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• DSS indicators are not selected in line 
with water sector sustainability targets. 

• Process optimisation DSSs state much 
clearer aims than technology selection 
DSSs. 

• Inconsistent categorisation of environ-
mental, social, and technical KPIs 

• Fuzzy-AHP and -TOPSIS are commonly 
employed to reduce human error. 

• Few examples of real-world WWTP 
process control optimisation due to 
reliance on BSM.  
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A B S T R A C T   

Wastewater treatment plant decision makers face stricter regulations regarding human health protection, envi-
ronmental preservation, and emissions reduction, meaning they must improve process sustainability and 
circularity, whilst maintaining economic performance. This creates complex multi-objective problems when 
operating and selecting technologies to meet these demands, resulting in the development of many decision 
support systems for the water sector. European Commission publications highlight their ambition for greater 
levels of sustainability, circularity, and environmental and human health protection, which decision support 
system implementation should align with to be successful in this region. Following the review of 57 wastewater 
treatment plant decision support systems, the main function of multi-criteria decision-making tools are tech-
nology selection and the optimisation of process operation. A large contrast regarding their aims is found, as 
process optimisation tools clearly define their goals and indicators used, whilst technology selection procedures 
often use vague language making it difficult for decision makers to connect selected indicators and resultant 
outcomes. Several recommendations are made to improve decision support system usage, such as more rigorous 
indicator selection protocols including participatory selection approaches and expansion of indicators sets, as 
well as more structured investigation of results including the use of sensitivity or uncertainty analysis, and error 
quantification.  
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1. Introduction 

The wastewater sector is faced with many challenges that result from 
ageing and inefficient processes, including substantial carbon emissions, 
high energy consumption, regulatory compliance failures, and loss of 
public trust (Borzooei et al., 2019). Unfortunately they are only being 
worsened by the impacts of climate change, urbanisation, and popula-
tion growth (Haldar et al., 2022). Although a plethora of technologies 
have been developed in recent years to combat these issues at a waste-
water treatment plant (WWTP) level by academia and industry (Kehrein 
et al., 2020), water utilities are unable to make the required investment 
decisions to shift towards sustainable wastewater treatment. Decision 
support systems (DSSs) have been used to support complex decision 
making in the water sector, including WWTPs with the aim of optimising 
technology selection procedures or process control to improve opera-
tional performance (Wardropper and Brookfield, 2022). 

Wastewater decision makers have additional considerations 
compared with other industries, as on top of conventional technical, 
economic, and environmental issues, the social and regulatory impli-
cations of their actions must be considered (Ullah et al., 2020). 
Commonly public perception and social acceptance problems arise when 
utilising and recycling wastewater streams to generate resources (Keh-
rein et al., 2020). Water provision and sanitation services are also highly 
regulated and must be protected due to their importance for society, 
industry, and the environment (Preisner et al., 2022). Additionally, it is 
proving difficult to create markets for new products recovered from 
wastewater, such as tackling the end-of-waste status for their use in the 
European Union (Palmeros Parada et al., 2022). Therefore, water utility 
and WWTP decision makers are facing stricter regulations to improve 
operation regarding human health protection, environmental preser-
vation, and emissions reduction (Mannina et al., 2019), whilst simul-
taneously pursuing greater circularity and revenue generation through 
resource recovery strategies to improve business performance. This 
creates complex multi-objective problems when operating and selecting 
technologies for improving WWTPs, which are traditionally labour 
intensive, trial-and-error experiments that rely on the judgement of 
operators (Ntalaperas et al., 2022; Sucu et al., 2021). To ensure that all 
relevant information, performance trade-offs, and cause and effect re-
lationships are taken into consideration when dealing with complex 
problems, DSSs must be utilised by the water sector for more robust 
decision making (Ullah et al., 2020). 

A DSS is a computational system that assists the user in choosing an 
optimal or consistent solution to a particular problem in a reduced 
timeframe, particularly when the solution is unclear, by aggregating 
often conflicting values or preferences to examine the trade-offs between 
solution objectives (Giupponi and Sgobbi, 2013; Mannina et al., 2019; 
Wardropper and Brookfield, 2022). A review by Mannina et al. (2019) 
classified wastewater DSS intentions as; design, energy consumption, 
operational optimisation, improvement of effluent quality, or environ-
mental sustainability. Of course, decision makers may want to investi-
gate a combination of or all of these goals at once, which can often be 
contradictory (Eseoglu et al., 2022). For example, WWTP direct emis-
sions and electricity consumption typically increase when improving 
effluent quality, however, this action negatively impacts any net zero 
targets. Therefore, when using DSSs to solve multi-objective problems 
the goal of the study must be defined with clear constraints for opti-
misation, and an adequate number of relevant key performance in-
dicators (KPIs) chosen, to ensure the resulting decision is a true 
reflection of the defined goals. 

Multi-criteria decision-making (MCDM) tools for selecting the 
optimal technology for a specific scenario have been developed in 
literature (Eseoglu et al., 2022; Južnič-Zonta et al., 2022; Sucu et al., 
2021). Depending on MCDM application, the goals of the assessment 
will impact the KPIs used to constrain the decision-making process and 
final outcome. Conventional WWTP operation is monitored using 
effluent quality and consequently controlled with a few key parameters, 

meaning process control is often intuitive with operators unable to un-
derstand the real time impacts of their decisions (Ntalaperas et al., 
2022). Another key area for DSS use in the water sector is online process 
optimisation, however, it has not been widely applied in WWTPs as 
improvements to sensors, mathematical models (soft sensors), and data 
visualisation are needed for precise operational monitoring and control. 
However, a combination of data-driven models and artificial intelli-
gence enables performance prediction that can be used to reduce energy 
demand, decrease costs, improve effluent quality, and lower emissions 
(Matheri et al., 2022). 

Considering the transformation that WWTPs face to improve per-
formance by reducing emissions, energy consumption, and operating 
costs whilst meeting stricter regulatory targets, water utilities are ex-
pected to become ever more reliant on DSSs to solve multi-objective 
problems for optimal selection and operation of sustainable technol-
ogy. This study focuses on the use of multi-criteria DSSs to support these 
two functions for WWTP decision makers. Rather than focussing solely 
on their typology, analysis of the correct selection and utilisation of 
relevant KPIs during DSS application is prioritised, to ensure that out-
comes fulfil decision maker requirements. This is a pertinent aspect of 
complex multi-objective decision-making and one which is often over-
looked or undervalued by the methodologies in the literature. 

2. Methodology 

2.1. Wastewater sector goals 

Currently, there is a mismatch in terms of the decision maker goals 
and the KPIs selected when utilising DSSs at a WWTP level. Therefore, 
this section maps the wastewater ambitions of the European Commis-
sion which can be used to direct the utilisation of DSSs to meet water 
sector targets. 

The European Commission has directives which act as the framework 
for adequate wastewater treatment in the EU and are critical sources for 
understanding high-level water sector goals. However, in many cases 
they are decades old and do not reflect the regions recent sustainability 
ambitions (European Commission, 2022). The Urban Wastewater 
Treatment Directive (UWWTD) (91/271/EEC) published in 1991, acted 
as the basis for transforming European water systems by limiting 
pollutant levels in WWTP discharge. The Sewage Sludge Directive (86/ 
278/EEC) was introduced for the correct use of sewage sludge in agri-
culture. It details the requirements in terms of heavy metal concentra-
tion, quantities of sludge applied per hectare, and the crops prohibited 
from application (Council of the European Union, 1986). Although the 
UWWTD and Sewage Sludge Directive have been successful in 
improving environmental and human health, as 92 % of wastewater is 
now treated satisfactorily (European Commission, 2022), the next gen-
eration of wastewater treatment must go beyond this to achieve the EU's 
sustainability goals, whilst ensuring this fundamental objective is still 
maintained. 

To instigate further change to WWTPs, a proposal to update the 
UWWTD was published in October 2022 with the aim of introducing 
new rules up to the year 2040 (European Commission, 2022). This up-
date will be key for delivering the European Green Deal's zero pollution 
target and highlights many water sector goals that decision makers will 
need to adopt in Europe. It expands regulatory compliance to smaller 
plants and introduces binding energy neutrality targets for the sector, 
polluter pays for the treatment of toxic micropollutants, and minimum 
recovery rates for phosphorus. Additionally, improved data monitoring 
and usage are required for measuring and mitigating greenhouse gas 
(GHG) emissions and micropollutants, and making KPIs public to 
improve benchmarking and transparency (European Commission, 
2022). 

The European Commission is pursuing a CE to facilitate many of its 
sustainability targets, therefore, it published the CE Action Plan in 2020 
(European Commission, 2020). As part of this, the European 
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Commission aims to intensify nutrient recovery from wastewater by 
establishing Integrated Nutrient Management Plans (Radini et al., 
2023). Another key element is the development of Water Reuse Regu-
lation (2020/741) to facilitate the circular use of wastewater effluents. 
The document provides a classification system regarding the technology 
required to achieve the contaminant levels for application to specific 
crop grades (European Parliament, 2020), relying on the use of Water 
Reuse Risk Management plans to ensure public and environmental 
health (Radini et al., 2023). WWTPs should improve effluent quality for 
the circular use of water, also reducing the quantity of raw water 
abstracted. Therefore, it is clear that for a sustainable and circular 
transition, WWTPs must focus on emissions reduction, resource recov-
ery, and water reuse, and acknowledge the importance of proper data 
usage, to align with water sector goals at a European level. 

Analysis of regional government wastewater strategies is vital for 
creating useful DSSs. However, their it remains challenging to imple-
ment tangible decisions at WWTP level, as individual utilities have their 
own priorities based on local facets. Considering legislative constraints, 
sector-wide ambitions, and local factors can make the identification of 
priorities at a WWTP-scale challenging for decision makers. Therefore, 
rigorous indicator selection and usage is needed to ensure DSS KPIs align 
with stakeholder goals at every level of decision making, or else WWTPs 
are at risk of undesirable future impacts and events. 

2.2. Article collection method 

2.2.1. Research question 
There have been recent publications which discuss multi-criteria 

analysis (MCA) DSSs for the wastewater sector (Ddiba et al., 2023; 
Mannina et al., 2019), however they allude to issues that exist for the 
assessment and selection of technologies. Mannina et al. (2019) states 
that ‘sustainable aspects are incorporated in accordance to DSS developers, 
as there is no standard that can be applied while developing the systems’, 
whilst Ddiba et al. (2023) concludes that some sustainability implica-
tions are not adequately covered by decision support tools. This shows 
that a lack of standardisation has resulted in the development of 
indicator-based methodologies that do not fully consider the sector's 
sustainability goals. However, the wastewater sector must meet the re-
quirements set out in Section 2.1 in the coming years, therefore, this 
review systematically analyses the specific indicators selected, and how 
they are used by DSSs, to understand the impact on WWTP outcomes. 
This results in the research question of how are indicators selected and 
utilised in decision support tools for technology selection and process opti-
misation at WWTPs, and to what extent are sustainability and circularity 
pillars harmonised to meet decision maker goals? Additionally, the need to 
construct standardised DSS procedures to facilitate sustainability out-
comes is highlighted, thus following literature review recommendations 
are provided to act as the starting point for this. The types of MCA used 
to facilitate complex decision making have already been the subject of 
systematic reviews (Kozłowska, 2022), meaning the methods available 
in literature have already established. Therefore, they do not require 
further generalised study and is why the focus of this review is on DSSs 
implemented for wastewater technology assessment to understand cur-
rent practices and provide recommendations for improvement. 

2.2.2. Search strategy 
The evaluation of WWTP DSSs was completed using systematic re-

view, following the guidelines of the Preferred Reporting Items for 
Systematic Review and Meta-Analyses (PRISMA) method (Page et al., 
2021). Articles describing multi-criteria, indicator-based DSSs for 
WWTP technology selection and process optimisation were collected 
from Scopus (www.scopus.com) and Web of Science (www.webofscienc 
e.com) databases. The configuration of this review required two inde-
pendent searches to collect data using a combination of Boolean con-
nectors, and a previous review in the area by Mannina et al. (2019) 
established the time series of 2018–2022. MCDM technology selection 

DSSs were found using the search term (“wastewater treatment” OR 
WWT OR WWTP OR sludge) AND (DSS OR “decision support system” OR 
MCA OR “multi criteria” OR MCDM OR “multi-criteria”) AND (selection 
OR identification OR KPI). Whilst the multi-objective optimisation DSS 
search used (WWTP OR “wastewater treatment plant” OR “wastewater 
treatment process”) AND (control OR operation OR monitoring OR 
optimisation OR optimization) AND multi AND (criteria OR objective) 
terms. 

2.2.3. Selection of studies 
Fig. 1 shows the steps taken to screen initial search results and collect 

articles used for review (Page et al., 2021). Results were exported to 
Mendeley reference management software for processing, and after 
removing duplicates 127 articles and 144 articles related to technology 
selection and process optimisation DSSs were identified respectively. 
They were then analysed to ensure the inclusion of only high-quality, 
peer-reviewed, original articles, thereby removing non-English, confer-
ence proceedings, book chapter, and review paper sources. Next, sources 
were primarily screened based on their title, and subsequently using the 
abstract and content in full, to establish the final list of articles. Tech-
nology selection DSSs were excluded if used for geographic location 
planning, source selection, resource allocation, performance assess-
ment, or operation monitoring, and did not utilise multiple indicators for 
decision making. Process optimisation DSSs were excluded if only used 
for performance monitoring, fault-detection, visualisation tasks, load 
prediction, or sensor utilisation, and did not use multiple indicators to 
optimise control parameters. An additional six relevant articles were 
collected from a review paper by Mannina et al. (2019) investigating 
DSSs for WWTPs, to incorporate appropriate literature from outside the 
search time series. 

3. Technology selection DSSs 

The decision to invest in new technology at a WWTP is a complex and 
multi-faceted decision to fulfil business, sustainability, and regulatory 
targets. MCDM tools have been developed for this purpose, however, 
there is often little emphasis on linking the goals of the assessment with 
indicator selection, weighting, and scoring methods. This potentially 
leads to outcomes that do not truly satisfy all stakeholder and decision 
maker goals at regional, national, utility, community, or WWTP scales. 
Literature collected in Section 2 is reviewed to understand conventional 
methods and highlight good practices regarding alignment of KPIs with 
DSS goals. Table 1 summarises the MCDM WWTP technology selection 
DSSs collected from literature, resulting in a total of thirty-one articles. 

Table 1 summarises DSS properties namely the technologies selected, 
aim, case study of application, and categories used to group assessment 
indicators. The four main technology groups selected using MCDM DSSs 
are; wastewater treatment (WWT), sewage sludge treatment (SST), 
water reuse (WR) and resource recovery (RR), or a combination thereof. 
Since 2018, the development of DSSs for the selection of RR technologies 
has emerged as a priority for decision makers. The aim of each DSS has 
been directly quoted from the source, as this is key to understanding 
specific goals of the DSS when selecting appropriate indicators to 
facilitate desired outcomes. Lastly, the categories defined when select-
ing indicators are provided, which is important for relating DSS goals to 
selected KPIs for technology assessment. The assessment category col-
umn in Table 1 highlights the popularity of using economic, environ-
mental, social, and technical sustainability dimensions to group 
indicators. Steps of the reviewed MCDM DSSs are summarised in Fig. 2, 
including examples at each stage from the reviewed literature. 

The thirty-one papers developing MCDM technology selection DSSs 
were categorised in Table 1 based on the type of technology being 
assessed. Selection of WWT technologies is the most common with 
fifteen DSSs, as WWT decision making is complex so selection of treat-
ment methods is challenging. RR is the second most common focus, 
which can be attributed to the emphasis placed on selecting sludge 
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treatment technologies for recovery purposes (usually energy). This 
highlights the desire of decision makers to make use of a resource that 
was previously considered a waste during WWT, reflecting the modern 
objective to enhance circularity of the sector. Four DSSs for WR tech-
nology selection have been developed, acknowledging that due to global 
warming, water stress is being exacerbated for many people, requiring 
more efficient use of water by decision makers. Lastly, two DSSs focused 
solely on the selection of technologies for SST, whilst only one was 
developed that combined technology selection for WWT and SST. It is 
critical to list the type of technologies being selected by a DSS so that the 
correct assessment criteria or indicators can be integrated. This is re-
flected by the low number of WWT/SST DSSs, as it is difficult to select 
criteria that are suitable for the assessment of both treatment technol-
ogies since their goals and expected outcomes differ. 

3.1. DSS goals 

To ensure that selected technologies will result in the benefits ex-
pected by stakeholders and decision makers, the aim of DSS application 
must be clearly defined. As shown in Table 1, the most common aims 
used vague and generic language for the selection of the most suitable/ 
appropriate/viable/best-fitting technology in ten DSSs. Although this re-
veals the intention of the DSS, rarely are these terms explained in a way 
that enables the user to understand what these ‘suitable’ technologies 
may look like considering the scenario of application. This lack of di-
rection limits wider utilisation of developed DSSs and could explain why 

most are not used across multiple case studies. Next, nine DSSs aim for 
the identification/selection/prioritisation/recommendation of technologies 
for a specific function, including non-potable water reuse or resource 
recovery strategies. Although this instructs the user with regards to the 
expected function of selected technologies, it does not provide any 
justification as to the reasoning for their selection. Third, the aim of 
seven DSSs is to select sustainable or assess the sustainability of alter-
natives. This is not useful unless a vision of sustainable wastewater 
treatment is defined by the DSS developers, as users cannot fully un-
derstand how to assess and compare the sustainability of alternatives 
(targets summarised in Section 2.1 are useful here). Evaluation/analysis 
of technologies utilising specified criteria, such as environmental or 
economic aspects is another common DSS aim, with three identified 
from the collated list. These highlight the assessment criteria used to 
select technologies but does not provide the user with adequate 
reasoning of why they should implement the technologies. Finally, two 
DSSs aim to optimise or find the optimum solution, which is difficult to 
comprehend unless the objectives being optimised are explicitly defined. 
Without a clear definition of DSS aims, there is a disconnect in user 
knowledge, as the aim is key for understanding why a DSS is imple-
mented and selecting the correct indicators to facilitate desired out-
comes or water sector targets. Therefore, vague language must be 
mitigated, and complete definition of aims is encouraged from DSS de-
velopers to help users implement technology selection tools correctly. 

Fig. 1. Flowchart of the steps taken during the article selection procedure (Page et al., 2021).  
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Table 1 
Summary of wastewater treatment MCDM technology selection DSSs.  

Author Year Group Aim Case study Assessment categories Weighting 
method 

KPIs selected 

Molinos- 
Senante 
et al. 

2014 WWT Assess the sustainability of WWT 
technologies 

1500 PE WWTP Economic, 
Environmental, Social 

AHP CAPEX, OPEX, removal efficiency, 
energy consumption, land use, 
sludge production, potential for RR 
and WR, reliability, odours, noise, 
visual impact, public acceptance, 
complexity 

Garrido- 
Baserba 
et al. 

2015 SST Identification and assessment of 
the most appropriate sludge 
treatment technologies 

1,000,000 PE 
WWTP 

Economic, 
Environmental 

Fixed Annual cash flow, annual income, 
total annual equivalent costs, GWP 

Castillo et al. 2016 WWT Analysis of the alternatives 
through a multi-criteria 
approach, considering 
operational, economic, and 
environmental criteria 

Retrofit vs 
construction of 
WWTP in Italy 

Economic, 
Environmental, 
Operational 

User Defined Nitrogen removal, CAPEX, OPEX, 
CBA, LCA, noise, visual impact, 
need for specialised staff, flexibility 

Chhipi- 
Shrestha 
et al. 

2017 WR Evaluating the potentiality of fit- 
for-purpose wastewater 
treatment and specific reuse for 
a community 

Comparing non- 
potable water uses 
for 10,000 PE 
community 

Economic, 
Environmental 

User Defined Microbial concentration, 
quantitative microbial risk 
assessment, development of 
alternative treatment trains, 
estimation of reclaimed water 
quantity and its distribution, LCC, 
energy use, carbon emissions 

An et al. 2018 SST Helping the decision- makers/ 
stakeholders to select the most 
sustainable technology among 
multiple scenarios 

Three sludge 
management 
strategies 

Economic, 
Environmental, 
Social, Technical 

AHP CAPEX, OPEX, land use, 
environmental risk, resource 
utilisation efficiency, operability, 
site selection, applicability, and 
management level requirement 

Arroyo and 
Molinos- 
Senante 

2018 WWT Choice of the most sustainable 
WWT alternative 

Seven small-scale 
WWT technologies 

Economic, 
Environmental, Social 

CBA CAPEX, OPEX, removal efficiency, 
energy consumption, land use, 
sludge production, potential for RR 
and WR, reliability, odours, noise, 
visual impact, public acceptance, 
complexity 

Sadr et al. 2018 WR Selection of WWT technologies 
for non-potable water reuse 
applications in different contexts 

Large WWTPs in 
Brazil and Greece 

Economic, 
Environmental, 
Social, Technical 

AHP CAPEX, OPEX, energy 
consumption, environmental 
impact, community acceptance, 
adaptability, ease of construction 
and deployment, land requirement, 
complexity, water quality 

Oertlé et al. 2019 WR Promote water reuse in regions 
where it is still an emerging 
concept 

Thirteen treatment 
trains in different 
locations 

Economic, Technical, 
Requirements and 
Impacts 

User Defined CAPEX, OPEX, distribution costs, 
energy demand, chemical demand, 
odour generation, sludge 
production, land required, 
groundwater impact, reliability, 
ease of upgrade, adaptability, ease 
of operation/ construction/ 
demonstration 

Đurđević et al. 2020 SST/ 
RR 

Technology selection for sewage 
sludge energy recovery 

WWTP planned for 
Rijeka, Croatia 

Socio-economic, 
Environmental, 
Technical 

AHP Material stabilisation, energy reuse, 
nutrient recovery, commercial 
acceptance, product transport/ 
storage, GHG reduction, pre- 
treatment requirements, hazardous 
by-products, heavy metal content, 
public acceptance, OPEX, CAPEX, 
labour requirements, energy 
savings, societal contribution 

Ali et al. 2020 WWT Evaluate and prioritise different 
wastewater treatment 
technologies used in Pakistan 

Five WWT 
alternatives in 
Pakistan 

Undefined VIKOR Cost, land requirement, processing 
time, manpower requirement, 
efficiency, environmental impact, 
energy consumption, sludge 
production, safety, chemical 
requirement 

Gherghel et al. 2020 WWT/ 
SST 

Identify the most suitable 
treatment scheme for the 
management of wastewater and 
sludge 

Large WWTP of 
720,000 PE in Italy 

Economic, 
Environmental, 
Energy, Land Use 

AHP GHG emissions, running costs, 
service landfill surface, electricity 
consumption, planimetric size, 
biorefinery capabilities, landfill 
requirements 

Chrispim et al. 2020 RR Support decision-making on 
resource recovery strategies; to 
recommend operational and 
technological strategies 

WWTP in Sao Paulo 
serving 1.4 million 
PE 

Economic, Social, 
Environmental and 
Technical, Political 

N/A Recovery potential, maturity, 
resource utilisation, skilled labour 
requirements, product quality, 
positive environmental impact, 
CAPEX, OPEX, revenue, logistics, 
acceptance, accordance with policy 
and legislation 

(continued on next page) 
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Table 1 (continued ) 

Author Year Group Aim Case study Assessment categories Weighting 
method 

KPIs selected 

Liu et al. 2020 WWT Optimise the sewage treatment 
technologies and their 
combination technologies 

Town in Liao River 
Basin, China 

Economic, 
Environmental, Social 

AHP Construction cost, land cost, OPEX, 
removal rate, life expectancy, 
stability, resource recovery, 
simplicity, ecological values, risk 
assessment 

Ullah et al. 2020 WWT Assist decision-makers to select 
suitable WWTTs from a set of 
alternatives 

Two sources of 
wastewater in 
Islamabad, Pakistan 

Undefined N/A Odour, removal efficiency, land 
use, manpower, financial resources, 
time availability, chemical 
availability, oxygen requirement, 
sludge management and disposal 

Palma- 
Heredia 
et al. 

2020 SST/ 
RR 

Selection of the best-fitting 
sewage sludge valorisation 
strategies 

WWTP in Spain Regional Level, Plant 
Level, Process Level 

Fixed Viability, material circularity, self- 
sufficiency, risk assessment, NPV, 
removal efficiency, sludge 
production, biogas production, 
efficiency, CAPEX, OPEX 

Ling et al. 2021 WWT Assess and compare the 
sustainability of different 
wastewater treatment options 

Seven WWT options 
in UK 

Economic, 
Environmental, 
Social, Resilience 

AHP Energy requirement, land use, 
pollutant removal, sludge 
production, RR potential, GHG 
emissions, public acceptance, 
odour, noise, visual impact, 
reliability, complexity, CAPEX, 
OPEX 

Fetanat et al. 2021 WWT/ 
RR 

Prioritise energy recovery from 
wastewater treatment 
technologies 

WW management in 
Behbahan City, Iran 

Water Security, 
Energy Security, Food 
Security 

LAM Water security (access, safety, and 
affordability), energy security 
(availability, accessibility, 
affordability, acceptability, 
applicability, and adaptability), 
food security (availability, access, 
utilisation, and stability) 

Büyüközkan 
and Tüfekçi 

2021 WWT Evaluate the most suitable WWT 
decision system 

WWT selection for a 
company in 
Istanbul, Turkey 

Economic, 
Environmental, 
Technical, 
Administrative, 
Management 

AHP Water/energy/discharge/chemical 
costs, monitoring, waste 
production, environmental 
benefits, facility management, NPV, 
volumetric capacity, water quality, 
applicability and performance, 
reliability and sustainability 

Lizot et al. 2021 WWT Evaluation of WWT systems 
considering relevant economic, 
social, technical, and 
environmental criteria 

Twenty WWT 
options for a 
sanitation company 
in Brazil 

Economic, 
Environmental, 
Social, Technical 

AHP CAPEX, OPEX, NPV, Land, 
manpower, reliability, replicability, 
complexity, removal efficiency, 
sludge production, GWP, 
acceptance 

Sucu et al. 2021 RR Find the optimum treatment 
train consisting of compatible 
unit processes which can recover 
water, energy and/or nutrients 

Large and small 
WWTP recovering 
irrigation water 

Economic, 
Environmental, 
Social, Technical 

User Defined Annual cost, potential income, 
acceptability, affordability, land 
area, odour, noise, flexibility 

de Almeida 
et al. 

2021 WWT Develop and apply a 
methodology for sewage 
treatment systems selection 

Benevente River 
watershed in Brazil 

Operational, 
Technical, 
Environmental, Social 

Multi Attribute 
Utility Theory 

Removal efficiency, energy 
demand, land use, CAPEX, OPEX, 
sludge treated, sludge disposed, 
reliability, simplicity, resistance, 
odour, noise, aerosol generation, 
insect attraction 

Eseoglu et al. 2022 WWT Technology selection problem for 
wastewater treatment that 
integrates all aspects of 
sustainability with the 
behavioural characteristics of 
decision makers 

Four WWTPs 
>100,000 m3/ 
d Istanbul, Turkey 

Economic, 
Environmental, 
Social, Technical 

AHP Energy consumption, sludge 
production, reuse of treated water, 
capital cost, land required, OM cost, 
energy saving, sludge disposal cost, 
removal eff, maturity, simplicity, 
applicability, replicability, 
flexibility, reliability, odour, 
manpower needed, social 
acceptance, social benefit, aesthetic 

Leoneti et al. 2022 WWT Choosing a WWTP for a 
municipality 

Six 40,000 PE 
WWTP alternatives 
in Brazil 

Economic, Social, 
Environmental 

Game Theory 
(rank order 
centroid) 

Cost, effluent quality, land area, 
sludge production 

Liu and Ren 2022 SST/ 
RR 

Promote the sustainable 
decision-making process of 
sludge management 

Four sludge-to- 
energy options 

Economic, 
Environmental, 
Social, Technical 

BWM Climate change, acidification, 
eutrophication, net cost, social 
acceptance, governmental support, 
educational significance, odour, 
complexity, maturity, accessibility 

Attri et al. 2022 WWT Sustainability assessment of 
wastewater treatment 
technologies 

Six alternatives for 
secondary WWT 

Economic, 
Environmental, 
Social, Functional 

Fuzzy Stepwise 
Weighted 
Assignment 
Ratio Analysis 

Removal efficiency, effluent DO 
and coliform, NP removal 
capabilities, area, power 
requirement, OPEX, CPAEX, odour, 
noise, visual impact, flexibility, 
reliability, ease of operation, FOG 
tolerance, waste sludge production 

(continued on next page) 
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Table 1 (continued ) 

Author Year Group Aim Case study Assessment categories Weighting 
method 

KPIs selected 

Renfrew et al. 2022 RR Identification of strategies for 
resource recovery from 
wastewater 

Priority resource 
identification for 
UK water sector 

Recovery, Market, 
Cost, Carbon, 
Treatment Impacts, 6 
Capitals 

User Defined RR potential, market, treatment, 
cost, carbon, 6 capitals 

Nkuna et al. 2022 SST/ 
RR 

Selection of the most viable 
thermochemical technology to 
handle municipal WWS for 
energy recovery 

Three technologies 
converting WW 
sludge to energy 

Economic, Technical AHP Dependability, maturity, sludge 
use, energy production, energy 
consumption, CAPEX, OPEX 

Južnič-Zonta 
et al. 

2022 RR Given a set of resource recovery 
and wastewater treatment 
process units, quickly determine 
the best plant configuration 

Medium size WWTP 
in Manresa, Spain 

Economic, 
Environmental, 
Technical 

User Defined Effluent quality, costs, maturity, 
GHG emissions, area 

Silva Junior 
et al. 

2022 WWT Select the most appropriate 
technologies for wastewater 
treatment 

WWT in urban and 
rural municipalities 
in Brazil 

Economic, Socio- 
Environmental, 
Technical 

User Defined Area demand, quality performance, 
mechanisation rates, electric power 
consumption, CAPEX, OPEX, 
operational complexity, BOD 
removal 

Srivastava and 
Singh 

2022 WR Selection of an appropriate 
wastewater treatment chain that 
produces effluent suitable for the 
defined reuse 

WWT technologies 
for water reuse in 
Kanpur, India 

Economic, 
Environmental, 
Technical 

Full Consistency 
Method 

CAPEX, OPEX, land use, energy 
consumption 

Salamirad 
et al. 

2023 WWT Select the most appropriate 
municipal WWT technology 

Seven WWTP 
alternatives in Iran 

Economic, Social, 
Environmental 

BWM Investment cost, reliability, 
efficiency, volume dependency, 
requirement for additional 
treatment, energy consumption, 
sludge production, odour, 
workforce requirement, law and 
regulation compliance, salinity 
removal, bacteria removal  

Fig. 2. Generic steps of MCDM technology selection DSSs, including examples and techniques available for use at each stage.  
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3.2. Indicator selection 

As discussed, selection of assessment indicators or criteria when 
using any WWTP DSS is crucial to ensure the chosen technology fulfils 
decision maker and stakeholder goals. Therefore, methodologies 
implemented for indicator selection by DSSs are scrutinised and sum-
marised in Fig. 3. 

Fig. 3 shows that it is common for DSS developers to self-select in-
dicators or provide a list from which users can choose indicators, with 
little methodological explanation given (An et al., 2018; Castillo et al., 
2016; Chhipi-Shrestha et al., 2017; Chrispim et al., 2020; Fetanat et al., 
2021; Garrido-Baserba et al., 2015; Gherghel et al., 2020; Južnič-Zonta 
et al., 2022; Renfrew et al., 2022; Srivastava and Singh, 2022; Sucu 
et al., 2021). This results in a significant gap in DSS user knowledge, as 
they are unable to reason whether the selected indicators are relevant to 
their scenario of application. Data availability can be used to guide in-
dicator selection, relying on primary data where possible or secondary 
data acquired through reasonable effort, such as modelling, whilst 
meeting data quality requirements. To improve the robustness of indi-
cator selection, some authors define criteria or provide additional jus-
tifications to choose appropriate indicators from literature (Arroyo and 
Molinos-Senante, 2018; Attri et al., 2022; Liu and Ren, 2022; Molinos- 
Senante et al., 2014; Nkuna et al., 2022; Palma-Heredia et al., 2020; 
Sadr et al., 2018). For example, Molinos-Senante et al. (2014) reasons 
indicator selection using transparent, representative, relevant and quanti-
fiable evaluation criteria, however, definitions of these terms are not 
provided potentially resulting in ambiguity for the user. 

More complete approaches conducted structured literature reviews 
for indicator selection (da Silva Junior et al., 2022; Leoneti et al., 2022; 
Lizot et al., 2021). Lizot et al. (2021) describes the terms entered into 
literature search engines to collect assessment criteria utilised by other 
WWT MCDM tools, and then lists specific information and data avail-
ability requirements applied to create indicator shortlists. However, 
only a short description of shortlisting steps is given which focuses on 
technical aspects (such as plant load, location, or size), rather than 
sustainability goals. Alternatively authors used knowledge of local fac-
tors to select appropriate DSS indicators from literature (de Almeida 
et al., 2022; Oertlé et al., 2019). Đurđević et al. (2020) utilised their own 
judgement to select DSS indicators considering the state of wastewater 
and sewage sludge management, socio-economic standards, and avail-
able data (from national databases) in the local area. Liu et al. (2020) 
provides an explanation of the local context for each indicator provided, 
such as using economic costs as the project may need some financial 
support from the community or process simplicity due to the lack of pro-
fessionals for operation. This strategy encourages the DSS user to 
consider local factors during decision making, however, a more robust 
approach is to use local stakeholder perspectives as well. 

Some DSS developers recognise the importance of rigorous indicator 

selection to achieve desired outcomes by utilising external expert or 
stakeholder opinions, for example to screen assessment criteria from a 
longlist identified during literature review (Ali et al., 2020; Salamirad 
et al., 2023). Ling et al. (2021a, 2021b) developed a method starting 
with a round of literature review to collate indicators previously used to 
evaluate WWT performance. The list is then refined based on key ter-
minology mentioned during interviews (thematic analysis using Nviva 
software) with water company employees utilising the DSS. Eseoglu 
et al. (2022) employs the use of a questionnaire study by experts from 
across many roles in WWTPs from design to operation, and combines 
this with other information including effluent discharge regulation, 
environmental impacts, and design parameters. These DSSs acknowl-
edge that indicator selection is an important part of strategic MCDM, 
and the combination of stakeholder views with technical appraisal of 
local factors enables the user to select indicators which adequately 
reflect their goals. Fig. 3 highlights that these more robust indicator 
selection methods are less popular, helping to answer the research 
question by reporting a lack of robust methods for indicator selection in 
most of the DSSs developed for WWTPs. 

The specific indictors selected showed that only two DSSs did not 
utilise economic indicators (Chrispim et al., 2020; Fetanat et al., 2021), 
with most the common being capital and operating expenditure, whilst 
others chose life cycle costing (LCC) (Chhipi-Shrestha et al., 2017) and 
net present value analysis (Lizot et al., 2021). Removal efficiencies of 
regulated wastewater constituents, including total suspended solids 
(TSS), chemical oxygen demand (COD), biological oxygen demand 
(BOD), nitrogen, and phosphorus, were commonly selected to determine 
treatment performance (Arroyo and Molinos-Senante, 2018; Eseoglu 
et al., 2022; J Ling et al., 2021b; Liu et al., 2020; Molinos-Senante et al., 
2015; Silva Junior et al., 2022). Indicators of environmental perfor-
mance covered GHG emission (Gherghel et al., 2020; Južnič-Zonta et al., 
2022; Jiean Ling et al., 2021a), carbon footprint (Chhipi-Shrestha et al., 
2017; Renfrew et al., 2022), and life cycle assessment (LCA) (usually 
eutrophication, climate change, and acidification) impacts (Castillo 
et al., 2016; Lizot et al., 2021). Effort was made to consider the social 
impacts of technologies, commonly their odour and noise aspects 
(Eseoglu et al., 2022; Oertlé et al., 2019; Sucu et al., 2021), whilst some 
quantified microbial (Chhipi-Shrestha et al., 2017) and ecological risks 
(Liu et al., 2020). In most cases, circularity indicators were combined 
with environmental KPI sets, including water reuse (Eseoglu et al., 2022; 
Lizot et al., 2021), resource or product recovery potential (Chrispim 
et al., 2020; Renfrew et al., 2022), and material circularity (Palma- 
Heredia et al., 2020). Lastly, technology energy consumption was one of 
the most commonly selected indicators, however, only a few DSSs 
consider renewable energy (Lizot et al., 2021), energy reduction 
(Durdević et al., 2020), or self-sufficiency (Palma-Heredia et al., 2020) 
dimensions. 

From this it is clear that DSS developers select indicators from across 
the triple bottom line to support sustainable performance, but there is a 
gap in terms of facilitating sustainability targets and circularity assess-
ments. Few KPIs are explicitly selected to quantify progress towards the 
high-level water sector targets of Section 2.1 by failing to link indicator 
selection with targets such as GHG reduction, phosphorus recovery, or 
energy neutrality. This even includes those DSSs with the aim of 
selecting technologies for sustainable and circular actions, such as water 
reuse or energy recovery. 

3.3. Indicator categorisation 

Often criteria or indicators are categorised to show user assessment 
priorities and indicate potential benefits or impacts of selected tech-
nologies. Table 1 defines the DSSs categories employed to separate in-
dicators and shows that twenty of the thirty-one DSSs utilise discrete 
sustainability pillars. The most popular combination uses four envi-
ronmental, economic, social, and technical (assumed interchangeable 
with functional, operational, or resilience) categories. Nine DSSs used a 

Fig. 3. Methods of indicator selection used by MCDM technology selection 
DSSs, with the number DSSs using each method in bold. 
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combination of other categories defined by the developers, and some did 
use sustainability pillars, however, they were combined to create hybrid 
socio-economic or -environmental categories. Many DSSs also utilise 
circularity KPIs, however, as mentioned in Section 3.2 they are cat-
egorised as environmental indicators. This is worrying as enhancing the 
circularity of wastewater resources does not directly correspond to 
improved environmental performance. This leads to a significant gap in 
decision maker knowledge as circularity indicators are being used to as a 
substitute for sustainability impacts. Therefore, DSSs with circularity 
objectives, such as resource recovery, need standardised assessments 
that use CE indicators to evidence enhanced resource circularity, sup-
ported by sustainability analysis to quantify wider benefits. This will 
facilitate technology selection that simultaneously meet the water sector 
sustainability and circularity targets detailed in the European Green 
Deal and CEAP. 

Some DSS developers created hybrid categories including socio- 
economic (Đurđević et al., 2020) and socio-environmental (Silva Ju-
nior et al., 2022), or combined environmental and technical categories 
together (Chrispim et al., 2020). This suggests authors may be unsure as 
to which categories some indicators belong. This is further perpetuated 
by authors placing the same indicators in different sustainability pillar 
categories. For example, WWT technology removal efficiencies have 
been placed in environmental sustainability (Liu et al., 2020; Lizot et al., 
2021; Molinos-Senante et al., 2014) and technical categories (Eseoglu 
et al., 2022; Silva Junior et al., 2022). This may explain the increase in 
popularity of using the four pillars of sustainability for categorisation in 
recent years, as it enables delineation of operational and environmental 
KPIs, highlighting the desire of decision makers to understand the 
environmental impacts of potential technologies more clearly. However, 
this seems to result in some confusion regarding the objectives of certain 
indicators, such as GHG/carbon footprint, as Đurđević et al. (2020) 
defines this as a technical indicator, whereas Lizot et al. (2021) utilises it 
as an indicator of environmental performance. Similarly, odour and 
noise indicators are placed in both environmental (Sucu et al., 2021) and 
more commonly social categories (Eseoglu et al., 2022; Lizot et al., 
2021; Molinos-Senante et al., 2014). These differences evidence the 
need to enhance sustainability/circularity assessment knowledge and 
develop standardised methods for KPI selection and categorisation. 

The popularity of indicator categorisation using sustainability pillars 
has led to some DSS developers using this method even when their 
defined aims do not refer to sustainable technology selection. To combat 
this, some authors generated their own indicator categorisation strate-
gies. Fetanat et al. (2021) developed indicator categories using the 
water-energy-food nexus framework to view wastewater as a renewable 
energy source, which aligns with the DSS goal to prioritise energy re-
covery from WWT. Palma-Heredia et al. (2020) created an indicator 
hierarchy depending on the scale of the application, therefore allowing 
decision makers at regional, WWTP, and operational levels to prioritise 
certain indicators. Although these categorisation methods are not as 
established in literature as sustainability pillars, developing indicator 
categories which consider DSS goals may be a more effective way for 
users to understand the indicators required to achieve their aims, 
especially whenever sustainable technology selection is not the objec-
tive. However, it can be concluded there is confusion when categorising 
selected indicators and how this activity aligns DSS outcomes with de-
cision maker goals. 

3.4. Indicator weighting 

Weighting of indicators is a critical stage for DSS users, as it enables 
them to prioritise or mitigate criteria depending on their objectives. 
Therefore, the frequency of each technique used by DSS developers for 
indicator weighting is provided in Fig. 4. The MCA discussed are those 
currently employed by water sector DSSs and does not reflect best 
practices for multi-attribute decision making. 

It is common for indicators to be weighted according to the DSS user, 

and then a weighted summation is simply calculated to create a com-
posite indicator used to analyse technologies. Garrido-Baserba et al. 
(2015) and Palma-Heredia et al. (2020) develop DSS weights for in-
dicators that are predetermined and fixed, and given equal weighting 
respectively. Although this simplifies DSS usage, this weighting system 
is not recommended as it does not provide users with the ability to tailor 
KPI impacts to reflect their goals, which can be viewed as undermining 
the principles of MCDM. Another method commonly employed by DSS 
developers is to allow users to define weights themselves, (Castillo et al., 
2016; Chhipi-Shrestha et al., 2017; Južnič-Zonta et al., 2022; Oertlé 
et al., 2019; Renfrew et al., 2022; Silva Junior et al., 2022; Sucu et al., 
2021), however, DSS users can be faced with >20 indicators so assigning 
weights without a structured methodology of comparing indicators can 
lead to inconsistencies during analysis. This can result in indicator 
weightings that do not align adequately with aims and lead to bias in the 
assessment. Therefore, techniques are employed by DSS developers 
enabling structured analysis of indicators using opinions of experts and 
stakeholders. 

The analytical hierarchy process (AHP) is the most common 
weighting method used by reviewed DSSs with eleven. AHP was pro-
posed by Saaty (1987) for decision making influenced by multiple in-
dependent factors (Liu et al., 2020). It investigates the relationship 
between criteria to create a hierarchy from which they can be prioritised 
(Eseoglu et al., 2022), often utilising external experts and stakeholders 
to create pair-wise comparisons. Therefore, many DSSs reviewed use 
standard AHP for weighting indicators (Đurđević et al., 2020; Gherghel 
et al., 2020; Jiean Ling et al., 2021a; Lizot et al., 2021; Molinos-Senante 
et al., 2014; Nkuna et al., 2022). However, Ling et al. (2021a, 2021b) 
reported rarely seeing extreme scores on the judgement scale, and when 
the full scale was used the threshold consistency ratio (compares the 
weighting matrix against a random matrix, acceptable value of ≤0.1) is 
often not achieved. To overcome the uncertainty due to imprecise 
human judgements or ambiguity, fuzzy logic is implemented (Eseoglu 
et al., 2022). Many DSSs employ fuzzy-AHP weighting (An et al., 2018; 
Büyüközkan and Tüfekçi, 2021; Eseoglu et al., 2022; Liu et al., 2020; 
Sadr et al., 2018), providing a structured method of indicator weighting 
whilst mitigating inconsistencies of human thinking. 

Apart from AHP, DSS developers integrated a variety of weighting 
methods (Ali et al., 2020; Attri et al., 2022; de Almeida et al., 2022; 
Fetanat et al., 2021; Leoneti et al., 2022). Arroyo and Molinos-Senante 
(2018) implement Choosing-By-Advantages (CBA), citing several im-
provements over AHP including that it does not assume linear trade-offs 
between criteria. CBA encourages DSS users to understand the differ-
ences between criteria and assesses the importance of these differences, 
as supposed to AHP which can create conflicting questions. The Best- 
Worst Method (BWM) used by Liu and Ren (2022) and Salamirad 
et al. (2023) provides a simpler weighting step for decision makers as the 

Fig. 4. Methods used to weight indicators for MCDM technology selec-
tion DSSs. 
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number of comparisons is reduced, improving the consistency ratio of 
results and removing much of the uncertainty during pairwise com-
parisons. Srivastava and Singh (2022) simplify weighting even further 
by employing the Full Consistency Method, minimising the number of 
comparisons to achieve consistent results. 

Lastly, some DSS developers recommend the use of ‘experts’ without 
actually defining whom this might include (Attri et al., 2022; Liu et al., 
2020), collecting opinions from stakeholders with little knowledge of 
the investigated system or local area, leading to inconsistent results. 
Whereas Eseoglu et al. (2022) utilises expert opinions from every stage 
of WWT including design, construction and operation engineers, and 
Gherghel et al. (2020) acknowledges the viewpoints of stakeholders 
from six different specialities, such as political, environmental, and 
plant operator stakeholders to ensure the holistic collection of view-
points. Therefore, stakeholders with a range of expertise that understand 
local factors for indicator weighting should be used to reduce bias and 
inconsistency. 

Generally, the majority of DSSs in this study rely on AHP to weight 
criteria, which is corroborated by other reviews in the area (Kozłowska, 
2022; Zolghadr-Asli et al., 2021), potentially incorporating high levels 
of uncertainty. Therefore, to ensure better indicator utilisation fuzzifi-
cation and consultation of relevant experts can be used to reduce un-
certainty. Additionally, methods recommended in literature, not utilised 
by the water sector DSSs reviewed, to mitigate weighting procedure 
errors are the entropy method for objective weight assignment or 
analytical network process (ANP) to account for correlations between 
criteria (Zolghadr-Asli et al., 2021). 

3.5. Indicator scoring 

A range of methods to score assessment indicators have been utilised 
due to the variety of scales and units of indicator results, and often the 
mix of quantitative and qualitative indicators selected. Linguistic (such 
as very bad to very good) or numerical (can be from 0 up to 10) series are 
commonly integrated to normalise results enabling their combination. 
Several DSSs rely on the experts used for indicator weighting to assign 
numerical ratings directly based on their opinion (Đurđević et al., 2020; 
Jiean Ling et al., 2021a; Renfrew et al., 2022), usually when there is lack 
of empirical data (Jiean Ling et al., 2021a). Alternatively, Fetanat et al. 
(2021) relied on linguistic terms to rate technology alternatives as the 
indicators selected were immeasurable (such as energy security 
availability). 

Literature searches were used to establish numeric ranges of indi-
cator results for each technology assessed (Attri et al., 2022). Silva Ju-
nior et al. (2022) collected data from technical-scientific literature 
relevant to case study location and assigned the final result by calcu-
lating the mean of the data range found. Before combination of indicator 
results, they were normalised to a value between 0 and 1 using the 
lowest and highest value observed for each parameter. Rather than 
quantitatively normalising values collected from literature, Liu and Ren 
(2022) utilised a linguistic scale of five from very good to very poor, whilst 
Lizot et al. (2021) created ranges for each indicator to assign a numeric 
value to normalise quantitative indicator scores. 

Lastly, a common method for assigning scores to indicators is to 
directly quantify results (except for the indicators which are inherently 
qualitative). It was observed that most environmental and economic 
indicators were quantifiable, whilst technical and social indicators were 
qualitatively scored (Castillo et al., 2016; Leoneti et al., 2022; Liu and 
Ren, 2022; Molinos-Senante et al., 2014). Quantitative calculation of 
each indicator investigating technology performance is recommended, 
as it incorporates specific details and local factors of the case study. 
Relying on the judgement of DSS users or external experts enables un-
certainty through the ambiguity or bias of human decision making to 
incorrectly score technologies. Furthermore, the use of values extracted 
from literature can mitigate the influence of local factors which can be 
pertinent for economic and technical indicators. Of course, when using 

qualitative indicators to investigate social aspects, local stakeholder 
views should be used to score technologies, due to their greater under-
standing of potential impacts in a given region. 

3.6. Ranking 

The final step is to rank technologies for selecting the technology 
which supposedly best meets user requirements. Palma-Heredia et al. 
(2020) presents KPI results and recommends the DSS user to complete 
pairwise comparisons for technology selection. Although this is a simple 
method of completing the final ranking, extensive indicator lists create 
complexity and inconsistencies in user judgement. Therefore, the most 
common method of technology ranking employed by DSS developers is 
to create a composite indicator using the weighted sum method (Castillo 
et al., 2016; de Almeida et al., 2022; Garrido-Baserba et al., 2015; 
Gherghel et al., 2020; Liu and Ren, 2022; Molinos-Senante et al., 2014). 
This synthesises indicator scores and their corresponding weights into a 
single performance index used to rank and select technologies (Jiean 
Ling et al., 2021a). 

In the cases where multiple experts or stakeholders are used to 
weight or score assessment indicators, systematic analysis of results is 
needed to rank and select technologies. The technique for order of 
preference by similarity to ideal solution (TOPSIS) is commonly coupled 
with AHP. TOPSIS selects the best alternative based on the shortest 
distance to the ideal solution and the farthest distance from the negative- 
ideal solution in geometric terms (Južnič-Zonta et al., 2022), to intensify 
the correctness and validate selection of the most appropriate technol-
ogy (Nkuna et al., 2022). When fuzzification of data has occurred during 
indicator weighting, to improve the robustness of outcomes, this can be 
continued to complete fuzzy-TOPSIS (Attri et al., 2022; Büyüközkan and 
Tüfekçi, 2021; Eseoglu et al., 2022; Liu et al., 2020; Sadr et al., 2018). 
Another method employed to overcome the uncertainty of comparative 
analysis, is fuzzy-VIKOR as used by Ali et al. (2020), which utilises 
positive and negative characteristics to define compromises when con-
flicting views cause issues with decision making. This is achieved by 
calculating three variables to establish the summation and maximum 
distance from the best value, which are then combined to calculate an 
overall score. 

Alternatively, Leoneti et al. (2022) implements game theory to 
determine the preferred option from the list of acceptable outcomes, 
selecting the technology that maximises the Nash equilibria social 
welfare function. Lastly, Fetanat et al. (2021) utilised the linear 
assignment method (LAM) to rank technologies for energy recovery 
from WWTs. This method is chosen as it ranks alternatives according to 
conflicting criteria, by analysing the trade-offs between the ranking of 
each indicator for each technology. Therefore, LAM may be beneficial as 
wastewater and sewage sludge treatment shifts to prioritise other 
functions, such as resource recovery or water reuse. Studies in this area 
agree that TOPSIS is the most common ranking procedure (Štilić and 
Puška, 2023), however, best practice depends on the scenario of appli-
cation. Methods such as PROMETHEE and ELECTRE are suited to handle 
conflicting stakeholder priorities (Štilić and Puška, 2023), whereas fuzzy 
logic and use of experts from as many specialities as possible should be 
used to tackle subjective ranking issues (Garcia-Garcia, 2022). 

3.7. Uncertainty 

There are various types of uncertainty that exist in MCDM that can 
arise at each step of DSS utilisation resulting from: variation, ambiguity, 
and incomplete preferences of human inputs; lack of system, parameter, 
data, external factor, or model knowledge; and prediction of outcomes 
or future events (climatic or socio-economic changes) (Walling and 
Vaneeckhaute, 2020). There are many methods to deal with MCDM 
uncertainty, one being fuzzification of scoring, weighting, and ranking 
procedures reliant on human judgement, as previously discussed in 
Sections 3.4, 3.5, and 3.6. Alternatively, sensitivity analysis is able to 
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provide decision makers with insights into the uncertainty resulting 
from erroneous modelling of the assessed system or potential/future 
scenarios. 

Scenario investigation is a widely applied method of sensitivity 
analysis, in which MCDM indicator weighting is altered to reflect 
different viewpoints or future situations. For example, Molinos-Senante 
et al. (2014) and Salamirad et al. (2023) conducted scenario analysis by 
favourably weighting environmental, economic, and social KPIs in turn, 
validating the selected technology (constructed wetlands and integrated 
fixed-film activated sludge respectively) still ranked highest under 
alternative weighting schemes. Alternatively, Renfrew et al. (2022) 
improved the robustness of technology selection by weighting KPIs 
based on potential future scenarios, including legislative changes for 
emissions compliance and carbon footprint reduction, and selecting 
technologies based on their average performance across the scenarios. 
Furthermore, global sensitivity analysis (GSA) was utilised to verify that 
technology ranking is robust to fluctuating inputs over a ±10 % range 
and investigate which parameter's uncertainty have the largest impact 
on MCDM outcomes, educating future assessments (Renfrew et al., 
2022). Lastly, Južnič-Zonta et al. (2022) aimed to use Monte-Carlo (MC) 
simulations to overcome probabilistic uncertainty of bio-chemical 
modelling processes to configure design parameters, before technology 
ranking is calculated and verified over each iteration (however this was 
not included in case study). Therefore, if potential errors are likely to be 
introduced by MCDM structure or case study that impact outcomes, then 
sensitivity analysis (scenario or global) should be used to validate the 
robustness of DSS results. 

3.8. Recommendations 

As discussed, there are already many reviews of DSS typologies in the 
literature, therefore, the review focuses on how indicator usage can be 
improved based on the methods currently implemented for WWTP 
technology selection. Therefore, following the review of thirty-one 
MCDM DSSs final recommendations and comments are provided in 
Table 2. Unfortunately, Sections 3.2 and 3.3 highlight the significant gap 
related to the utilisation of circularity and sustainability indicators, 
mainly that circularity aspects are used to investigate environmental 
performance and the lack of alignment with water sector goals reported 
as part of European Green Deal and CEAP. Additionally, WWTP DSSs 
still rely on user defined weighting, scoring, and ranking procedures, or 
structured methods, such as AHP and TOPSIS, which have issues with 
introducing uncertainty to the assessment. Generally, decision making 
in the water sector is still some distance from standardisation and har-
monisation of sustainability and circularity assessments. 

It is worth noting that analysis of DSS case studies showed that 
economic indicators were commonly prioritised during the weighting 
stages (Eseoglu et al., 2022; Liu et al., 2020; Lizot et al., 2021; Sadr et al., 
2018). The CBA method employed by Arroyo and Molinos-Senante 
(2018) excluded economic indicators during the initial assessment, 
prioritising environmental and social factors, as monetary resources 
available are usually the constraint for any project. Environmental and 
social indicator results are then plotted against cost to facilitate the se-
lection of the best technology option. Authors highlight the impacts of 
this by comparing AHP with CBA and showed that by considering eco-
nomic factors alongside environmental and social indicators, unfav-
ourable impacts were offset by low capital and operating costs. 
Therefore, as governments demand improved environmental and social 
performance of WWT in the coming years, to achieve targets such as net 
zero, the exclusion of economic indicators from initial assessment may 
be favoured. 

4. Multi-objective optimisation control 

Following the selection of technologies, another type of DSS is 
needed for multi-objective optimisation of WWTP process operation and 

control. It is necessary to conduct distinct analysis of these DSS types as 
they are utilised differently by decision makers. Therefore, alternative 
methods and indicators are required, as it was seen that technology 
selection DSSs focus on sustainability KPIs whereas operational opti-
misation DSSs target cost and regulatory (effluent quality) aspects. 
Table 3 summarises the multi-objective process optimisation WWTP 
DSSs collected from literature, resulting in the review of twenty-six 
articles. 

Table 3 shows an increase in the number of publications in this area, 
growing from four in 2018 to seven in 2022 which coincides with the 
availability of Benchmark Simulation Model (BSM) 1 and BSM2 (IWA, 
2018) for testing WWTP control strategies. Some authors have recently 
published multiple papers in this area, testing different algorithms to 
find the optimal control strategy on the same simulation platform. DSSs 
were categorised depending on their ability to optimise the control of 
process operation dynamically (respond to changes in real-time) or 
statically (user defined inputs followed by KPI calculation). Most DSSs 
are dynamic, which corresponds with use of BSMs as time series data 
across three weather conditions is available for simulation testing (IWA, 
2018). Generally, DSS aims were stated in clearer terms than those for 
technology selection, often stating which performance parameters or 
KPIs are targeted for optimisation. Most DSSs were not applied to real 

Table 2 
Summary of issues, recommendations, and beneficial outcomes related to the 
reviewed MCDM technology selection DSSs.  

Issue Recommendation Outcome 

Few DSSs provide a clear 
definition of aims or 
goals 

Defining the goal and 
scope of the assessment 
should become common 
practice, as the first step of 
DSS development or 
application 

Help decision makers 
understand the desired 
outcome of DSS 
utilisation 

Rigorous indicator 
selection is often 
overlooked by DSS 
developers and do not 
consider high level 
water sector goals 

Utilise participatory 
methods to incorporate 
local stakeholder, business 
(water utility), and 
regional/governmental 
objectives 

Technology selection 
using KPIs that 
adequately reflects 
desired results and 
facilitate sector 
transformation 

Indicator categorisation 
is often unclear 
resulting in 
inconsistencies across 
DSSs, mitigating 
circularity objectives 

Use categorises that reflect 
the intentions of the DSS, 
helping to create more 
robust weighting strategies 
and consider CE targets of 
the water sector 

Help to select and group 
relevant indicators, such 
as using sustainability 
pillars when selecting 
sustainable 
technologies, and 
mitigate the alignment 
of CE metrics with 
sustainability impacts 

Expert or user defined 
weighting schemes can 
lead to a lack of local 
factor consideration 

Stakeholders with an 
understanding of the local 
area from a range of job 
roles should be used for 
indicator weighting 

Ensures that DSSs select 
technology that will 
meet the local demands 
in each scenario of 
application and reduce 
uncertainty of results 

Unstructured or 
subjective weighting 
and ranking methods 
can lead to uncertain 
outcomes 

Consider the specific issues 
of each DSS application to 
decide which method 
should be used to reduce 
uncertainty, such as 
entropy methods to 
enhance the objectivity of 
weighting, and either fuzzy 
logic to reduce human 
error or PROMETHEE/ 
ELECTRE to overcome 
conflicting priorities 
during ranking 

Remove the 
inconsistency and 
reduce uncertainty that 
can arise when human 
inputs are used to weight 
and rank indicators 

There is little critical 
analysis of final 
technology selection in 
relation to decision 
maker goals 

Techniques such as 
sensitivity analysis should 
be applied to investigate 
DSS outcomes 

Ensure that the method 
is consistent across 
alternative scenarios, 
enhancing robustness of 
final technology 
selection  
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case studies and instead utilised BSMs due to the complexity and non- 
linearity of WWTP modelling. This reliance results in little variation of 
KPIs selected (type or number), as BSMs have predefined indicators 
related to effluent quality and energy consumption/cost. 

As shown in Fig. 5, the BSM1 plant is a 5-compartment activated 
sludge reactor modelled using ASM1, with configuration facilitating 
nitrification-denitrification for biological nitrogen removal. The model 
utilises PI controllers to control the dissolved oxygen (DO) level by 

manipulating the oxygen transfer coefficient, and nitrate level setpoints, 
by changing the internal recycle rate in the fifth and second compart-
ments respectively (IWA, 2018). The performance assessment of the 
plant is based on two main KPIs; the effluent quality index (EQI) and 
overall cost index (OCI). The EQI is the weighted sum (weightings from 
literature) of effluent contaminant TSS, COD, BOD, Kjeldahl nitrogen 
(TKN), and nitrate (NO). The OCI combines cost factors of sludge pro-
duction, aeration energy, pumping energy, mixing energy, and external 

Table 3 
Summary of multi-objective DSSs for optimisation of WWTP operation.  

Author Year Control Aim Application Objective function 

Qiao et al. 2018 Dynamic Achieving the effluent quality (EQ) 
requirements and minimizing the energy 
consumption (EC) 

BSM1 EC and EQI 

Díaz- 
Madroñero 
et al. 

2018 Static Develop more sustainable water systems 2500 PE WWTP in 
Alicante, Spain 

Total connections costs, total freshwater use, and total regenerated 
freshwater use 

Han et al. 2018 Dynamic Optimal control operation with EC reduction 
while retaining standard EQ 

BSM1 EC and EQI 

Qiao and Zhou 2018 Dynamic Acquire the balance between EC and EQ with 
the usage of the best set points 

BSM1 EC and EQI 

Qiao et al. 2019 Dynamic Suitable set-points to balance the treatment 
performance and the operational costs 

BSM1 EQI and EC 

Zhou and Qiao 2019 Dynamic Optimal control strategy is designed to reduce 
EC without violating effluent standards 

BSM1 EQI and OCI 

Pisa et al. 2019 Dynamic Reduction of the number of violations as well 
as the improvement of WWTP's EQI and OCI 
metrics 

BSM2 EQI and OCI 

Dai et al. 2019 Dynamic Optimal modification of an 
anaerobic–anoxic/nitrifying/ induced 
crystallization (A2N-IC) process 

ASM-2D EQ, operating cost, and total volume 

Borzooei et al. 2019 Static Evaluate and improve existing process 
performance in addition to optimise the 
production of renewable energy 

2 million PE 
Castiglione Torinese 
WWTP, Italy 

EQI and ECI 

Mannina et al. 2020 Static Optimization … in terms of operational costs 
and direct greenhouse gases emissions. 

Pilot plant MBR Effluent Fine, EQI (liquid and gas), oxygen-to-total- 
Kjeldahl‑nitrogen ratio, ratio nitrate-ammonia, CO2 and N2O 
emissions, and direct and indirect GHG emissions. 

Revollar et al. 2021 Static Improving the eco-efficiency of WWTPs BSM2 EQI, OCI, Net energy, Excess heating energy, Electricity 
consumption, Energy/Pollution removed, Energy net/Pollution 
removed, Violations of the permit limits of effluent N, NH4 and 
COD 

Heo et al. 2021 Dynamic Operate at cost-efficient and sustainable 
WWTP 

BSM2 EQI, OCI, CH4 reutilised as energy source 

Ortiz- 
Martínez 
et al. 

2021 Dynamic Optimise an economic cost term and an 
effluent quality index 

BSM1 EQI and economic cost 

Han et al. 2021 Dynamic Achieve excellent treatment performance for a 
WWTP 

BSM1 and 10,000 m3/ 
d WWTP Beijing, China 

EC and EQI 

Tejaswini 
et al. 

2021 Dynamic Enhance the performance of the WWTP by 
optimising the parameters of the default 
control strategy 

BSM1 EQI and OCI 

Chen et al. 2021 Static Obtain sustainable control strategies 10,000 PE WWTP 
Jiangsu Province, 
China 

LCC and three LCA impact indicators (energy consumption, 
eutrophication, GHGs) 

Campana et al. 2021 Static Reduce WWTP operating costs, improving at 
the same time treated effluent quality 

86,400 PE WWTP, Italy Self-sufficiency ratio and net present cost 

Li et al. 2021 Dynamic Meet the requirements of effluent quality and 
maintain sustainable operation with the 
lowest energy cost 

BSM1 EC and EQI 

Fox et al. 2022 Dynamic Best setup that can enable optimal 
operational, environmental and energy 
performance 

Residential 
development SBR 

NH4 removal, prediction error, treatment time reduction 

Xie et al. 2022 Dynamic Achieve tracking control of the main operating 
variables of the WWTP 

BSM1 EC and EQI 

Niu et al. 2022 Dynamic Optimise EQ and EC in wastewater treatment 
process 

BSM1 EC and EQI 

Han et al. 2022 Dynamic Optimal control strategy is proposed to 
improve the performance of WWTP 

BSM1 EQI, pumping energy, aeration energy 

Caligan et al. 2022 Static Minimise the system's overall economic costs 
and environmental greenhouse gas emissions 

Wastewater sludge to 
bioenergy park 

Cost and GHG emissions 

F. Li et al. 2022 Dynamic Optimise the control of WWTPs BSM1 EC and EQI 
Han et al. 2022 Dynamic Guarantee satisfactory EQ and EC with the 

excellent control accuracy of WWTP 
BSM1 EC and EQI 

Du and Peng 2023 Dynamic Optimal control of wastewater treatment 
process 

BSM1 EC and EQI  
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carbon consumption (Alex et al., 2018). BSM2 utilises the same waste-
water treatment process, with the addition of sludge anaerobic digestion 
to the balance heat energy required and energy generated from methane 
production. The number of effluent limit violations and duration must 
be reported, meaning operation is constrained by discharge limits of 
NH4 ≤4 mg/l; TN ≤18 mg/l; TSS ≤30 mg/l; BOD ≤10 mg/l; COD ≤100 
mg/l (Alex et al., 2018). 

4.1. DSS goals 

In Section 3 it was revealed that MCDM technology selection DSS 
aims are too generic, meaning it is difficult to relate indicator selection 
to desired outcomes. Many of the multi-objective process optimisation 
DSSs reviewed in Table 3 take the opposite approach, as twelve stated 
the KPIs targeted for optimisation in their aims. This definition enables 
users to clearly understand the outcomes that can be expected when 
implementing this optimisation technique, however, many of these DSSs 
relied on BSMs meaning there is little flexibility in the indicators uti-
lised. Another helpful method of defining DSS aims for the user is to 
identify its specific function. For example, Borzooei et al. (2019) and 
Revollar et al. (2021) aimed to optimise the production of renewable energy 
and improve the eco-efficiency of WWTPs respectively, making it clear 
to users the reasons for implementing this DSS and selecting indicators 
for optimisation. Still, a significant number of multi-objective optimi-
sation DSS developers use vague language when stating their aims. Eight 
DSSs aim to either optimise or improve performance of WWTPs, whilst 
three DSSs aim for sustainable operation or control of WWTPs, without 
explicitly stating which areas are targeted. Therefore, DSSs clearly 
define their aims, but few explicitly relate this to sustainability or 
circularity objectives, aiming to generally ‘optimise WWTP perfor-
mance’ or improve conventional operation KPIs. 

4.2. Static vs dynamic control 

Of the twenty-six DSSs reviewed in Table 3, six provided users with 
static control strategies for improving the operation of WWTPs, meaning 
the results are used by operators to make decisions rather than the DSS 
dynamically altering operation. Borzooei et al. (2019) created a simu-
lation of a large-scale WWTP and altered the SRT between 10 and 40 
days, then plots the EQI and EC results to establish the optimal SRT for 
process operation. Mannina et al. (2020) goes a step further by using 
TOPSIS to optimise five operational parameters using ten KPIs and 
combining this with E-FAST sensitivity analysis to understand the in-
fluence of operating parameters on performance. These static DSSs allow 
users to observe and understand what an optimised system may look 
like, enabling them to derive and implement the WWTP control strategy. 
The remaining twenty DSSs are able to dynamically alter operation 
parameters without user interference. For example, Heo et al. (2021) 
uses the fuzzy c-mean algorithm to process and cluster influent data to 
predict initial BSM2 setpoints, a deep neural network then completes the 

multi-objective optimisation calculation for EQI, OCI, and biogas gen-
eration performance indicators, and finally the NSGA-II algorithm 
searches for the optimal setpoint of each controller. Therefore, the 
WWTP can maintain optimal performance and respond to fluctuations in 
influent composition. The use of DSSs for dynamic optimisation means 
that indicator selection must focus on KPIs that are calculated from data 
that is easily and reliably monitored over a given period. 

4.3. Modelling platform 

Of the nineteen DSSs that dynamically control WWTP operation, 
fourteen are implemented in BSM1 without being tested on real pro-
cesses. In most cases these DSSs are made up of two algorithms, one 
responsible for the multi-objective optimisation of KPIs (commonly a 
neural network) and another for determining the set point of controllers 
(such as a NSGA-II or AMODE algorithm (Heo et al., 2021; Ortiz-Mar-
tínez et al., 2021; Qiao et al., 2019, 2018; Tejaswini et al., 2021)). The 
repeated investigation of different algorithm combinations is necessary 
to which results in the best EQI and OCI outcomes, and lowest controller 
error (Du and Peng, 2023). Two DSSs are used to control the operation of 
BSM2, enabling users to optimise operation considering biogas pro-
duction as part of the OCI. Two DSSs are utilised for the dynamic control 
of actual processes including the work of Han et al. (2021) which runs 
initial tests on BSM1 then uses data extracted from the SCADA system of 
a 10,000 m3/d plant in Beijing, China to run experimental tests. Lastly, 
Dai et al. (2019) developed their own optimisation models, using ASM- 
2D to optimise a WWTP for inducing crystallisation. Therefore, few DSSs 
have been tested on real systems so may not perform as expected when 
applied at different scales or locations, especially under unexpected 
influent loadings. It is recommended that users test DSSs in real systems 
or on models that represent the specific process it will be applied to, 
ensuring optimisation reflects the operational expectations of decision 
makers. 

In the cases of static control, the DSSs developed usually rely on 
simulation software or the development of process models. Four DSSs 
used their own models which facilitated the selection and utilisation of 
less conventional KPIs, including regenerated water usage (Díaz- 
Madroñero et al., 2018), energetic self-sufficiency (Campana et al., 
2021), and environmental impact (kg CO2eq) (Caligan et al., 2022). Two 
DSSs simulated WWTPs in Hydromantis's GPS-X software, with config-
urations based on real-world processes (Chen et al., 2021) and fed with 
historic data taken from plant SCADA systems (Borzooei et al., 2019). 
Lastly, Revollar et al. (2021) specify four scenarios (fluctuating DO, 
NH4, and internal recycle setpoints) in BSM2, which enables the calcu-
lation of eco-efficiency indicators for comparing control strategies. 
Therefore, static control systems are able to optimise a greater variety of 
KPIs, like the EQI and OCI, and operational parameters, including solids 
retention time (Borzooei et al., 2019; Mannina et al., 2020) or process 
flowrates (Caligan et al., 2022; Revollar et al., 2021). 

Fig. 5. BSM1 process flow diagram and control systems based on a figure from the IWA (2018) where Q is the flowrate, S is the set point, PI is the controller, and KLa 
is the transfer coefficient. 
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4.4. Indicators selected 

The reliance of DSS developers on BSM platforms results in little 
variability of selected indicators. In fact, Table 3 shows eighteen 
reviewed DSSs used only the inbuilt indicators of BSMs, including EQI, 
OCI, or its sub indicators (pumping, aeration, and total energy con-
sumption). Although indicators are fixed in the platform, little justifi-
cation or reasoning for selecting these indicators is given by DSS or BSM 
sources, except that they cover both economic and environmental im-
pacts (Li et al., 2021), reflect the operational state of the WWTP, and can 
evaluate process performance (Han et al., 2022a). EQI and OCI in-
dicators reflect the traditional goals of water related literature and 
regulations, such as for human health protection and cost functions, that 
will always be important to maintain WWTP performance. However, 
modern water sector targets relate to areas such as GHG emissions and 
resource recovery, therefore, expansion to include KPIs that reflect these 
goals is recommended for further development of BSMs. This is needed 
as inclusion of sustainability and circularity dimensions would enable 
users to optimise WWTP operation considering the wider impacts to 
stakeholders and achieve targets defined in Section 2.1, such as those 
defined in the CEAP. 

Subsequently, the eight remaining DSSs developed integrated other 
indicators to optimise process operation considering impacts other than 
cost and effluent quality. Three DSSs calculate process GHGs, including 
Mannina et al. (2020) that consider a combination of CO2 and N2O 
emissions, direct and indirect GHGs, and air-EQI to understand how 
MBR operational parameters impact emissions. Caligan et al. (2022) also 
considered GHGs emissions and compared this with cost functions, 
whilst Chen et al. (2021) conducted full LCC and LCA to investigate the 
impact of indicator prioritisation on a 10,000 PE WWTP. Other DSSs 
selected indicators to investigate a specific function of a WWTP, namely 
freshwater and regenerated water use (Díaz-Madroñero et al., 2018), 
eco-efficiency (Revollar et al., 2021), treatment time reduction (Fox 
et al., 2022), and energetic self-sufficiency (Campana et al., 2021). 
These indicators align better with modern water sector sustainability 
goals compared with EQI and OCI indicators. However, they all 
employed self-selection methods and generally circularity indicators 
were mitigated from optimisation DSSs, showing this is yet to become a 
priority of WWTP operators. 

4.5. Indicator prioritisation 

Again, there is a difference between static and dynamic DSS in-
dicators in how they are analysed to produce the optimal solution. The 
majority of dynamic calculations aim to minimise the performance in-
dicators selected, including BSMs trying to minimise both EQI and OCI 
(or energy consumption). This results in an optimisation problem (Heo 
et al., 2021) since decreasing one of these KPIs increases the other, for 
example greater removal efficiency requires additional energy con-
sumption from aeration and recirculation pumping. Therefore, DSS al-
gorithms must cope with KPI trade-offs, known Pareto sets, which 
derives a sub-optimal solution for the chosen KPIs but establishes that 
both results are better than the rest of the potential outcomes in the 
search space (Qiao et al., 2018). Fox et al. (2022) developed one of the 
only dynamic optimisation DSSs to employ a weighting method, with 
the hope of considering site-specific requirements. Local plant operators 
assigned weights, which were combined with KPI result rankings to 
decide on the soft sensors that produces the best control strategy. In 
previous years it was common to weight KPIs to create a single objective 
optimisation (Niu et al., 2022), however, this necessitates real-time su-
pervision by plant operators to achieve optimal control (Han et al., 
2014). 

Of the static DSSs, three utilise KPI weighting to achieve the optimal 
solution. Díaz-Madroñero et al. (2018) used fuzzy goal programming to 
incorporate decision maker preferences and trade-offs between objec-
tive functions. Alternatively, Chen et al. (2021) normalises LCA impact 

indicator results and uses weights defined in literature, whilst Mannina 
et al. (2020) weights all ten objective functions selected equally. The use 
of decision maker weighting strategies is recommended, as it enables the 
goals of local stakeholders to be integrated within optimisation out-
comes. Lastly, some DSS developers did not provide a method for 
selecting the optimal strategy, leaving it to the interpretation of the user 
to compare KPI results (Revollar et al., 2021), such as Borzooei et al. 
(2019) which relies on optimisation curves showing EQI vs OCI to select 
the best operational SRT parameter. Although weighting strategies are 
useful, the dynamic optimisation of KPIs is now accepted as best practice 
to enable automatic, supervisory control of plants, placing greater 
emphasis on proper selection of KPIs to reflect decision maker needs 
during WWTP operation. 

4.6. Error and uncertainty 

These DSSs aim to provide an optimised control strategy for the 
operation of WWTPs, however, alternative controllers, KPIs, or condi-
tions may result in differing performance. Therefore, it is critical to test 
the sensitivity of DSS performance on results. One of the main strategies 
employed was to compare the optimised KPI results with alternative 
controller algorithms, to ensure the adopted method achieves the best 
performance. Controller performance metrics including the Integral of 
Absolute Error (IAE) (no error weighting), Integral of Squared Error 
(ISE) (penalises larger errors), and Root Mean Square Error (RMSE) were 
utilised. In fact, six DSSs compare the controller algorithm deployed 
using the IAE with other algorithms (Han et al., 2022a, 2021; Li et al., 
2022; Qiao et al., 2019, 2018; Xie et al., 2022), one utilised both ISE and 
IAE for comparison (Han et al., 2018), and another implemented RSME 
(Qiao and Zhou, 2018) to investigate whether the method used results in 
the lowest error. Additionally, six DSSs compared controller algorithms 
using KPI results only (Han et al., 2022b; Li et al., 2021; Mannina et al., 
2020; Niu et al., 2022; Pisa et al., 2019; Zhou and Qiao, 2019), which is a 
useful exercise to reassure the user their DSS will produce the best 
outcomes. However, investigating errors is important as it indicates the 
size and longevity of potential disruptions to system performance. 

Multi-objective optimisation DSSs utilise similar approaches to those 
discussed in Section 3.7 for MCDM for uncertainty analysis. For 
example, the DSS developed by Caligan et al. (2022) formulated sce-
narios to investigate the impacts of events that WWTP operators may 
face, including how the fluctuation of biofuel prices, inlet wastewater 
quality, and requirements for wastewater and sludge disposal, impact on 
cost and GHG emission KPIs. Ortiz-Martínez et al. (2021) created sce-
narios simulating lack of aeration due to process error and mitigation of 
flow recirculation due to maintenance, to investigate the effect on pro-
cess optimisation. Alternatively, some authors investigated optimisation 
strategies through prioritisation of certain indicators to see how the 
system responds. DSSs were tested by optimising either the environ-
mental (i.e. EQI) or economic (i.e. OCI) KPI, and comparing this with 
when both are optimised (Chen et al., 2021; Tejaswini et al., 2021). 

Mult-objective optimisation DSSs have other inherent uncertainties 
to deal with when modelling WWTP systems, such as climatic changes 
and fluctuating wastewater concentration (Chen et al., 2018). DSS de-
velopers tackled this uncertainty by investigating the effects of the 
wastewater influent on performance using fluctuation of the TKN/COD 
inlet ratio (Heo et al., 2021) and fuzzification of inlet composition (Díaz- 
Madroñero et al., 2018). However, further uncertainty analysis is rec-
ommended to test how WWTP optimisation models respond to external 
factors. MC simulations are commonly used for modelling input uncer-
tainty as different probability distributions (normal, parametric etc.) can 
be selected depending on error attributes and case study characteristics 
(Haag et al., 2019). Testing the uncertainty of DSS performance is crit-
ical and for a complete study it is recommended to make comparisons in 
KPI performance and controller error with other systems, and investi-
gate fluctuations to influent load and process operation to ensure the 
DSS will meet all user expectations when deployed at a real WWTP. 
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4.7. Recommendations 

Following the review of twenty-six multi-objective DSSs for optimi-
sation of WWTP process operation, some final recommendations and 
comments are provided in Table 4. However, it can again be concluded 
that although these DSSs aim to optimise WWTP performance there is 
little attention given to how this results in the indicators selected for 
optimisation, nor an explanation of how subsequent operation aligns 
with sustainability aims, and mitigate circularity dimensions entirely. 

5. Future work 

5.1. Indicator selection 

Unfortunately, it has been shown that the indicators utilised by most 
wastewater DSSs do not align with water sector sustainability and 
circularity targets. Currently, there is a lack of standardised assessment 
methodologies that combine circularity and sustainability dimensions, 
and confusion due to the excess of indicators developed (Valls-Val et al., 
2022). Most methods rely on the user cherry picking indicators from a 
predetermined list, therefore, when an organisation adopts an innova-
tive activity it can result in redundant indicator selection and efforts or 
resources being allocated incorrectly (Peral et al., 2017). There are 
additional difficulties to consider in the water sector, particularly for 
circularity assessments, as the main focus until now has been enhancing 
the performance of technical systems. For example, processes that safely 
return biotic and water resources to the environment can be seen as 
effective waste management (Chojnacka et al., 2020), whereas this can 
occur during landfilling or incineration for abiotic resources which are 
non-circular actions, meaning many indicators are not appropriate. This 

means it is currently very difficult to assess wastewater systems for the 
selection and optimisation of technology that facilitates decision maker 
goals. It has been shown in the literature, and this review, that CE in-
dicators have been aligned with sustainability dimensions to validate 
decision making (Harris et al., 2021), whilst the opposite can be said 
when using LCA impacts to evidence enhanced circularity (Corona et al., 
2019). Therefore, there is a large knowledge gap regarding how circu-
larity and sustainability indicators can be combined. Overcoming this 
issue requires the development of methods that assess the circularity of 
resource flows and is supported using wider sustainability analysis to 
quantify economic, environmental, and social benefits. Only then can 
wastewater decision making facilitate governmental circularity and 
sustainability targets, whilst maintaining WWTP performance, and 
meeting the customer expectations. 

5.2. Data 

Inefficient use of data is one of the main problems in plant man-
agement which many WWTPs struggle to solve. The WWT process is 
complicated and decentralised, so data is scattered, and managers can 
struggle to supervise the whole plant leading to poor management. The 
water industry is still developing data collection, management, ana-
lytics, and controls to more effectively use this data to inform decision 
making across all management and operational functions (Corominas 
et al., 2018). As a result, much of this data is relatively untapped to 
support decisions that would enable higher levels of performance and 
control. Subsequently, online optimisation of WWTP control has not 
been widely applied to real-world systems, due to the complex, non- 
linear behaviour of biological WWT systems (increasing the computa-
tional requirements), lack of visualisation techniques, and low-quality 
sensor measurements (Matheri et al., 2022). Types of advanced con-
trol known as model predictive controllers, use data-driven techniques 
for early correction of process operation to reduce process faults and 
therefore costly downtime, effluent violations, and resource consump-
tion (Ntalaperas et al., 2022). The combination of this with effectively 
constructed multi-objective optimisation DSSs results in powerful and 
desirable tools for the water sector to achieve its goals. Finally, the use of 
data-driven techniques can also be extended to improve the selection of 
indicators, including the use of techniques combined with expert 
knowledge, to find precise KPIs for monitoring specific strategic goals. 
This would enable the differentiation between performance (lead) and 
result (lag) indicators, and create numeric thresholds and benchmarks 
(del Mar Roldán-García et al., 2021), providing more knowledge for 
decision making purposes. 

5.3. Uncertainty 

There are many levels of uncertainty associated with WWTP DSSs, 
namely model structure (misrepresented boundaries, inaccuracy of 
construction, subjective judgement, and mitigation of important mech-
anisms), data (quality, processing, measurement error, and reliability), 
and relationship with the natural environment (knowledge gaps, dy-
namic system, and uncertain future) (Uusitalo et al., 2015; Walling and 
Vaneeckhaute, 2020). It is important to map the source and magnitude 
of uncertainty in DSSs, for which many techniques have been discussed 
in Sections 3 and 4, however, uncertainty is still recognised and treated 
differently by decision makers in the water sector. Even though the 
water sector has additional complexities that result from its strong 
relationship and dependency with the natural environment, a stand-
ardised methodology to identify, quantify, reduce, and report uncer-
tainty to support decision making is still missing (Walling and 
Vaneeckhaute, 2020). A large number of techniques have been imple-
mented to reduce uncertainty, depending on the MCDM method or 
model utilised, including the use of expert assessments, sensitivity 
analysis (scenario, GSA, or MC based), model emulators (Gaussian 
processes), deterministic models (temporal and spatial variability), and 

Table 4 
Summary of issues, recommendations, and beneficial outcomes related to the 
reviewed wastewater treatment multi-objective process optimisation DSSs.  

Issue Recommendation Outcome 

Few DSSs are applied to 
real WWTP systems, 
mitigating the impacts 
of local climate and 
influent composition 

Test DSSs in realistic 
process models or trial 
them in real-world systems 

User achieves the 
expected performance 
when DSS is applied to 
their system 

Although KPI selection is 
fixed for many of the 
DSSs reviewed, 
rigorous indicator 
selection is often 
overlooked 

Develop process models 
that utilise KPIs 
considering local 
stakeholder and business 
objectives for WWTP 
optimisation, rather than 
depending on those 
integrated within BSMs 

DSS will optimise WWTP 
in a way that generates 
desired benefits for 
stakeholders 

Focussing on EQI and 
OCI (or energy 
consumption) KPIs 
provides a narrow 
view of ‘optimal’ or 
‘sustainable’ WWTP 
performance 

Expansion of indicators to 
include environmental, 
social, circularity, and 
technical aspects 

Align WWTP operation 
with modern 
sustainability and 
circularity aims of the 
water sector 

Dynamic control and 
optimisation of 
WWTPs aligns better 
with the water sector's 
digitisation goals, 
mitigating plant 
operator decision 
making capabilities 

Implement robust 
indicator selection to 
ensure optimal 
performance facilitates 
decision maker goals at a 
plant level 

Responsive systems that 
optimise performance in 
terms of selected KPIs, 
rather than relying on 
intuitive decision 
making of operators 

Many DSSs did not 
investigate the 
performance of 
controller algorithms 
using appropriate 
metrics 

IAE and ISE are 
recommended for 
understanding the 
response of the selected 
algorithm to process 
alterations, especially as 
dynamic operation of 
WWTPs evolves 

Better understanding of 
how the investigated 
WWTP will respond to 
external stressors  
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heterogeneous data assimilation (meteorological and hydrological) 
(Pelissari et al., 2021; Uusitalo et al., 2015). Consideration of future 
climate impacts is particularly challenging for water decision makers, 
when making operational decisions in the face of uncertain conditions. 
In this case, stochastic modelling frameworks and decision tree ap-
proaches are recommended to assign future conditions a probability of 
occurrence (Horne et al., 2016). Furthermore, to achieve more stand-
ardised protocols these methods must be aligned with the type and 
magnitude of uncertainties, ensuring that resultant decisions are with 
acceptable ranges, thereby permitting dissemination. Identifying un-
certainties that have the greatest impact on results will help water sector 
decision makers create knowledge bases with which to refine future 
studies and models (Horne et al., 2016). 

6. Conclusions 

WWTP decision makers face stricter regulations regarding human 
health, environmental protection, and emissions reduction, meaning 
they must optimise performance and replace infrastructure, whilst 
maintaining positive economic performance. This creates complex 
multi-objective problems when operating and selecting technologies for 
improving WWTPs, meaning many DSSs have been developed for the 
water sector. Currently, there is a mismatch in terms of the decision 
maker goals and KPIs selected for DSSs, so water sector objectives at a 
European level were summarised. The regulation and action plans from 
the European Commission highlight their recent ambition for greater 
levels or sustainability, circularity, and environmental and human 
health protection. Following this, DSS literature was reviewed and 
showed the main function of MCDM tools was for WWT technology 
selection, whereas multi-objective optimisation DSSs focused on optimal 
set-point control to improve effluent and cost indicators. A large contrast 
was found regarding the aims of DSS typologies, as optimisation stra-
tegies tend to clearly define their goals in terms of the KPIs used, how-
ever, MCDM tools often use vague language making it difficult for users 
to make a connection between indicators selected and resultant out-
comes. Considering these issues several recommendations were made to 
improve DSS deployment, such as more rigorous indicator selection 
protocols including participatory approaches and expansion of in-
dicators sets (specifically for multi-objective optimisation), or greater 
analysis of results whether it is the use of sensitivity/uncertainty anal-
ysis or ISE/IAE indicators. Lastly, to facilitate the success of DSSs 
implementation, development should focus on standardised methods of 
indicator selection that directly links outcomes with decision maker 
goals, and the water sector's circularity and sustainability targets. 
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Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., 

D. Renfrew et al.                                                                                                                                                                                                                                

https://doi.org/10.1007/s11356-018-3971-1
https://doi.org/10.1016/j.jenvman.2023.118365
https://doi.org/10.1007/s13762-021-03387-y
https://doi.org/10.1007/s13762-021-03387-y
https://doi.org/10.1016/j.ijinfomgt.2019.10.003
https://doi.org/10.1016/j.jclepro.2018.01.129
https://doi.org/10.1016/j.jclepro.2018.01.129
https://doi.org/10.1016/j.psep.2022.12.005
https://doi.org/10.1016/j.psep.2022.12.005
https://doi.org/10.3390/W12051255
https://doi.org/10.3390/w12051255
https://doi.org/10.3390/w12051255
https://doi.org/10.1038/s41598-022-12643-1
https://doi.org/10.1038/s41598-022-12643-1
http://refhub.elsevier.com/S0048-9697(24)00037-8/rf0140
http://refhub.elsevier.com/S0048-9697(24)00037-8/rf0140
https://ec.europa.eu/commission/presscorner/detail/en/QANDA_22_6281
https://ec.europa.eu/commission/presscorner/detail/en/QANDA_22_6281
http://refhub.elsevier.com/S0048-9697(24)00037-8/rf0145
http://refhub.elsevier.com/S0048-9697(24)00037-8/rf0145
http://refhub.elsevier.com/S0048-9697(24)00037-8/rf0145
https://doi.org/10.1016/j.seta.2020.100937
https://doi.org/10.3390/su14074098
https://doi.org/10.3390/su14074098
https://doi.org/10.1016/j.cogsc.2022.100650
https://doi.org/10.1016/j.cogsc.2022.100650
https://doi.org/10.1016/j.jclepro.2014.11.021
https://doi.org/10.1016/j.jclepro.2014.11.021
https://doi.org/10.1016/j.jenvman.2020.110158
https://doi.org/10.1016/j.jenvman.2020.110158
https://doi.org/10.3390/w5020798
https://doi.org/10.1016/j.jenvman.2019.109652
https://doi.org/10.1016/j.jenvman.2019.109652
https://doi.org/10.1016/j.scitotenv.2022.155475
https://doi.org/10.1016/j.scitotenv.2022.155475
https://doi.org/10.1016/j.jprocont.2013.12.010
https://doi.org/10.1016/j.asoc.2018.03.020
https://doi.org/10.1109/TCYB.2019.2925534
https://doi.org/10.1016/j.conengprac.2022.105296
https://doi.org/10.1109/TASE.2022.3189048
https://doi.org/10.1016/j.spc.2020.09.018
https://doi.org/10.1016/j.jclepro.2021.125853
https://doi.org/10.1016/j.jclepro.2021.125853
https://doi.org/10.1016/j.envsoft.2016.06.028
http://iwa-mia.org/benchmarking/#BSM1
https://doi.org/10.1016/j.jclepro.2022.132873
https://doi.org/10.1016/j.jclepro.2022.132873
https://doi.org/10.1039/C9EW00905A
https://doi.org/10.2478/emj-2022-0021
https://doi.org/10.1007/s10726-022-09785-y
https://doi.org/10.1016/j.jii.2021.100237
https://doi.org/10.1007/s11356-021-17505-3
https://doi.org/10.1007/s11356-021-17505-3
https://doi.org/10.3390/su13073831
https://doi.org/10.3390/su13073831
https://doi.org/10.3390/su13073831
https://doi.org/10.1016/j.jclepro.2022.131807
https://doi.org/10.1007/s00267-020-01338-w
https://doi.org/10.1007/s10668-020-00906-8
https://doi.org/10.1016/j.biortech.2019.121814
https://doi.org/10.1016/j.biortech.2019.121814
https://doi.org/10.1016/j.biortech.2020.122824
https://doi.org/10.1016/j.pce.2022.103152
https://doi.org/10.1016/j.pce.2022.103152
https://doi.org/10.1016/j.scitotenv.2014.08.026
https://doi.org/10.1016/j.scitotenv.2014.08.026
https://doi.org/10.1016/j.scitotenv.2015.06.059
https://doi.org/10.1016/j.scitotenv.2015.06.059
https://doi.org/10.1016/j.jclepro.2022.131140
https://doi.org/10.1016/j.clet.2022.100519
https://doi.org/10.3390/s22083068
https://doi.org/10.3390/w11010153
https://doi.org/10.1007/s11081-020-09500-3
https://doi.org/10.1007/s11081-020-09500-3


Science of the Total Environment 915 (2024) 169903

18

McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., 
Whiting, P., Moher, D., 2021. The PRISMA 2020 statement: an updated guideline for 
reporting systematic reviews. Syst. Rev. 10, 89. https://doi.org/10.1186/s13643- 
021-01626-4. 
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