BC I τ US Business confidence index growth (m) CONF: Confidence

ADSt Aruoba-Diebold-Scotti (ADS) US business conditions index (d) EA: Economic activity

CFN AI τ US Chicago Fed national activity index (m) EA: Economic activity

BDI t Baltic dry index (d) FT: Freights

CF I τ Cass freight index (m) FT: Freights

I N Fτ US Producer price index (PPI) growth (m) PR: Prices

The table reports the description of the variables used: the daily Dow Jones Sustainability Indices (DJSI) in
Panel A and the daily (d) and monthly (m) macro fundamentals in Panel B. The DJSI series are retrieved
from Refinitiv Eikon Datastream. The macro variable sources are the following: EPU, ID, CPU from www.
policyuncertainty.com, IV,BDI fromRefinitivEikonDatastream,CISS from theECBDataWarehouse,KCFSI,
CFNAI from FRED, NSI from the San Francisco Fed, BCI, INF from the OECD database, ADS from the
Philadelphia Fed, CFI from Cass Information Systems Inc

of the DCC-MIDAS output on global daily and monthly macro proxies, the moderating role
of the uncertainty channel, and the crisis impact.

3.1 Data description

Ourdaily dataset of sustainability indices covers the period from01/03/2005until 01/02/2022,
that is 4,416 observations. Dow Jones Sustainability indices at the country level are used as
sustainability benchmarks for companies with high ESG ratings in each country. We use the
DJSI data (retrieved from Refinitiv Eikon Datastream) for Europe (EU), Australia (AUS),
Brazil (BRA), Japan (JP), United States of America (US), and Canada (CA)1 and calculate
the returns to be included as input in the bivariate model as follows: rit = [ln(Xit ) −
ln(Xi,t−1)]×100, with Xit the daily closing price on day t (Table 2, Panel A). The summary
statistics (descriptive statistics and unit root tests) of the return series are reported in Table 10
of the “Appendix”. Since we will focus on the dynamic correlations of the EU with the other
five countries, we also compute the corresponding static correlation coefficients (EU Corr

1 Our country selection is based on data availability. Given that we aim to explore the sustainability inter-
linkages of Europe with other global markets, we choose major stock markets with DJSI data series, which
cover all three crisis periods and represent most continents/regions worldwide. Australia and Japan are used
as representatives of the Asia-Pacific region. North America is represented by US and Canada, and South
America is proxied by Brazil. Only Africa is not incorporated since the DJSI dataset does not provide enough
data for African indices.
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column in Table 10). We first observe positive correlations across all pairs. However, EU
sustainability benchmarks are more correlated with US and CA and less correlated with JP
and AUS. The statistics further result in a rejection of the unit root hypothesis (Augmented
Dickey–Fuller-ADF test statistic highly significant), indicating that the returns are in the
appropriate form to be included in the system of equations.

Next, we detail the macro variables used as correlation determinants in the macro-
sensitivity analysis (Table 2, Panel B). We use both daily and monthly proxies (independent
variables) for explaining the short- and long-run correlations (dependent variables), respec-
tively, which are extracted from the DCC-MIDAS estimation. The daily series cover the same
period as the index returns, while the monthly data span from March 2002 until February
2022 (204 observations). The high- and low-frequency macro determinants cover all major
aspects of the economic environment around financial markets. The regressors which explain
the correlation pattern are global factors acting as common drivers of cross-border financial
spillovers. Therefore, we mostly choose US-related indices for each macro effect due to their
wider impact on the world economy and for data availability reasons. We also test various
European or international indices for robustness purposes and get similar results for the
macro-sensitivity, but the US proxies are preferred in most cases. The choice of the macro
impacts we include is aligned with previous studies on high- and low-frequency correlation
drivers (Engle et al., 2013; Conrad et al., 2014; Mobarek et al., 2016; Conrad & Stürmer,
2017; Karanasos & Yfanti, 2021; Yfanti et al., 2023). Hence, the variables used for each
economic driver are as follows (see also Table 2 notes for the sources of the regressor data,
and Table 11 in the “Appendix” for the regressors’ summary statistics):

Variables increasing in economic worsening

1. Economic uncertainty (EPU): The economic uncertainty proxies are the daily and
monthly (d/m) US economic policy uncertainty indices (EPUt/τ , t for daily frequency,
τ for monthly frequency) of Baker et al. (2016), who quantify uncertainty based on news
analytics and incorporate policy considerations. The EPU indices have been shown to
exert a strong influence on financial markets as a key economic force (see Karanasos &
Yfanti, 2021, for a literature reviewonEPU indices, their interactionwithmacro-financial
fundamentals, and their relative merits compared to other uncertainty measures). The
log-transformed EPUt/τ variable is included in both short- and long-run correlation
regressions and rises in weak economic periods.

2. Financial uncertainty (FU): For uncertainty in financial markets, we use the daily log-
transformed S&P 500 implied volatility (VIX) index (I Vt ) as a short-run correlation
determinant. VIX is well-documented as a global fear and risk aversion proxy (Bloom,
2014; Bekaert et al., 2013) and soars in turbulent times.

3. Disease risk (DIS): The disease risk is proxied by the daily infectious disease equity
market volatility tracker (I Dt ) of Baker et al. (2020). I Dt quantifies the disease news
impact on financial market uncertainty and can significantly affect financial correlations,
especially during health crises such as the recent Covid-19 pandemic. The disease risk
is included as a high-frequency driver of sustainability spillovers.

4. Credit conditions (CR): The credit channel is proxied by the daily US composite indicator
of systemic stress (C I SSt ) in the short run and the monthly US financial stress index of
the Kansas City Fed (KCFSIτ ) in the long run. The credit channel is a major part of the
macro environment. It plays a catalytic role in economic growth and recessionary phases
of the business cycle dynamics (Gilchrist & Zakrajšek, 2012). Both proxies measure
the financial stress in the economy and increase as credit conditions become tighter in
economic slowdowns.
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5. Climate change risk (CC): The log-transformedmonthly climate policy uncertainty index
(CPUτ ) proxies climate change risk (Gavriilidis, 2021) in long-run correlation regres-
sions. Climate change physical and transition risks are highly connected to corporations’
performance and economic resilience. Higher CC, if not assessed and proactively miti-
gated, can damage the whole economic outlook.

Variables decreasing in economic worsening

1. News sentiment (NW ): The sentiment reflected in economic news is measured by the
daily US news sentiment index (NSIt ) of the San Francisco Fed (Buckman et al., 2020;
Shapiro et al., 2020) and is used as a high-frequency regressor of short-run correlations.
Good news can lead to economic optimism (higher NSIt ), while bad news prompts
pessimism (lower values), apparent in recessionary periods.

2. Confidence (CONF): The log-transformed monthly US business confidence index
(BC Iτ ) is the economic confidence proxy in long-run interdependences. We expect the
opposite signed effect compared to uncertainty. Higher confidence is associated with
economic growth, while low confidence occurs at the same time as high uncertainty in
recessions.

3. Economic activity (EA): The economic activity effect is included in daily and monthly
macro-sensitivity regressions. The daily Aruoba-Diebold-Scotti (Aruoba et al., 2009)
US business conditions index (ADSt ) and the monthly US Chicago Fed national activity
index (CFN AIτ ) are our US activity proxies, falling in weak economic periods.

4. Freights (FT ): The freight level is important in business cycle fluctuations and is included
as a high- and low-frequency regressor.We use the log-transformed daily Baltic dry index
(BDIt ) and the monthly Cass freight index (CF Iτ ). BDIt is a global freights metric and
CF Iτ is a North American index for the freights market.

5. Prices (PR): The price impact is our last component of the macro environment used as
a long-run correlation determinant. The monthly US producer price index (PPI) growth
(I N Fτ ) is our global PR proxy.

The ten economic forces detailed above are included in the correlations macro-sensitivity
regression analysis as independent variables explaining the daily and monthly correlation
pattern extracted from theDCC-MIDASmodel. The dailymacro-financial variables are short-
run determinants of the cross-border sustainability interconnectedness, and the monthly ones
are the long-run determinants. Due to data availability, not all driving forces can be tested
in both short- and long-run dynamics. However, the wide variety of our high- and low-
frequency proxies captures the entire macro environment. The five variables increasing in
economic worsening are expected to have a positive sign in contagion cases (H3) since higher
uncertainty, tighter credit conditions, elevated disease and climate change risks are connected
with economic, health, or climate crises, and increase countercyclical correlations. The five
variables decreasing in economic worsening will negatively affect correlations in contagion
periods, given that lower news sentiment, confidence, activity, freights, and inflation will
raise correlations during recessions. The opposite signs are expected in the procyclical cases
(H4).

Finally, we list the three crisis periods investigated in the identification of interdependence
types, safe-haven properties, and the correlations’ crisis-vulnerability. We consider the crisis
timelines of the Bank for International Settlements for the GFC, the European Central Bank
for the ESDC, and the World Health Organisation for the COV. The crisis subsamples are as
follows:

1. GFC: 09/08/2007–31/03/2009.
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2. ESDC: 09/05/2010–31/12/2012.
3. COV: 11/03/2020–30/09/2020.

The GFC starts with the BNP Paribas fund suspension and the ESDC with the Greek
sovereign debt default. The COV subsample covers the first waves of the pandemic from
March until September 2020. During the first two financial crises and the third health crisis,
most fundamentals used as correlation drivers give a worse economic outlook than the pre-
crisis times. Therefore, in the crisis subsamples, countercyclical dynamic correlations should
increase, and procyclical ones are expected to decrease.

3.2 Econometric framework

3.2.1 The dynamic correlations

The conditional means

The daily index return, at time t (the high-frequency time scale), is denoted by rit ,
i = 1, 2. It is assumed that the conditional (on the information at time t − 1 set, �t−1)
distribution of rit is given by rit |�t−1 ∼ i.i.d. N (μi , hit ), with conditional covariance:
hi j,t = Cov(rit , r jt |�t−1 ). That is μi=E(rit |�t−1 ), is the conditional mean (E denotes

the expectation operator), and hit
de f= hii,t = Var(rit |�t−1 ), i = 1, 2 is the conditional

variance. Alternatively, rit can be written as

rit = μi + εi t , (1)

where the error εi t will be analysed below.

The errors

The DCC-MIDAS model can be thought of as a double Time-Varying Multivariate GARCH
type of model. To see this explicitly, we will consider two sets of errors: εit in Eq. (1) and
eit (see Eq. (9) below).

The εi t
Regarding εi t , we assume that it is conditionally normally distributed with mean 0, and

conditional covariance hi j,t = E(εi tε j t |�t−1), i, j = 1, 2. We will also assume that the
conditional variance, hit , follows a GARCH-MIDAS model (see the analysis below). The
conditional correlation of εi t , denoted by ρi j,t , is given by:

ρi j,t = hi j,t/
√
hit

√
h jt , i, j = 1, 2, (2)

with
∣∣ρi j,t

∣∣ ≤ 1.
Notice that εi t can be expressed as εi t = √

hitξi t . In other words, the devolatilised error
ξi t is equal to εi t/

√
hit , which implies that the conditional correlation of ξi t is also ρi j,t .

The eit
Regarding eit , we assume that it is conditionally normally distributed with mean 0, and

conditional covariance qi j,t = E(eit e j t |�t−1), and it is also assumed that it is equal to
eit = √

qii,tξi t . These two assumptions entail (in view of the definition of the devolatilised
errors) that the conditional correlation of eit is also ρi j,t :

ρi j,t = qi j,t/
√
qii,t

√
q j j,t . (3)
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In the second step of our estimation procedure, we will assume that qi j,t follows the
DCC-MIDAS model [see Eq. (9)]. It follows from eqs. (2) and (3) that

ρi j,t = qi j,t√
qii,t

√
q j j,t

= hi j,t√
hit

√
h jt

. (4)

To summarise, the model in the first step estimates the vector of the errors, εi t , and the
vector of the conditional variances, hit , using a GARCH-MIDAS process (see, for exam-
ple, Engle et al., 2013; Conrad & Loch, 2015), and thus, correspondingly the vector of the
devolatilised errors, ξi t . In the second step, it estimates the matrix of the conditional covari-
ances of the errors eit , qi j,t . Once hit and qi j,t are estimated, then the estimated ρi j,t (the
conditional correlations of the errors, either eit , or ξi t , or εi t ) are obtained using the first
equality in Eq. (4), and then the estimated conditional covariances hi j,t are obtained using
the second equality in Eq. (4).2

The conditional variances
We will employ a two-component specification for the modelling of volatilities. First, we
will introduce another time scale, that is the low-frequency one (i.e., monthly or quarterly, or
biannual) denoted by τ . σi and mi will denote the short- and long-run variance components,
respectively, for asset i . We assume that the latter component (the MIDAS one) is held
constant across the days of the month, quarter or half-year. The number of days that mi is
held fixed (i.e., a month or a quarter) is denoted by K (i)

v , where the superscript i indicates
that this may be asset specific and the subscript v differentiates it from a similar scheme that
will be introduced later for correlations.

In particular, we will assume that each conditional variance, hit , follows the two-
component GARCH-MIDAS model3:

hit = miτ σi t , for all t = (τ − 1)K (i)
v + 1, . . . , τK (i)

v ,

where σi t follows a GARCH(1, 1) process:

σi t = (1 − αi − βi ) + αiξ
2
i,t−1σi,t−1 + βiσi,t−1 (5)

(notice that in view of Eq. (1), that is εi t = rit − μi , and the fact that ε2i t = miτ σi tξ
2
i t , we

have: ξ2i tσi t = (rit − μi )
2/miτ ), while the MIDAS component miτ is a weighted sum of

M (i)
v lags of realised variances (RV ) over a long horizon:

miτ = mi + θi

M(i)
v∑

l=1

ϕl(ω
(i)
v )RVi,τ−l (6)

2 As pointed out by Colacito et al. (2011), the asymptotic properties of the two-step estimator are discussed
in Comte and Lieberman (2003), Ling andMcAleer (2003), andMcAleer et al. (2008). These papers deal with
fixed-parameter DCC models. Wang and Ghysels (2015) provide a rigorous analysis of the ML (Maximum
Likelihood) estimation of the GARCH-MIDAS model. The regularity conditions that guarantee the standard
asymptotic results for the two-step estimation of the DCC-MIDAS (see p. 48 in Colacito et al., 2011) is an
open question.
3 We should use the notation hit,τ , but we drop the subscript τ for notational simplicity.
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where the so-called Beta weights are defined as

ϕl(ω
(i)
v ) =

(
1 − l

M(i)
v

)ω
(i)
v −1

M(i)
v∑

j=1

(
1 − j

M(i)
v

)ω
( j)
v −1

, (7)

and the realised variances are equal to the sum of K (i)
v squared returns:

RViτ =
τK (i)

v∑

t=(τ−1)K (i)
v +1

r2i t . (8)

The rate of decay of the beta weights in Eq. (7) is determined by the size of ω
(i)
v , that is large

(small) values of ω
(i)
v generate a rapidly (slowly) decaying pattern. We will consider the case

where the parameters M (i)
v and K (i)

v are the same across both series, that is M (i)
v = Mv and

K (i)
v = Kv for i = 1, 2. The short-run component [see Eq. (5)] is based on daily (squared

returns), which moves around a long-run component driven by realised volatilities computed
over a monthly or quarterly basis [(see Eqs. (6)–(8)].4 In the former case Kv = 22, whereas
in the latter Kv = 66. As τ varies, the time span thatmiτ is fixed (that is Mv) also changes. In
particular, the number of (lag) years, spanned in each MIDAS polynomial, miτ , varies from
one to four years. More specifically, in a monthly basis, Mv = 12, 24, 36, 48, whereas in a
quarterly basis Mv = 4, 8, 12, 16.

Since the number of parameters is fixed, we can compare various models with different
time spans. More specifically, following Colacito et al. (2011) and Engle et al. (2013), we
profile the log-likelihood function in order to maximise it with respect to the time span
covered by RV .

The conditional correlations
First, we will make use of the following definition.

Definition 1 Let Kc = max
i j

K (i j)
c and ci j,τ =

∑Kc
t=(τ−1)Kc+1 ξi t ξ j t√∑Kc

t=(τ−1)Kc+1 ξ2i t

√∑Kc
t=(τ−1)Kc+1 ξ2j t

.

Using the vector of the devolatilised residuals, ξi t , we employ the DCC-MIDAS (the
MIDAS version of the DCC model) to obtain qi j,t as follows:

qi j,t = ρi j,τ (1 − a − b) + aξi,t−1ξ j,t−1 + bqi j,t−1, (9)

where

ρi j,τ =
M(i j)

c∑

l=1

ϕl(ω
(i j)
r )ci j,τ−l . (10)

Notice that qii,t is given by

qii,t = (1 − a − b) + aξ2i,t−1 + bqii,t−1.

4 Note that in the case of volatility, Engle et al. (2013) found that although mi,τ can be formulated either via
keeping it locally constant or else based on a local moving window, the difference between the two appears to
be negligible. Colacito et al. (2011) noted that for correlations, a researcher potentially has the same choice.
Since the fixed span is more general, we adopt this for our formulation (instead of the rolling window one).
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The specification in Eq. (10) can accommodate weights ω
(i j)
c , lag lengths M (i j)

c , and
span lengths of historical correlations K (i j)

c to differ across any pair of series. Typically,
and following Colacito et al. (2011), we will use a single setting common to all pairs of
series, similar to the choice of a common MIDAS filter in the univariate models. In the
case of a common decay parameter ωc independent of the pair of returns series selected, the
covariance matrices are positive definite under a relatively mild set of assumptions since it is
apparent fromEq. (9) that thematrixQt = [qi j,t ] is a weighted average of threematrices. The
matrix Rτ = [ρi j,τ ] is positive semi-definite because it is a weighted average of correlation
matrices. The matrix ξ tξ

′
t , where ξ t = [ξi t ], is always positive semi-definite by construction.

Therefore, if the matrix Q0 is initialised to be a positive semi-definite matrix, it follows that
Qt must be positive semi-definite at each point in time (see Colacito et al. (2011), for the
implication of a single versus multiple parameter choices for the filtering scheme).

Correlations can then be computed using Eq. (4). We can express Eq. (9) as

qi j,t − ρi j,τ = a(ξi,t−1ξ j,t−1 − ρi j,τ ) + b(qi j,t−1 − ρi j,τ ).

The daily dynamics of the correlations (covariances), ρi j,t (qi j,t ), obey a DCC scheme, with
the correlations moving around a long-run component (ρi j,τ ). As pointed out by Colacito et
al. (2011): “short-lived effects on correlations will be captured by the autoregressive dynamic
structure of DCC, with the intercept of the latter being a slowly moving process that reflects
the fundamental or secular causes of a time variation in correlation”.

3.2.2 Macro-sensitivity

Next, we extract the short- and long-run conditional correlation time series (ρi j,t and ρi j,τ
for each returns pair i j) from the bivariate DCC-MIDAS models estimated. We first analyse
the statistical properties of daily and monthly correlations of each sustainability pair of
the EU with the other five countries. The whole sample statistics show an overview of the
interdependence level for the cross-country pairs. Our crisis analysis further investigates the
correlations’ time series behaviour across the crisis subsamples and identifies the types of
interdependence ( H1 and H2). We apply mean difference tests to compare the pre-crisis
with the in-crisis mean values. The Satterthwaite-Welch t-test and the Welch F-test statistics
indicate the significance of the change in the average level of correlations due to the crisis
shock.

After the statistical analysis, we continue with the regression analysis to unveil the deter-
minants of the sustainability co-movements. We first compute the Fisher Z transformation
of short- and long-run correlations to remove the [−1, 1] bounds so that they can be used
as dependent variables in the OLS macro regressions. The Fisher transformed daily and
monthly series, ρ∗

i j,t and ρ∗
i j,τ , are explained by the macro-financial proxies detailed in the

data Sect. 3.1. According to H3 and H4 (see Sect. 2), we expect weak fundamentals to
increase countercyclical correlations or lower the procyclical ones. The short-run correla-
tions, ρ∗

i j,t , are explained by the first lag of daily variables proxying economic policy and
financial uncertainty, disease risk, credit conditions, news sentiment, economic activity, and
freights as follows:

ρ∗
i j,t = δ0 + δ1ρ

∗
i j,t−1 + δ2EPUt−1 + δ3FUt−1 + δ4DI St−1

+δ5CRt−1 + δ6NWt−1 + δ7E At−1 + δ8FTt−1 + ut , (11)

The long-run correlations, ρ∗
i j,τ , are regressed on the monthly proxies of economic policy

uncertainty, credit conditions, climate change risk, confidence, economic activity, freights,
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and prices as follows:

ρ∗
i j,τ = ζ0 + ζ1ρ

∗
i j,τ−1 + ζ2EPUτ−1 + ζ3CRτ−1 + ζ4CCτ−1

+ζ5CONFτ−1 + ζ6E Aτ−1 + ζ7FTτ−1 + ζ8PRτ−1 + uτ . (12)

δ0, ζ0 are the constants and ut , uτ are the error terms.
The correlation regressors are included in their level, log-level, first difference, or growth

form (see Sect. 3.1). We choose the most appropriate form of the data series, which ensures
the significance and robustness of each regressor’s impact on correlations and rejects the unit
root and multicollinearity hypotheses among the macro-financial variables. The unit root is
rejected from the ADF tests (see the ADF test statistics in Table 11 of the “Appendix”).
Multicollinearity bias is also ruled out through the Variance Inflation Factors (VIF) test. We
run VIF tests for each daily and monthly regressor and result with no or low correlations
among the independent variables, which do not distort the estimation of the OLS regression
coefficients (VIF test statistics available upon request).

Next, we proceed our macro-sensitivity analysis of the short-run correlations (similar
results for the monthly correlations available upon request) with a focus on the uncertainty
channel. Given the potent devastating effects of uncertainty on the economy (Bloom, 2009,
2014), we investigate the moderating role of EPU on the correlation drivers. EPU is expected
to intensify the macro impact of the correlation determinants. Uncertainty will add an incre-
ment (in absolute terms) on both positive and negative effects on sustainability correlations
(see also Pastor & Veronesi, 2013). The uncertainty increment is captured by the EPU inter-
action terms in the following regression:

ρ∗
i j,t = δ0 + δ1ρ

∗
i j,t−1 + δ2EPUt−1 + (δ3 + δEPU

3 EPUt−1)FUt−1

+(δ4 + δEPU
4 EPUt−1)DI St−1 + (δ5 + δEPU

5 EPUt−1)CRt−1

+(δ6 + δEPU
6 EPUt−1)NWt−1 + (δ7 + δEPU

7 EPUt−1)E At−1

+(δ8 + δEPU
8 EPUt−1)FTt−1 + ut , (13)

wherewe quantify the indirect EPUeffectwith the interaction terms computed bymultiplying
EPU with each regressor (EPU interaction term parameters denoted with the superscript
EPU ).

After the uncertainty channel, we focus on the crisis impact on correlations and their
macro regressors’ effects. We add intercept and slope crisis dummies in Eq. (11) to capture
the crisis-vulnerability of sustainability interdependences. Intercept dummies measure the
influence of the crisis on correlation levels, and slope dummies measure the impact of the
crisis on the macro determinants’ effects on correlations. The three crisis intercept dummies,
DUMC,t , are constructed based on the crisis timelines (see Sect. 3.1). DUMC,t = 1 if t is
in crisis and DUMC,t = 0 if t is out of crisis, with C denoting the crises under investigation
(C = GFC, ESDC,COV ). The slope dummies are calculated with the multiplication of
intercept dummies with the macro regressors. To sum up, the macro regression with the crisis
impact is the following:

ρ∗
i j,t = δ0 + δC0 DUMC,t + δ1ρ

∗
i j,t−1 + (δ2 + δC2 DUMC,t−1)EPUt−1

+(δ3 + δC3 DUMC,t−1)FUt−1

+(δ4 + δC4 DUMC,t−1)DI St−1 + (δ5 + δC5 DUMC,t−1)CRt−1

+(δ6 + δC6 DUMC,t−1)NWt−1

+(δ7 + δC7 DUMC,t−1)E At−1 + (δ8 + δC8 DUMC,t−1)FTt−1 + ut , (14)
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where the superscript C denotes the crisis dummies coefficients.
Finally, we close the macro- and crisis-sensitivity analysis by combining the EPU mod-

erating effect with the crisis impact as follows:

ρ∗
i j,t = δ0 + δ1ρ

∗
i j,t−1 + δ2EPUt−1

+(δ3 + δ
EPU_C
3 DUMC,t−1EPUt−1)FUt−1

+(δ4 + δ
EPU_C
4 DUMC,t−1EPUt−1)DI St−1 + (δ5

+δ
EPU_C
5 DUMC,t−1EPUt−1)CRt−1

+(δ6 + δ
EPU_C
6 DUMC,t−1EPUt−1)NWt−1 + (δ7

+δ
EPU_C
7 DUMC,t−1EPUt−1)E At−1

+(δ8 + δ
EPU_C
8 DUMC,t−1EPUt−1)FTt−1 + ut . (15)

The EPU interaction terms aremultipliedwith the crisis slope dummies to capture the indirect
EPU effect under crisis (parameters denoted by the superscript EPU_C ).

4 Empirical analysis

After detailingourmethodological approach,wediscuss our empirical results.Wefirst present
the DCC-MIDAS estimation and analyse the dynamic sustainability correlations extracted
from the five bivariate models of EU with AUS, BRA, JP, US, and CA. Lastly, we pro-
ceed with the macro-sensitivity regressions to identify the interdependence determinants, the
uncertainty channel, and the crisis impact on the correlation pattern.

4.1 Dynamic correlations (estimation)

The DCC-MIDAS specification uses the DJSI returns as input, estimates the short- and
long-run conditional variance of each series in the bivariate system, and then computes the
pairwise short- and long-run correlations for each sustainability combination. Table 3 reports
the variance (Panel A) and correlation (Panel B) equation results given the following lag
lengths: Mv = 24 and Mc = 36. The EU variance equation is the same for all bivariate
systems where the EU returns are included. The arch (αi ) and garch (βi ) coefficients are
significant and with a sum lower than the unity so that the short-run variance component is
mean-reverting to unity. In the MIDAS variance part, the intercepts (mi ), the monthly RV
coefficients (θi ), and the weights (ωi

v) are always significant. For the first two parameters (mi ,
θi ), the values are similar across the six sustainability indices, while the smoothing weights
(ωi

v) vary considerably (between 1.77 and 6.14).
Moreover, in the five θ , a and b drive the daily (short-term) correlations, and they are

significant in most cases with a sum lower than the unity to ensure the mean-reversion of the
daily process to the long-term average. Only in the EU-US pair, we estimate a much smaller
(compared with the other pairs) and insignificant b. The long-run correlations are driven by
monthly realised correlations with the weight coefficient (ωi j

r ) always significant, with values
from 1.00 to 6.56.

The short- (daily) and long-run (monthly) correlation time series are the output of the
DCC-MIDAS variance-covariance matrix estimated. Figures1a-1e show the time-varying
interdependence of the European sustainability benchmark with Australia, Brazil, Japan,
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Table 3 DCC-MIDAS estimation results

EU AUS BRA JP US CA

Panel A. Variance equation

μi 0.0564∗∗∗
(0.0118)

0.0482∗∗∗
(0.0166)

0.0550∗∗
(0.0236)

0.0621∗∗∗
(0.0164)

0.0596∗∗∗
(0.0107)

0.0409∗∗∗
(0.0114)

αi 0.1428∗∗∗
(0.0096)

0.1202∗∗∗
(0.0083)

0.0767∗∗∗
(0.0060)

0.1187∗∗∗
(0.0077)

0.1360∗∗∗
(0.0090)

0.0937∗∗∗
(0.0053)

βi 0.7956∗∗∗
(0.0152)

0.8212∗∗∗
(0.0162)

0.8861∗∗∗
(0.0128)

0.8210∗∗∗
(0.0145)

0.8188∗∗∗
(0.0115)

0.8856∗∗∗
(0.0079)

mi 0.6487∗∗∗
(0.0449)

0.6189∗∗∗
(0.0487)

1.5957∗∗∗
(0.1113)

0.8432∗∗∗
(0.0619)

0.7705∗∗∗
(0.0422)

0.8343∗∗∗
(0.0557)

θi 0.1642∗∗∗
(0.0097)

0.1568∗∗∗
(0.0112)

0.0935∗∗∗
(0.0229)

0.1639∗∗∗
(0.0095)

0.1172∗∗∗
(0.0093)

0.0979∗∗∗
(0.0160)

ωi
v 6.0923∗∗∗

(1.2999)
6.1359∗∗∗

(1.6914)
4.6169∗∗∗

(1.4225)
6.0276∗∗∗

(1.4234)
4.6122∗∗∗

(1.1341)
1.7688∗∗∗

(0.6515)

logL −6284.7 −6059.7 −9182.3 −7677.5 −5924.0 −5953.9

AIC 12581.4 12131.4 18376.6 15364.3 11859.9 11919.8

BIC 12620.8 12170.8 18415.9 15403.7 11899.3 11959.2

a b ω
(i j)
r logL AIC BIC

Panel B. Correlation equation

EU-AUS 0.0171∗∗
(0.0067)

0.9614∗∗∗
(0.0293)

4.4143∗
(2.4662)

−12347.5 24701.1 24720.7

EU-BRA 0.0148∗∗∗
(0.0030)

0.9803∗∗∗
(0.0046)

1.0010∗∗∗
(0.2907)

−12169.7 24345.4 24365.1

EU-JP 0.0159∗∗
(0.0064)

0.8816∗∗∗
(0.0833)

1.0010∗∗∗
(0.0908)

−12387.9 24781.8 24801.5

EU-US 0.0269∗∗∗
(0.0077)

0.2614
(0.3015)

6.5572∗∗∗
(1.3875)

−11621.4 23248.9 23268.5

EU-CA 0.0136∗∗∗
(0.0035)

0.9676∗∗∗
(0.0106)

1.1156∗∗
(0.5189)

−12073.7 24153.4 24173.1

The table reports the DCC-MIDAS variance and correlation estimation results for the five bivariate combina-
tions. The variance estimation of the EU index is the same for all bivariate models (Panel A). The correlation
equation is estimated for five bivariate combinations of the EU sustainability index with the other five coun-
tries’ indices (Panel B). Numbers in parentheses (square brackets) are standard errors (p-values). ∗∗∗, ∗∗, ∗
denote significance at the 0.01, 0.05, 0.10 level, respectively. logL denotes the log likelihood. AIC and BIC
are the Akaike and the Schwartz Information Criteria, respectively

United States, and Canada. In most cases, the cyclical pattern follows the business cycle
dynamics since correlations increase in most crisis intervals (red circles). Daily and monthly
correlations are mainly countercyclical, with the exception of Japan and Brazil for the ESDC
subsample.Thegraphs demonstrate differences between the short- and the long-term response
of correlations to the crisis shock, which will be evident in the crisis analysis of the time
series statistical properties (mean difference tests).

The whole sample’s descriptive statistics (Table 4) show that all correlation mean values
in the short and long term are positive but significantly lower than unity. This means that DJSI
assets act as diversifiers rather than hedges since they are not perfectly positively correlated,
nor negatively or uncorrelated (Baur & Lucey, 2010). The mean values demonstrate a tighter
daily and monthly interlinkage of EU with CA and US (the correlation mean values between
0.42 and 0.57 are higher than in the other three pairs), while the weakest interlinkages are
observed in the cases of JP and AUS (lowest means between 0.27 and 0.37), confirming
the static correlations coefficients computed in the summary statistics of returns in Table 10
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Fig. 1 Dynamic Cross-country Sustainability Correlations [grey dotted series: short-run correlation, solid
black series: long-run correlation, red circle: crisis subsample]

(column: EU Corr). As expected, short-run correlations are more volatile than long-run ones.
The lowest volatility is measured in the EU-JP pair and the highest in the EU-BRA pair for
both short- and long-term horizons (Table 4, columns: Std.Dev.). Overall, the whole period
statistics do not show any striking difference between short- and long-run patterns (similar
mean, median, and minimum values) with the exception of daily EU-BRA correlations’
minimum (short-run correlations: −0.29).

Next, we continue with the statistical analysis of the correlation time series extracted
from the DCC-MIDAS across the crisis subsamples in order to diagnose the types of inter-
dependence in the cross-border sustainability pairs. We focus on the mean changes in the
correlation level before and during the crisis periods and test the first two hypotheses (H1 and
H2). We implement the Satterthwaite-Welch t-test and theWelch F-test, which showwhether
the correlation mean change from the pre-crisis to the in-crisis subsample is significant. The
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Table 4 Descriptive statistics of dynamic sustainability correlations

Short-run sustainability correlations Long-run sustainability correlations

Mean Median Max Min Std.Dev. Mean Median Max Min Std.Dev.

EU-AUS 0.2820 0.2787 0.4901 0.0667 0.0450 0.2813 0.2762 0.3632 0.1966 0.0383

EU-BRA 0.3683 0.3805 0.8062 −0.2905 0.1849 0.3622 0.3453 0.5498 0.1461 0.1239

EU-JP 0.2713 0.2720 0.5281 0.0949 0.0416 0.2676 0.2683 0.3262 0.2082 0.0253

EU-US 0.5684 0.5703 0.7861 0.1979 0.1013 0.5677 0.5683 0.7448 0.3289 0.0994

EU-CA 0.4301 0.4380 0.6424 0.1604 0.0773 0.4157 0.4263 0.5318 0.2879 0.0607

The table reports the descriptive statistics of the short- (daily) and long-run (monthly) dynamic sustainability
correlations extracted from the bivariate DCC-MIDAS estimations: Mean, Median, Maximum (Max), Mini-
mum (Min), Standard Deviation (Std.Dev.). The DJSI variables notation is as follows: Europe (EU), Australia
(AUS), Brazil (BRA), Japan (JP), United States of America (US), and Canada (CA)

pre-crisis subsamples cover an equally long period with the crisis interval before the start
of the crisis. We further test alternative pre-crisis subsample lengths for robustness purposes
and result in similar conclusions for the interdependence types.

Table 5 (Panels A and B) reports the correlation means before and during the crisis, the
sign of the change (increase [+] or decrease [−]), and the t- and F-test statistics that define the
significance of the mean difference. Our results demonstrate a significant increase of correla-
tionswith a positive in-crisis level formost short- and long-run correlations and crisis periods,
in linewith existing studies on green, sustainable, or ESG cross-asset interdependences (Chen
& Lin, 2022; Zhang et al., 2022). Contagion (H1) is the main interdependence type for cross-
border sustainability interconnectedness.We further estimate three correlation decreases dur-
ing the ESDC only. Although the few decreases are significant, we should reject the flight-to-
quality hypothesis (H2) because the in-crisis correlation level is positive. Therefore, we con-
clude on lower interdependences for EU-BRA and EU-JP in the short-term. In the long-term,
only for EU-JP we diagnose lower interdependence, while the EU-BRA pair is characterised
by contagion. This is a case where the short-run pattern does not follow the long-run one.

Finally, we have one case where the increase during COV is not significant, and we
diagnose higher interdependence rather than contagion. This is the case of the long-run EU-
JP correlation. However, the increase is significant for this pair in the short term, meaning
short-run contagion of EU-JP in the health crisis. Table 5, Panel C reports our diagnosis of
the interdependence type for both daily and monthly correlation series. Regarding the safe-
haven properties, no sustainability pair acts as a safe haven since we do not have cases of
uncorrelated or negatively correlated pairs during the three crises under investigation.Overall,
from the investment and policymaking perspective, it is bad news that most cross-border
sustainability spillovers are contagious because this means lower diversification benefits
for traders and higher systemic risks for regulators. However, investors can still find better
hedging opportunities in the few cases of lower interdependences or in the DJSI pairs whose
short-run correlations reach negative values (EU-BRA) or values close to zero (ρi j,t < 0.10)
at least for some daily observations.

4.2 Macro-sensitivity (results)

Our initial crisis analysis shows the countercyclical pattern in most crises for the cross-
border sustainability short- and long-run correlations. Next, we attempt to answer a critical
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Table 5 Dynamic sustainability correlations: crisis mean difference t- and F-tests

Panel A. Short-run (daily) sustainability correlations

GFC ESDC COV

before during mean t-test before during mean t-test before during mean t-test

crisis crisis change F-test crisis crisis change F-test crisis crisis change F-test

EU-AUS 0.2555 0.2999 +∗∗∗ −20.90
436.68 0.3085 0.3305 +∗∗∗ −14.58

212.55 0.2344 0.2529 +∗∗∗ −4.87
23.76

EU-BRA 0.4238 0.5369 +∗∗∗ −12.73
162.09 0.5373 0.5117 −∗∗∗ 3.74

13.95 0.2164 0.3755 +∗∗∗ −7.89
62.24

EU-JP 0.2867 0.3102 +∗∗∗ −10.24
104.93 0.3019 0.2714 −∗∗∗ 16.35

267.37 0.2432 0.2796 +∗∗∗ −7.77
60.34

EU-US 0.4723 0.5495 +∗∗∗ −17.19
295.55 0.5962 0.7059 +∗∗∗ −38.63

1492.4 0.6183 0.6482 +∗∗∗ −9.07
82.26

EU-CA 0.3299 0.3937 +∗∗∗ −14.98
224.46 0.4295 0.4931 +∗∗∗ −18.48

341.43 0.4443 0.5086 +∗∗∗ −8.46
71.55

Panel B. Long-run (monthly) sustainability correlations

GFC ESDC COV

before during mean t-test before during mean t-test before during mean t-test

crisis crisis change F-test crisis crisis change F-test crisis crisis change F-test

EU-AUS 0.2524 0.2985 +∗∗∗ −8.46
71.55 0.3085 0.3298 +∗∗∗ −5.54

30.65 0.2304 0.2502 +∗∗∗ −5.62
31.64

EU-BRA 0.3129 0.4416 +∗∗∗ −11.84
140.27 0.4816 0.5063 +∗∗ −2.50

6.26 0.1528 0.1827 +∗∗∗ −4.90
24.06

EU-JP 0.2825 0.2993 +∗∗∗ −3.72
13.85 0.3009 0.2669 −∗∗∗ 9.03

81.47 0.2485 0.2539 + −1.19
1.41

EU-US 0.4672 0.5488 +∗∗∗ −4.04
16.34 0.5943 0.7055 +∗∗∗ −8.89

79.00 0.6143 0.6488 +∗∗∗ −3.91
15.29

EU-CA 0.3002 0.3497 +∗∗∗ −8.22
67.62 0.3835 0.4892 +∗∗∗ −12.10

146.54 0.3860 0.4237 +∗∗∗ −5.46
29.86

Panel C. Short- and long-run sustainability interdependence types

Short-run sustainability correlations Long-run sustainability correlations

GFC ESDC COV GFC ESDC COV

EU-AUS Contagion Contagion Contagion Contagion Contagion Contagion

EU-BRA Contagion Lower
interdependence

Contagion Contagion Contagion Contagion

EU-JP Contagion Lower
interdependence

Contagion Contagion Lower
interdependence

Higher
interdependence

EU-US Contagion Contagion Contagion Contagion Contagion Contagion

EU-CA Contagion Contagion Contagion Contagion Contagion Contagion

The table reports the mean difference (change) t- and F-tests of the sustainability short- (Panel A) and long-run
(Panel B) correlations for the three crises (GFC, ESDC, COV). ‘before crisis’ and ‘during crisis’ columns
report the correlation means for the pre-crisis and the in-crisis subsamples, respectively. The ‘mean change’
column reports the increase (+) and decrease (−) of the dynamic correlations during crises. ∗∗∗, ∗∗, ∗ denote
significance of the mean difference test at the 0.01, 0.05, 0.10 level, respectively. ‘t-test’ and ‘F-test’ denote the
two mean difference test statistics: the Satterthwaite-Welch t-test and the Welch F-test statistics, respectively.
Panel C summarises the interdependence types based on the correlations pattern during crisis periods. The
types of interdependence identified here are the following: Contagion, Higher, and Lower interdependence

question: what drives the time-varying behaviour of these interdependences? Under the third
and fourth hypotheses (H3 andH4), the macro environment partly determines the correlation
pattern. In countercyclical patterns, correlations increase in economic worsening. In the
case of procyclical correlations, we expect higher correlations in good times and lower
correlations in turbulent times. The correlation determinants are detected in all major aspects
of the economy. Sentiment (uncertainty/confidence), disease, credit, climate change, news,
activity, freights, and prices proxies portray the whole macro canvas that drives cross-border
DJSI connectedness. Our first macro-sensitivity analysis identifies the correlation drivers.
Similarly, we also test hypotheses 3 and 4 on the sign of each macro impact. We distinguish
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between higher or lower interdependences across the business cycle fluctuations, that is,
countercyclicality or procyclicality.

Table 6 reports the baseline daily (Panel A) and monthly (Panel B) correlation macro
regressions, where we identify the correlation drivers for the whole sample period. We use
the Fisher-transformed correlation series as dependent variables. In Panel A, short-run cor-
relations are explained by high-frequency macro fundamentals [Eq. (11)]. In all cases, we
observe a countercyclical correlation pattern, confirming H3. Uncertainties, disease risk,
and credit conditions positively affect interdependences, while news sentiment, activity, and
freights have a negative impact, in line with Karanasos and Yfanti (2021), and contrary toH4.
Higher daily correlations are associated with higher uncertainties and disease risk, tighter
credit, bad news sentiment, lower activity and freights (see also Yfanti et al., 2023).

Similarly, the long-run correlations explained by low-frequency macros [Eq. (12)] are
countercyclical in the whole sample (H3). Elevated uncertainties, financial stress, and climate
change risk, low confidence, activity, freights, and inflation drive interdependences higher,
in line with Conrad et al. (2014). Considering the estimated significance of the global macro
coefficients, we observe only two insignificant cases in the short-run regressions, for activity
in EU-CA and for freights in EU-BRA. The vast majority of high-frequency determinants
are significant. In the long-run regressions, more low-frequency factors are insignificant in
the EU-JP pair, which is among the procyclical pairs in the ESDC.More insignificant macros
in the long-run than in the short-run regressions can be indicative of a slightly lower macro-
sensitivity in the long run or amore sluggish response to themacro input. The difference in the
macro-sensitivity of short- and long-run correlations could be important for the investment
strategies and risk assessment practices of macro-informed traders. Overall, although we
observe procyclical patterns for EU-JP and EU-BRA during ESDC in the crisis statistical
analysis (Sect. 3.2.1), the countercyclical pattern prevails in themacro-sensitivity of thewhole
sample.

Our macro-sensitivity analysis continues with the uncertainty channel [Eq. (13)]. Uncer-
tainty is a major contributor to the business cycle dynamics with a potent devastating impact
on the real economy and the financial markets (Jones & Olson, 2013; Kelly et al., 2016).
Increased EPU levels exert a positive influence on correlations. After estimating the direct
impact, which is highly significant in all cases of short- and long-run correlations (Table 6),
we focus on the indirect EPU effect on the macro drivers of sustainability co-movements.
Table 7 reports the parameters of the EPU interaction terms in the daily correlations regression
analysis (similar results for long-term correlations available upon request).

We run Eq. (13) by including each interaction term separately to make the OLS estimation
more efficient and report the parameters of the indirect EPU effect for space considerations.
Our results show that the positive macro impacts become more positive and the negative
ones more negative. The EPU moderating effect has the same sign as the macro regressor
and is significant in most cases. The freights and economic activity coefficients are insignif-
icant in two cases and one case, respectively, but with the negative sign as expected and
consistently with the FT and EA direct impact on daily correlations estimated in Table 6
[insignificant cases also in Eq. (11)]. The EPU impact is stronger on the financial uncer-
tainty, credit conditions, and news sentiment regressors (higher significance levels for FU,
CR, and NW EPU interaction terms). Interestingly, we observe that the credit channel and
two behavioural proxies (FU and NW) are more affected by the loss of economic confidence
across all pairwise cross-border sustainability interdependences. The indirect EPU effect
on the economic forces behind the sustainability correlations is potent and should give an
important alert to policymakers globally. Authorities’ decisions that create confidence and
decrease EPU levels will alleviate contagion and improve portfolios’ diversification benefits
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Table 6 Dynamic sustainability correlations macro regressions

EU-AUS EU-BRA EU-JP EU-US EU-CA

Panel A. Short-run sustainability correlations [Eq. (11)]

δ0 0.1293∗∗∗
(0.0375)

−0.1730
(0.1237)

0.1965∗∗∗
(0.0395)

0.1546∗
(0.0915)

0.2710∗∗∗
(0.0366)

ρ∗
i j,t−1 0.8974∗∗∗

(0.0205)
0.9499∗∗∗

(0.0049)
0.9197∗∗∗

(0.0072)
0.9648∗∗∗

(0.0044)
0.9877∗∗∗

(0.0026)

EPUt−1 0.0073∗∗∗
(0.0026)

0.0071∗∗
(0.0036)

0.0084∗∗∗
(0.0011)

0.0038∗
(0.0022)

0.0012∗∗∗
(0.0004)

FUt−1 0.0262∗∗∗
(0.0085)

0.0159∗∗∗
(0.0048)

0.0422∗∗
(0.0175)

0.0228∗∗∗
(0.0041)

0.0835∗∗∗
(0.0119)

DI St−1 0.0134∗∗∗
(0.0023)

0.0041∗∗
(0.0020)

0.0016∗
(0.0009)

0.0033∗
(0.0020)

0.0008∗
(0.0005)

CRt−1 0.0953∗∗∗
(0.0169)

0.0562∗∗∗
(0.0109)

0.0720∗∗∗
(0.0294)

0.0415∗∗∗
(0.0074)

0.0187∗∗∗
(0.0033)

NWt−1 −0.0674∗∗∗
(0.0103)

−0.0115∗∗
(0.0051)

−0.0316∗∗
(0.0136)

−0.0231∗∗∗
(0.0076)

−0.0229∗
(0.0121)

E At−1 −0.0110∗∗
(0.0047)

−0.0089∗∗∗
(0.0016)

−0.0034∗∗
(0.0016)

−0.0013∗∗
(0.0006)

−0.0013
(0.0015)

FT t−1 −0.0002∗
(0.0001)

−0.0005
(0.0005)

−0.0006∗
(0.0004)

−0.0011∗∗∗
(0.0003)

−0.0003∗∗
(0.0001)

AIC
BIC

−3.9444−3.9212
−2.9326−2.9095

−5.3559−5.3327
−3.8366−3.8134

−5.6920−5.6688
DW
R2

2.0393
0.9330

2.0403
0.9379

2.0096
0.9658

2.0670
0.9751

2.0523
0.9781

Panel B. Long-run sustainability correlations [Eq. (12)]

ζ0 0.8429
(1.4777)

0.2710
(1.3201)

0.3201∗∗∗
(0.0557)

0.8636∗∗∗
(0.2448)

0.5112∗∗∗
(0.1002)

ρ∗
i j,τ−1 0.9762∗∗∗

(0.0132)
0.9694∗∗∗

(0.0139)
0.9631∗∗∗

(0.0200)
0.9605∗∗∗

(0.0160)
0.9801∗∗∗

(0.0088)

EPU τ−1 0.0021∗∗
(0.0010)

0.0046∗∗∗
(0.0011)

0.0108∗∗
(0.0047)

0.0278∗∗∗
(0.0053)

0.0132∗∗∗
(0.0049)

CRτ−1 0.0009∗∗∗
(0.0002)

0.0025∗∗∗
(0.0010)

0.0015
(0.0015)

0.0054∗∗∗
(0.0016)

0.0010∗
(0.0006)

CCτ−1 0.0053∗
(0.0029)

0.0015∗∗∗
(0.0004)

0.0023∗∗∗
(0.0006)

0.0060∗∗∗
(0.0017)

0.0034∗∗
(0.0015)

CONFτ−1 −0.1649∗∗
(0.0694)

−0.0020
(0.0047)

−0.0023
(0.0049)

−0.0178∗∗∗
(0.0018)

−0.0076∗
(0.0040)

E Aτ−1 −0.0002
(0.0006)

−0.0004∗
(0.0003)

−0.0004
(0.0005)

−0.0011∗
(0.0006)

−0.0004∗∗
(0.0002)

FT τ−1 −0.0046∗∗∗
(0.0014)

−0.0198∗∗
(0.0100)

−0.0029
(0.0131)

−0.0241∗∗∗
(0.0062)

−0.0089∗
(0.0046)

PRτ−1 −0.0004
(0.0006)

−0.0003
(0.0004)

−0.0003∗∗∗
(0.0001)

−0.0024∗∗∗
(0.0010)

−0.0015∗∗∗
(0.0005)

AIC
BIC

−6.7680−6.5521
−6.6714−6.4563

−6.9415−6.7256
−3.8374−3.6215

−6.5582−6.3408
DW
R2

2.0140
0.9834

2.0725
0.9867

2.0757
0.9742

2.0966
0.9451

2.0313
0.9853

The table reports the correlations macro regression analysis for each bivariate combination. Each short- and
long-run correlation is regressed on a constant (δ0, ζ0 ), the first autoregressive term (ρ∗

i j,t−1/τ−1), and the
daily and monthly macro regressors [Eqs. (11) and (12)]. The numbers in parentheses are standard errors.
∗∗∗, ∗∗, ∗ denote significance at the 0.01, 0.05, 0.10 level, respectively. AIC and BIC are the Akaike and the

Schwartz Information Criteria, respectively. DW is the Durbin-Watson statistic. R
2
is the adjusted R2
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Table 7 The economic uncertainty impact on the macro determinants of short-run sustainability correlations,
Eq. (13)

EPUt−1× EU-AUS EU-BRA EU-JP EU-US EU-CA

FUt−1 0.0057∗∗∗
(0.0012)

0.0045∗∗∗
(0.0016)

0.0123∗∗
(0.0023)

0.0076∗∗∗
(0.0023)

0.0302∗∗∗
(0.0041)

DI St−1 0.0051∗∗∗
(0.0008)

0.0017∗
(0.0010)

0.0006∗
(0.0003)

0.0011∗
(0.0006)

0.0003∗∗
(0.0002)

CRt−1 0.0277∗∗∗
(0.0064)

0.0098∗∗∗
(0.0023)

0.0108∗
(0.0056)

0.0079∗∗∗
(0.0013)

0.0031∗∗∗
(0.0006)

NWt−1 −0.0210∗∗∗
(0.0041)

−0.0096∗∗∗
(0.0024)

−0.0068∗
(0.0038)

−0.0084∗∗∗
(0.0029)

−0.0023∗∗∗
(0.0006)

E At−1 −0.0034∗∗∗
(0.0009)

−0.0023∗
(0.0013)

−0.0011∗∗
(0.0005)

−0.0007∗∗∗
(0.0002)

−0.0005
(0.0005)

FT t−1 −0.0001
(0.0001)

−0.0001
(0.0002)

−0.0002∗
(0.0001)

−0.0004∗∗∗
(0.0001)

−0.0001∗∗∗
(0.0000)

The table reports the economic uncertainty (EPU) impact on the macro effect on short-run sustainability cor-
relations. We present the parameters of each EPU interaction term, estimated separately. The EPU interaction
terms are computed with the multiplication of EPU (EPUt−1× ) with each macro determinant. The numbers
in parentheses are standard errors. ∗∗∗, ∗∗, ∗ denote significance at the 0.01, 0.05, 0.10 level, respectively

and hedging effectiveness in responsible investment strategies. On the other hand, regulatory
uncertainty distorts the investment environment and contributes to contagion risks.

To sum up, EPU adds a significant increment in the economic influence of correlation
determinants. This means that the uncertainty channel partly drives the macro forces behind
sustainability correlations. Their economic influence is magnified by or partially attributed
to higher uncertainty levels. This confirms previous studies on the powerful indirect effect of
the uncertainty channel on correlations (Pastor & Veronesi, 2013; Karanasos &Yfanti, 2021;
Yfanti et al., 2023) and warns macro-informed traders and policymakers in investing and
regulating the financial system by promoting sustainable investments and green transition.

Our macro-sensitivity regression analysis proceeds with the crisis impact on the macro
determinants of daily correlations. The crisis effect on correlation levels is captured by the
intercept dummies of Eq. (14). The estimated parameters of the crisis intercept dummies are
reported in Table 12 of the “Appendix”. They are significant and positive in all but two cases,
that is, the two procyclical pairs (EU-BRA and EU-JP) in the ESDC, identified in the crisis
statistical analysis with the mean difference tests (Table 5, Panel A).

Next, we run Eq. (14) to estimate the crisis slope dummies, reported in Table 8.Most slope
dummies are significant except for the freight effect during the first two financial crises. In
the first crisis period (Panel A), the GFC shock amplifies the macro impacts in line with our
contagion or countercyclicality diagnosis for the GFC period. It adds a positive incremental
effect for macros with a positive impact and a negative incremental effect for macros with a
negative impact. The ESDC shock (Panel B) on the correlation drivers’ impact is estimated
with the same sign as the macros in the whole sample for the three EU countercyclical pairs
(AUS, US, CA). For BRA and JP, the two EU procyclical pairs in the European crisis, the
crisis slope dummies have the opposite sign to the sign for the whole period, as expected.
Lastly, the COV slope dummies (Panel C) are estimated with the same sign as the effect in the
whole sample since all pairs are countercyclical during the pandemic. Our analysis provides
strong evidence of how the whole economic environment drives sustainability correlations
during crises, which should be at the core of investors’ and regulators’ considerations. These
results confirm previous studies on cross-asset or cross-country correlation determinants,
which are found to be highly crisis-sensitive (Karanasos & Yfanti, 2021; Yfanti et al., 2023).
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In the final part of our macro-sensitivity analysis, we investigate the crisis impact on the
indirect EPU effect captured by the slope dummies on the EPU moderators of Eq. (15).
In Table 9, we report the coefficients of the slope dummies on the EPU interaction terms.
The signs of the dummies’ parameters are the same for each macro driver as in the crisis
analysis of Table 8. The EPU moderation makes more slope dummies significant for the
freights proxy compared with the crisis impact (Table 8). Overall, the uncertainty channel’s
magnifying impact on the macro determinants is aggravated by the crisis shocks in most
cases, confirming the increased macro-sensitivity during turbulent times.

4.3 Discussion and implications

Our empirical study on cross-border sustainability interconnectedness investigates the inter-
dependence among EU and five international sustainability equity benchmarks. The dynamic
correlations framework reveals the countercyclical pattern of time-varying sustainability
interlinkages for most country pairs and crisis periods. The connectedness increases when
the economy slows down in the short and long run. Among the few exceptions are the EU-
JP and EU-BRA combinations, where during the European crisis, they exhibit procyclical
behaviour in the short term and EU-JP in the long term. During crises, we mainly diagnose
contagion phenomena except for the procyclical cases in ESDC, where we observe lower
interdependence rather than flight-to-quality episodes.

All indices act as diversifiers, and we do not conclude that there are safe haven features
in any crisis subsample. The highest dynamic correlations on average are measured for the
EU with US and CA, meaning that European and North American sustainability markets
are more integrated compared to EU with JP, AUS, and BRA. We further demonstrate the
significant macro-relevance of correlations by revealing their macro determinants, EPU-
sensitivity, and crisis-vulnerability. Proxies of sentiment (uncertainty/confidence), disease
and climate change risks, credit, news, activity, freights, and inflation are among the high- and
low-frequency correlation drivers. Economic uncertainty and crisis shocksmagnify all macro
effects on sustainability interdependences. Long-run correlations are less macro-sensitive
than short-run ones. Finally, the fact that policy considerations and climate change (EPU
and CPU coefficients) are highly significant driving forces, among others, provides strong
evidence on the critical policy and market implications of our study.

Market practitioners and policymakers concerned about sustainable development and
investments, ESG ratings, green transition, and climate change threats should utilise our
novel findings on cross-border sustainability interdependences. Macro-informed trading is
crucial for investors and risk managers. Since the DJSI correlations are driven by economic
fundamentals, investment and risk managers should proactively take into account the short-
and long-run macro developments when taking positions in sustainable markets and cross-
hedging their portfolios. Higher interdependences erode the diversification benefits and lower
the hedging effectiveness (see Yfanti et al., 2023). They could further identify the few index
combinations with lower correlations to achieve their optimal hedge ratios and immunisation
in case of crisis. For regulatory authorities, it is necessary to realise the importance of pol-
icy interventions in driving sustainability spillovers. They should systematically monitor the
cross-border interconnectedness dynamics and limit their crisis-vulnerability. When urging
corporations to adopt green finance and ESG strategies, it is critical to design action plans
that mitigate contagion effects and financial stability threats. Climate change policies should
address climate financial risks for corporations and encourage a smooth and effective transi-
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tion to the greener. Lastly, ESG risk regulatory frameworks should incorporate possible risk
concentrations driven by increased sustainability interdependences.

5 Conclusions

We have explored a novel research field in sustainable investments, that is, cross-border
sustainability interdependences. Our contribution to the literature is manifold. We first dif-
ferentiate between short- and long-run dynamic correlations among major sustainability
benchmarks, where we find that countercyclicality and contagion prevail. We further identify
a few DJSI procyclical cases during the ESDC. Then, we reveal the high- and low-frequency
drivers of the correlation pattern, which is found to be macro- and crisis-sensitive. All aspects
of the macro environment exert significant causal effects on correlations that are magnified
by the uncertainty channel and crisis shocks. Countercyclical correlations increase with a
bad economic outlook characterised by higher uncertainty, disease and climate risk, tighter
credit, worse news sentiment, and lower confidence, activity, freights, and inflation. There-
fore, investors and policymakers should consider our results on DJSI correlation dynamics
in designing their sustainable investment strategies and sustainable development policies in
the short and long term. Finally, future research can explore further cross-border sustainabil-
ity interlinkages among more regions and countries. In a future course of study, we could
also distinguish between country-specific and global correlation drivers that act as warning
signals or alarms of imminent correlation changes.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

See Tables 10, 11 and 12.

Table 10 Descriptive statistics and unit root tests of the DJSI index returns

Mean Median Max Min Std.Dev. ADF EU Corr

EU 0.0117 0.0517 9.2935 −11.7018 1.1697 −73.5235∗∗∗
AUS 0.0102 0.0268 6.9278 −9.8994 1.1046 −76.4539∗∗∗ 0.3822

BRA 0.0220 0.0000 15.9383 −13.8649 1.9501 −73.2259∗∗∗ 0.4639

JP 0.0096 0.0000 13.9163 −11.4582 1.4924 −71.3991∗∗∗ 0.3246

US 0.0265 0.0349 10.2377 −13.2723 1.1733 −82.6034∗∗∗ 0.6031

CA 0.0239 0.0307 11.3280 −10.9250 1.1633 −28.8212∗∗∗ 0.5196

The table presents the descriptive statistics of the Dow Jones Sustainability Index (DJSI) returns: Mean,
Median, Maximum (Max), Minimum (Min), Standard Deviation (Std.Dev.), the Augmented Dickey–Fuller
(ADF) test statistic of the unit root test, and the correlation of EU returns with the other five return series (EU
Corr). The DJSI variables notation is as follows: Europe (EU), Australia (AUS), Brazil (BRA), Japan (JP),
United States of America (US), and Canada (CA). ∗∗∗, ∗∗, ∗denote significance at the 0.01, 0.05, 0.10 level,
respectively
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Table 11 Descriptive statistics and unit root tests of the macro variables

Mean Median Max Min Std.Dev. ADF

Panel A. Daily macros

E PUt 1.9590 1.9566 2.9072 0.5211 0.2913 −6.6985∗∗∗
I V t 1.2469 1.2170 1.9175 0.9609 0.1653 −5.7387∗∗∗
I Dt 0.2333 0.0320 6.8370 0.0000 0.6508 −3.6858∗∗
C I SSt 0.1133 0.0291 0.8964 0.0002 0.1735 −3.3884∗∗
NSI t −0.0168 0.0036 0.4325 −0.6722 0.2013 −3.7554∗∗∗
ADSt −0.3095 −0.1303 8.9889 −26.332 2.2669 −7.7437∗∗∗
BDI t 3.2232 3.1685 4.0716 2.4624 0.3305 −2.8529∗∗
Panel B. Monthly macros

E PU τ 2.1124 2.1036 2.7024 1.6511 0.1918 −5.2296∗∗∗
KCFSI τ 0.1113 −0.2834 5.7130 −0.9207 1.1868 −2.5903∗
CPU τ 2.0425 2.0196 2.6141 1.4497 0.2075 −4.3006∗∗∗
BC I τ 2.0001 2.0003 2.0086 1.9810 0.0049 −3.3523∗∗∗
CFN AI τ −0.1504 −0.0300 6.1200 −17.960 1.5244 −11.0416∗∗∗
CF I τ 1.1299 1.1345 1.3470 0.8510 0.0998 −2.9244∗∗
I N Fτ 2.6878 2.4996 16.812 −9.9677 5.1719 −2.5709∗

The table presents the descriptive statistics of the macro fundamentals used as correlation determinants: Mean,
Median,Maximum (Max), Minimum (Min), StandardDeviation (Std.Dev.) and theAugmented Dickey–Fuller
(ADF) test statistic of the unit root test. The macro variables notation is as follows: US EPU index (EPUt/τ ),
VIX index (I V t ), Infectious disease equity market volatility tracker (I Dt ), US Composite indicator of
systemic stress (C I SSt ), US Financial stress index of the Kansas City Fed (KCFSI τ ), CPU index (CPU τ ),
NSI index (NSI t ), US Business confidence index growth (BC I τ ), ADS US business conditions index
(ADSt ), US Chicago Fed national activity index (CFN AI τ ), Baltic dry index (BDI t ), Cass freight index
(CF I τ ), and US PPI growth (I N Fτ ). ∗∗∗, ∗∗, ∗ denote significance at the 0.01 , 0.05, 0.10 level, respectively

Table 12 The crisis impact on
the level of daily sustainability
correlations, Eq. (14)

DUMGFC,t DUMESDC,t DUMCOV ,t

EU-AUS 0.0320∗∗∗
(0.0050)

0.0649∗∗∗
(0.0032)

0.0258∗∗∗
(0.0097)

EU-BRA 0.1218∗∗∗
(0.0295)

−0.0228∗∗∗
(0.0051)

0.0317∗∗∗
(0.0028)

EU-JP 0.0331∗∗∗
(0.0123)

−0.0072∗∗∗
(0.0016)

0.0015∗∗∗
(0.0005)

EU-US 0.0213∗
(0.0121)

0.0729∗∗∗
(0.0233)

0.0054∗
(0.0030)

EU-CA 0.0051∗∗∗
(0.0016)

0.0177∗∗
(0.0094)

0.0090∗
(0.0052)

The table reports the crisis impact on daily correlations [Eq. (14)]. The
crisis intercept dummies are estimated separately from the crisis slope
dummies. The inter- cept dummies for each crisis subsample are as fol-
lows: GFC subsample: DUMGFC,t , ESDC subsample: DUMESDC,t ,
COV subsample: DUMCOV ,t . The numbers in parentheses are stan-
dard errors. ∗∗∗, ∗∗, ∗ denote significance at the 0.01, 0.05, 0.10 level,
respectively
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