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Abstract
This study appraised and compared the performance of process-based hydrological SWAT (soil and water assessment tool) 
with a machine learning-based multi-layer perceptron (MLP) models for simulating streamflow in the Upper Indus Basin. 
The study period ranges from 1998 to 2013, where SWAT and MLP models were calibrated/trained and validated/tested for 
multiple sites during 1998–2005 and 2006–2013, respectively. The performance of both models was evaluated using nash–
sutcliffe efficiency (NSE), coefficient of determination (R2), Percent BIAS (PBIAS), and mean absolute percentage error 
(MAPE). Results illustrated the relatively poor performance of the SWAT model as compared with the MLP model. NSE, 
PBIAS, R2, and MAPE for SWAT (MLP) models during calibration ranged from the minimum of 0.81 (0.90), 3.49 (0.02), 
0.80 (0.25) and 7.61 (0.01) to the maximum of 0.86 (0.99), 9.84 (0.12), 0.87 (0.99), and 15.71 (0.267), respectively. The 
poor performance of SWAT compared with MLP might be influenced by several factors, including the selection of sensitive 
parameters, selection of snow specific sensitive parameters that might not represent actual snow conditions, potential limita-
tions of the SCS-CN method used to simulate streamflow, and lack of SWAT ability to capture the hydropeaking in Indus 
River sub-basins (at Shatial bridge and Bisham Qila). Based on the robust performance of the MLP model, the current study 
recommends to develop and assess machine learning models and merging the SWAT model with machine learning models.
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Introduction

Glaciers are considered an icon of climate change, and 
they can clearly represent the emergence of climate glob-
ally (IPCC, 2018). Several studies have reported that 

mountain glaciers will significantly contribute to sea-level 
rise in the coming years, and it may change the hydrology 
of basins covered by permanent snow and glacier (Ben-
iston et al. 2018; Hock et al. 2019). Snowmelt is the pri-
mary source of fresh water in many regions worldwide, 
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and it is extremely important for the community living in 
Hindukush-Karakorum-Himalayas (HKH). HKH is also 
named as the “third pole” and “roof of the world” due to 
substantial glacial coverage in the high elevated basins 
(Yao et al. 2012; You et al. 2016). Glacial and snow cover 
in the HKH region constitute from 70 to 80% of the mean 
annual available freshwater from the Upper Indus Basin 
(UIB) (Immerzeel et al. 2009).

UIB is the main source of freshwater resources and 
plays a pivotal role in the sustainable development of Paki-
stan (Yaseen et al. 2020). The Upper Indus River system 
supplies sustainable water to the large population down-
stream of UIB for agriculture, industrial, and domestic 
purposes (Immerzeel et al. 2010). The seasonal water from 
UIB accounts for approximately half of the mean annual 
surface water available in Pakistan, which is essential for 
producing 3500  MW hydropower potential at Tarbela 
Dam (Hasson et al. 2017). Further, UIB also contributes 
to Pakistan's agrarian economy by satisfying the exten-
sive irrigation requirements to meet rising food demand. 
Most of the south and southeast Asian basins are depend-
ent on the summer monsoon; however, UIB is dependent 
on melted water from its ample glacial and snow coverage 
(Hasson et al. 2014).

Forecasting the streamflow and hazard management 
in such glacial basins plays a critical role in the region's 
sustainable development. Population in the Indus Basin 
depend on the river flows from UIB; therefore, streamflow 
forecasting is crucial for people living downstream of the 
HKH. Water resources of the Indus River basin should be 
managed by using real-time early warning systems (Kra-
jewski et al. 2017). However, these systems usually require 
huge investments, which is difficult for communities living 
in UIB and the Indus River basin. Therefore, inexpensive, 
accurate, and innovative forecasting and simulation tech-
niques are strongly recommended across the entire Indus 
Basin.

Estimating snowmelt and glacier-melt streamflow is 
vital for effective planning and management of surface 
water in the UIB. The changes in glaciers under the influ-
ence of climate change will strongly impact river flow and 
hydrological regimes in the UIB (Huss and Hock, 2018). 
However, the precise estimation of streamflow in a basin 
characterized by mountains covered with permanent snow 
and glacier is considered an unsolved problem, which 
deserves the attention of hydrology community (Letten-
maier et al. 2015).

Hydrological models neglect the trivial information 
related to the structure of the model, comprehend hydrologi-
cal processes and powerful tools for effective decision-mak-
ing related to the sustainable management of water resources 
(Nguyen et al. 2019; Rahman et al. 2020a; Tuo et al. 2016). 
Hydrological models play a vital role in allowing users to 

explain, estimate, and predict hydrological processes in 
basins characterized with limited, non-accessible, cost-
efficient, and time-consuming in-situ observations (Baffaut 
et al. 2015). The structure of these hydrological models 
varies from a complex process-based distributed model to 
simple lumped models. Soil and Water Assessment Tool 
(SWAT) model belongs to the complex process-based dis-
tributed model (Arnold et al. 1998; Gassman et al. 2007; 
Nguyen et al. 2019).

SWAT model has been extensively used in modeling sev-
eral types of hydrological processes in river basins across 
the globe (Abbaspour et al. 2015; Duan et al. 2019; Franc-
esconi et al. 2016; Golmohammadi et al. 2017; Liu et al. 
2016; Malagò et al. 2016; Nguyen et al. 2019; Rahman et al. 
2020a; Tuo et al. 2016). SWAT is also extensively employed 
to assess the impact of snow on the water cycle across the 
mountainous basins (Debele et al. 2010; Rostamian et al. 
2008; Grusson et al. 2015; Troin and Caya, 2014; Shahid 
et al. 2021). The temperature-index method has been widely 
used to model the snow processes in different basins using 
SWAT (Hock, 2003; Walter et al. 2005; Zhang et al. 2008), 
which is proved remarkably accurate in several studies 
(Debele et al. 2010; Luo et al. 2013).

The data-driven models, on the other hand, have been 
effectively used in several hydrological applications and 
such models provided high accuracy even without prior 
knowledge of underlying processes (LV et al. 2020; Senent-
Aparicio et al. 2019; Yang et al. 2020). The approaches such 
as artificial intelligence (AI), soft computing (SC), data min-
ing (DM), computational intelligence (CI), and machine 
learning analyze the system-related data and provide link-
age between input and output variables without consider-
ing the explicit physical behavior of the objective system 
(Solomatine et al. 2009).

Recent studies have used several machine learning mod-
els to address different aspects of water resources manage-
ment and hydrological modeling. For example, artificial 
neural network (ANN) is utilized to simulate rainfall-runoff, 
predict runoff, model river sediment process, predict stor-
age inflow, and evaluate the water-powered energy (Choong 
et al. 2020; Pradhan et al. 2020). Fan et al. (2020) compared 
the short-term long memory (LSTM) model with SWAT and 
ANN models to simulate streamflow across Poyang Lake 
Basin. Results demonstrated the superior performance of 
LSTM model compared with SWAT and ANN models in 
simulating streamflow at a daily scale. Pradhan et al. (2020) 
investigated the performance of three ANN models and the 
SWAT model in predicting the streamflow and illustrated 
that ANN models have more accurate estimates as compared 
with SWAT. Similarly, Kumar et al. (2019) compared Emo-
tional Neural Network (ENN) and ANN to simulate stream-
flow, where ENN was reported to have better performance. 
Koycegiz and Buyukyildiz (2019) compared SWAT with 
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support vector machine (SVM) and ANN in the headwater 
of Carsamba River, situated in Konya Closed Basin, Tur-
key. Results demonstrated that data-driven models (ANN 
and SVM) have better performance in streamflow simula-
tion as compared with SWAT. Several other models, includ-
ing Adaptive Neuro-Fuzzy Inference System (ANFIS) and 
SVM, are also used for hydrological modeling (He et al. 
2014; Moradkhani et al. 2004).

The comparative studies among data-driven and phys-
ically-based models ensured the successful application, 
selection of robust models, interpretation of the model out-
puts and reliable results. The evaluation and comparison of 
data driven model across catchments like UIB is extremely 
critical. UIB, being the source of freshwater for the entire 
Indus Basin, has several problems such as extreme climate 
variability owing to the complex topography, streamflow is 
extremely seasonal, subject to severe climate and land use 
changes, and most importantly a data scarce region. Mini-
mal studies are available that developed and evaluated data-
driven models and performed a comparison with physical-
based models in glacial regions like UIB. Therefore, the 
current study adds to the available literature; (i) compare the 
performance of SWAT and MLP models in streamflow simu-
lation for the first time across UIB, (ii) simulate streamflow 
that is less influenced by precipitation and more depend-
ent on topography, air temperature, relative humidity, and 
solar radiation, and (iii) propose model that is capable to 
capture the seasonality in streamflow. The findings from cur-
rent study will educate researchers and policy makers about 
robust alternatives to data-intensive hydrological models for 
streamflow simulation in data scarce regions characterized 
with complex topography and diverse climate.

Study area

UIB is situated in the extreme north of Pakistan, mostly 
covered by permanent snow and glacier cover, and located 
between 33.67° − 37.20° N and 70.50° – 77.50° E. The eleva-
tion of UIB ranges from 8500 above mean sea level (a.m.s.l) to 
200 m a.m.s.l with the mean elevation of 3750 m a.m.s.l. UIB 
shares its boundary with China (north), Afghanistan (west), 
and India (east), as shown in Fig. 1. UIB depicts significant 
topographic and climatic variations, which include a complex 
terrain of HKH mountain ranges. HKH has discrete topo-
graphical landscapes with conflicting climate change signals 
(Archer, 2003; Cheema and Bastiaanssen, 2012). HKH and 
Tibetan Plateau are the greatest glacial regions of the world 
with approximately 22,000 km2 of glacial surface area and 
jointly host 11,000 glaciers (Ul Hasson et al. 2016). UIB is 
the originating source of freshwater for the Indus River, con-
tributes to approximately half of the available surface water of 

Pakistan (Yaseen et al. 2020), and plays an important role in 
Pakistan's sustainable economic development.

Figure 1 represents detailed information about the study 
area, including elevation, selected basins for hydrological 
modeling, the spatial distribution of rain gauges (RGs), climate 
and streamflow stations, and land use map. The study region 
covers important basins of the UIB, including Shyok, Shigar, 
Hunza, Astore, Gilgit, Indus River basin at Bisham Qila, and 
Indus River basin at Shatial bridge. Shyok and Shigar basins 
are situated in the eastern and central parts of Karakoram. 
Approximately 24% of Shyok and 33.33% of Shigar basins 
are covered by snow (Bhambri et al. 2013; Yaseen et al. 2020). 
Westerly disturbances and monsoon are the main seasons/
sources for precipitation in Shyok and Shigar basins (Has-
son et al. 2017; Hasson et al. 2014; Latif et al. 2020). Hunza 
basin is situated in the western Karakoram ranges, with 28% of 
the area covered with glaciers, which is 21% of the total UIB 
glacial coverage (Bhambri et al. 2013; Hasson et al. 2014). 
Three high-altitude climate stations, i.e., Khunjrab, Naltar, and 
Ziarat, are situated in the Hunza basin. Discharge of Hunza 
basin is measured at Danyior bridge of Hunza River. Astore 
basin is located in the western Himalayan ranges with 14% of 
glacial and snow coverage, which is 3% of the total UIB glacial 
coverage (Hasson et al. 2014). There is only one climate sta-
tion (Astore) measuring climate and precipitation in the Astore 
basin, where the discharge of the basin is measured at Doy-
ian. Gilgit basin is situated in the eastern part of Hindukush 
ranges, which drains south-east and joins the Indus River. The 
climate and precipitation data in the Gilgit basin is recorded at 
Gilgit, Yasin, Gupis, and Ushkore stations, where the basin's 
discharge is measured at the Gilgit station and Alam bridge 
(the confluence of Gilgit and Hunza rivers). Bisham Qila sta-
tion is the final station used in the current study, located at the 
Indus River, and is considered an exit point.

Datasets and methodology

In‑situ data from rain gauges, climate stations, 
and streamflow gauges

The daily in-situ precipitation and climate (both maximum 
and minimum temperature, minimum and maximum relative 
humidity, wind speed, and solar radiation) data are collected 
from Pakistan Meteorology Department (PMD), and Water 
and Power Development Authority (WAPDA). It is worthy 
of mentioning that the streamflow gauges’ data is collected 
solely from WAPDA. Table 1 represents the names of RGs, 
climate stations, and streamflow gauges used in the current 
research. After the rigorous screening of collected data, a 
temporal span of 1995–2013 was selected to warm-up, cali-
brate, and validate the SWAT model across selected basins 
of UIB. It is ensured that all the gauges/stations have daily 
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data without any significant missing information. PMD and 
WAPDA perform the manual collection of obtained data, 
which might have several types of inevitable errors, includ-
ing instrumental and human errors, splashing effects, snow 
impact, and wind errors. These factors might deteriorate the 
quality of in-situ data (Rahman et al. 2020b). Therefore, 
PMD and WAPDA monitor and improve the data quality 
using the Guide to Hydrological Practices suggested by the 
world meteorology organization (WMO, 1994).

SWAT model can automatically fill the missing meteoro-
logical input data by employing the weather generator. In 
order to fill out the data, more input observations and fur-
ther efforts are needed (Rahman et al. 2020a). Furthermore, 

the accuracy of SWAT model (output) is dependent on the 
accuracy of input data. Therefore, the zero-order method 
was employed to fill the missing data (if any) in precipita-
tion and climate data before its integration into SWAT and 
MLP models. Moreover, Kurtosis and Skewness methods 
are employed to check the quality of input data (Rahman 
et al. 2018).

UIB has only 2% of the cultivable land and the irrigation 
system is a traditional one (ICIMOD, 2017). Around 15% 
of the cultivable land is not cultivated because of unavail-
ability or limited access to irrigation water and irrigation 
system complexity (ICIMOD, 2017). Further, the agricul-
tural farmlands are sparsely distributed and most of them are 

Fig. 1   Detailed information about the study area, a geographical location and elevation of Pakistan, b elevation of UIB, c selected basins and the 
distribution of rain gauges, climate and streamflow stations, d land use of UIB
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above the level of flowing water in rivers. Irrigation in UIB 
is mainly rainfed irrigation due to its poor irrigation system 
and complex terrain (Malik and Azam, 2009; Parveen et al. 
2015). Agriculture lands are irrigated from snow and glacier 
melt water through dug earthen irrigation channels, which 
are lengthy, rough, and crude, resulting in inadequate water 
supply for irrigation (Parveen et al. 2015; Khan et al. 2021). 
Therefore, we did not consider the irrigation and agricultural 
water use data, and cropping pattern in the current study due 
to its non-availability.

SWAT model

The SWAT model is a process-based semi-distributed, 
Hydrological Response Unit (HRU)-based, spatially explicit, 
and time-continuous hydrological model developed by the 
agricultural research service of the United States Department 
of Agriculture (Arnold et al. 1998). SWAT model divide the 
large basins into smaller sub-basins to provide more accu-
rate spatial details, which make the model more reliable and 
accurate (Jha, 2004). SWAT model was designed to simu-
late as well as forecast the impacts of agricultural and land 
management decision/practices on water resources in terms 
of quantity and water quality across a range of basins sizes 
(Gassman et al. 2007). Further, the hydrological responses to 
land use and climate changes are mostly investigated using 
the scenario-based simulations through SWAT model (Yin 
et al. 2017). The computational efficiency of SWAT model 
makes the simulation across large basins or different types 

of management strategies easy (Coutu and Vega, 2007). In 
this research, ArcSWAT version 2012, revision 664 was 
used to simulate streamflow in UIB. Generally, the SWAT 
model is extensively used in water quality assessment, 
simulation of rainfall-runoff processes, evapotranspiration, 
and soil erosion. SWAT has the potential to assess climate 
change impact on water resources, transport of nutrients and 
sediments under the various circumstances of land use land 
cover (LULC), meteorological, and soil data (Ali et al. 2020; 
Khan et al. 2018; Marahatta et al. 2021; Song et al. 2011; 
Tuo et al. 2016).

The operating mechanism of SWAT model includes the 
division of entire basins into several sub-basins and finally 
into HRUs (which is a distinctive combination of slope, 
LULC, and soil type) based on digital elevation model 
(DEM). SWAT model generate HRUs using two methods, 
i.e., generate HRUs for individual sub-basin using the soil 
and LULC information and multiple HRUs based on thresh-
old values (Arnold et al. 1998). As recommended by Setegn 
et al. (2009), the current study used 10%, 20%, and 10% 
threshold for land, soil and slope, respectively. After the 
successful overlaying of soil, slope, and LULC datasets, the 
number of sub-basins (HRUs) generated by SWAT model 
for Gilgit, Hunza, Shatial bridge, Yugo, Doyian, and Bisham 
Qila are 12 (22), 10 (18), 24 (45), 6 (10), 5 (8), and 9 (17), 
respectively.

SWAT model has two distinct phases, which are named as 
land and routing phases. The daily precipitation is used by 
SWAT model to simulate surface runoff for each HRU using 

Table 1   Input data (daily time scale) from RGs, climate stations, and streamflow gauges during 1995–2013

Precipitation Temperature Relative humidity Wind speed Solar radiation Streamflow

Khunjrab Khunjrab Khunjrab Khunjrab Khunjrab Gilgit
Ziarat Ziarat Ziarat Ziarat Ziarat Hunza
Yasin Yasin Yasin Yasin Yasin Astore river at Doyian
Gupis Shendure Shendure Shendure Shendure Alam bridge
Ushkore Ushkore Ushkore Ushkore Ushkore Shyok river at Yogo
Hunza Naltar Naltar Naltar Naltar Indus River at Shatial bridge
Naltar Gilgit Gilgit Gilgit Gilgit Indus River at Bisham Qila
Gilgit Bisham Qila Bisham Qila Bisham Qila Bisham Qila
Kalam Shangla Shangla Shangla Shangla
Bunji Rama Rama Rama Rama
Chillas Ratu Ratu Ratu Ratu
Pattan Burzil Burzil Burzil Burzil
Bisham Qila Shigar Shigar Shigar Shigar
Rama Deosai Deosai Deosai Deosai
Astore Hushy Hushy Hushy Hushy
Ratu Naran Naran Naran Naran
Skardu
Deosai
Hushy
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the Soil Conservation Service (SCS) technique during the 
land phase hydrological component (USDA, 1972). Green 
and Ampt infiltration method (Green and Ampt, 1911) is the 
alternative method to SCS in the SWAT model to simulate 
surface runoff. Green and Ampt infiltration method require 
precipitation inputs on a sub-daily scale. Simulated stream-
flow is routed during the routing phase through streams/river 
network to the basin outlet using Muskingum or Variable 
storage techniques.

Input data for SWAT model

SWAT model requires soil properties, LULC and soil maps, 
and elevation data as input before simulating streamflow. 
For the current research, DEM with a resolution of 30 m 
retrieved from shuttle radar topographic mission (SRTM) 
was downloaded from USGS earth explorer (https://​earth​
explo​rer.​usgs.​gov/). The basin delineation and retrieval of 
required topographic parameters for the SWAT model were 
acquired from DEM. The LULC map (shown in Fig. 1d) 
was developed for 2005 using the supervised classifica-
tion method. Landsat-7 satellite imageries were used for 
the preparation of LULC map. Landsat 7 ETM + images 
have eight spectral bands with 30  m spatial resolution 
for bands 1–7, while band 8 is a panchromatic band with 
15 m spatial resolution. LULC map was developed using 
the SVM method. For a detailed description of the SVM 
method, readers are referred to Balkhair and Ur Rahman 
(2019). The soil data for the study region was extracted from 
a soil map prepared by the Food and Agriculture Organi-
zation (FAO) (http://​www.​fao.​org/​soils-​portal/​soil-​survey/​
soil-​maps-​and-​datab​ases/​faoun​esco-​soil-​map of-the-world/
en/), which has a resolution of 1:5,000,000 following Rah-
man et al. (2020a). Harmonized World Soil Database v1.2, 
combined with the extracted soil map from FAO, was used 
to acquire the required soil properties for SWAT. Further, 
the default setting of the SWAT model, i.e., SCS method, 
Penman–Monteith equation, and variable storage method, is 
used in the current study to simulate streamflow. Streamflow 
using SWAT model is simulated by employing water bal-
ance approach, which depends temperature and precipitation 
inputs and can be presented as follows:

where SWt and SW0 represents the final and initial soil mois-
ture conditions, Pday depicts the daily precipitation,RSurf is 
surface runoff, ETday is the daily evapotranspiration (ET), 
Wseep is water seeped into the ground and Rgw is the ground-
water return flow. The units of all the above-listed variables 
are in “mm”. Surface runoff is calculated using SCS-CN 

(1)SWt = SW0 +

t∑

i=1

(
Pday − RSurf − ETday −Wseep − Rgw

)

method, while ET is calculated using Penman–Monteith 
(PM) equation.

Calibration and validation of SWAT model

The calibration and validation (parameter optimization) of 
SWAT model is performed using Sequential Uncertainty 
Fitting version 2 (SUFI-2) in SWAT Calibration and Uncer-
tainty Program (SWAT-CUP) (Abbaspour et al. 2015). In 
order to alleviate the impact of initial conditions and allow a 
stable SWAT performance, the first three years (1995–1997) 
were considered as a warm-up period (Tuo et al. 2016). The 
model is calibrated and validated at multiple sites shown in 
Table 1 during 1998–2005 and 2006–2013. Besides the data 
quality, accuracy of SWAT output depends on the careful 
selection of sensitive parameters. In the current study, sensi-
tive parameters (listed in Table 2) for calibrating and validat-
ing the SWAT model were selected from extensive literature 
review (Abbaspour et al. 2015; Ali et al. 2020; Arnold et al. 
2012; Arnold et al. 1998; Bhatta et al. 2019; Duan et al. 
2019; Garee et al. 2017; Rahman et al. 2020a; Shah et al. 
2020; Shahid et al. 2021; Shrestha et al. 2016). The multi-
site calibration of SWAT model is preferred, which produces 
high accuracy compared with single-site calibration (Rah-
man et al. 2020a; Shrestha et al. 2016). Therefore, the SWAT 
model in the current study is calibrated and validated at mul-
tiple sites (five interior stations and one outlet station) by 
following the recommendations of Lerat et al. (2012), Duan 
et al. (2019), and Rahman et al. (2020a).

The most sensitive parameters are selected by employing 
Global sensitivity analyses in SWAT-CUP. The initial values 
for selected parameters were based on physically practical 
intervals for each parameter suggested in the official docu-
ments of SWAT (Arnold et al. 2012) and various studies 
(Grusson et al. 2015; Tuo et al. 2016). Four iterations with 
1000 simulations (total number of 4000 simulations during 
calibration phase) were performed to calibrate the model 
with Nash–Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 
1970) as an objective function. The parameters range (val-
ues) are narrowed down further after every iteration, based 
on the suggestions from SWAT-Cup (Abbaspour et  al. 
2004; Abbaspour et al. 2007) and their pre-defined physical 
ranges. Readers are referred to Abbaspour et al. (2015) for 
the detailed description of model calibration procedures. The 
performance of SWAT model was evaluated using several 
statistical indicators, including NSE, percent BIAS (PBIAS), 
coefficient of determination (R2), and mean absolute percent-
age error (MAPE), as calculated below.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map
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where Qs,iand Qm,i are the simulated and observed stream-
flow, while the average of observed and simulated stream-
flow is represented by Qm and, Qs respectively.

NSE demonstrates the quantitative difference among 
observed and simulated streamflow, with the optimal 
value of 1. PBIAS depicts overestimation or underesti-
mation of simulated streamflow, where the perfect value 
for PBIAS is 0, the positive and negative values illus-
trate overestimation and underestimation, respectively. 
The performance of SWAT model is categorized into 

(2)NSE = 1 −

∑�
Qm,i − Qs,i

�2

∑�
Qm,i − Qm

�2

(3)PBIAS = 100 ×

∑

i

�
Qm,i − Qs,i

�

∑

i

Qm,i

(4)R2 =

��
���

∑

i

�
Qm,i − Qm

��
Qs,i − Qs

���
���

2

∑

i

�
Qm,i − Qm

�2 ∑

i

�
Qs,i − Qs

�2

(5)
MAPE =

|||
|

(Qm,t−Qs,t)
Qm,t

|||
|

N
× 100

four classes according to criteria defined by Moriasi et al. 
(2007): unsatisfactory ( NS ≤ 0.50 , |PBIAS| ≥ 25% ), sat-
isfactory (0.50 < NS ≤ 0.65, 15% ≤|PBIAS|< 25%), good 
(0.65 < NS ≤ 0.75; 10% ≤|PBIAS|< 15%), and very good 
(NS > 0.75, |PBIAS|< 10%). According to Lewis (1982), 
MAPE < 10 shows high accurate streamflow simulation, 
between 10 and 20 shows good simulation, between 20 and 
50 shows reasonable simulation, while greater than 50 shows 
inaccurate simulation.

Artificial Neural Network (ANN)

Artificial Neural Networks have mainly two architectures, 
i.e., recurrent and non-recurrent. It was demonstrated that 
for hydrological modeling, non-recurrent type architecture 
is well suited. Non-recurrent architecture has a single-layer 
perceptron and multi-layer perceptron (MLP) (Mohammadi 
et al. 2020). Time series based non-linear hydrological prob-
lems such as non-linear precipitation prediction, streamflow 
and sediment modeling, rainfall-runoff modeling, river 
stage-discharge modeling, etc., can be easily solved using 
the MLP. A more detailed description of the MLP method 
can be found in existing studies, e.g. (ASCE, 2000a, b; 
Lohani et al. 2012; Nourani, 2014, Kushwaha and Kumar, 
2017).

Structural description of the multi‑layer perceptron (MLP)

The basic structure of MLP can be broadly divided into three 
layers, i.e., the input layer followed by a hidden layer and 

Table 2   List of sensitive parameters, their description, lower and 
upper bounds and units. “a,” “v,” and “r” represent an absolute 
increase to default values of selected parameters, replacing the actual 

values by new selected values, and relative change to the initial values 
of selected parameters, respectively

sensitivity analysis, it can be observed that SWAT model is sensitivity to two parameters of each snow-cover, channel flow paths and soil charac-
teristics

Parameters Description Lower bound Upper bound Unit

r_CN2.mgt SCS runoff curve number 35 98 Nil
r_SOL_AWC.sol Available water capacity of soil layer − 0.1 1 mm H2O/mm soil
a_SOL_K.sol Saturated hydraulic conductivity − 0.5 1 mm/hr
v_CH_K1.sub Effective hydraulic conductivity 0 300 mm/hr
v_CH_K2.rte Hydraulic conductivity of the channel − 0.01 500 mm/hr
v_CH_N2.rte Manning’s n value for the main channel 0.016 0.2 Nil
r_CANMX.hru Maximum storage in canopy 0 10 mm
v_SURLAG.bsn Lag time for surface runoff 1 12 days
v_CH-N1.sub Manning’s n value for channels 0.016 0.2 Nil
v_SNO50COV.bsn Snow water equivalent corresponding to 50% 

snow cover
0 0.9 Nil

v_TIMP.bsn Snowpack temperature lag factor 0.01 1 Nil
v_SMFMX.bsn Maximum rate of snowmelt in the year 0 10 mm/C0-day
v_SMFMN.bsn Minimum rate of snowmelt in the year 0 10 mm/C0-day
v_SMTMP.bsn Snowmelt base temperature − 5 5 C0
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then the output layer (Fig. 2). The MLP layers are mainly 
represented by n-nh1-no, in which n, nh1, and no are the num-
ber of neurons in the input layer, first hidden layer, and out-
put layer, respectively. The number of hidden layers can be 
increased or decreased depending on the requirement of suit-
able architecture, which has numerous processing elements 
and connections. Neurons in a typical MLP are designed to 
handle complex processes more efficiently and satisfacto-
rily using several algorithms. The input layer does not have 
computational nodes, whereas hidden and output layers have 
computation nodes. The number of hidden layers and neu-
rons in each hidden layer can be increased or decreased for 
a suitable network architecture requirement.

The crucial role of MLP is to convert a number of inputs 
into single or multiple outputs. If we consider, xi (i = 1,2, …, 
m) are inputs for a pre-organized model for which wi (i = 1,2, 
…, m) are the respective weights, which would be changed 
by error algorithms later on. Under such considerations, the 
net input to a single node can be expressed by Eq. 6. The 
activation function “f” converts the net input into an output 
(Eq. 7). The output of any node will behave like an input for 
the next computational node.

To determine the weights of the network, two learning 
mechanisms including supervised and unsupervised have 
been involved. In the present study, supervised learning has 
been used in which the user completely knows the input 
as well as output pattern of the typical architecture of the 
network. In MLP, the back propagation algorithm (BPA) 
is used to adjust the weights in each iteration to minimize 
the mean square error between known and unknown output. 

(6)net =

m∑

i=1

xiwi

(7)y = f (net)

The known output is the observed values of the dataset, and 
the unknown output is the network computed values of the 
same dataset. Adjusting weights in each iteration or epoch 
is performed by two calculations: feed-forward calculations 
and the back-propagation of errors (also known as the mean 
square error (MSE)).

The feed-forward calculation occurs in each layer, which 
is represented by Eq. 8 through Eq. 11. The net input to jth 
node of the hidden layer is given by:

Connection weight always lies between two nodes. For 
establishing connection weights, this is not necessary that 
each node should be a computational node. In Eq. 8, con-
nection weight whji is a weight between ith node of the input 
layer and jth node of the hidden layer, although there is no 
computation on nodes of the input layer. Now, the output 
of this particular node in the hidden layer is given by Eq. 9.

Furthermore, net input to kth node of the output layer is 
given by Eq. 10.

where wokj is the connection weight between the computa-
tional jth node of the hidden layer and the computational kth 
node of the output layer. The final output (Eq. 11) from kth 
node of the output layer is;

(8)nethj =

n∑

i=1

whjixi

(9)hj = f
(
nethj

)

(10)netyk =

nh∑

j=1

wokjhj

(11)yk = f
(
netyk

)

Fig. 2   Example of the MLP model by three layers, viz. input layer, hidden layer, and output layer (Left). A typical processing element with the 
flow of signals (Right)
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After calculating this output, the error between known 
and unknown output is back propagated using BPA. For a 
single pair of input and output of a dataset, the sum square 
error E will be given by;

where tk is the known or observed output at the kth node and 
yk is the unknown or calculated output at the same node. 
Levenberg–Marquardt (LM) learning algorithm is one of 
the most popular algorithms for minimizing the MSE of a 
typical MLP. This learning algorithm has been used in this 
study to train the network. The objective function in this 
algorithm for minimizing the error function is;

where J is the Jacobian matrix, e is the error vector, ΔW 
is the increment of weights, T shows the target output, and 
μ is the parameter changed or learning rate which is to be 
updated using the β depending on the outcome. This study 
uses the Sigmoid activation function to convert the input 
signal to output signal at all computational nodes of hidden 
layers and the output layer.

In the current study, MLP has been applied individually 
for each sub-basin after selecting appropriate meteorological 
inputs from the gauging stations located inside a sub-basin. 

(12)E =
1

2

no∑

k=1

(
yk − tk

)2

(13)ΔW =
(
JTJ + �I

)−1
JTe

In this context, five model inputs viz. maximum and mini-
mum temperature, maximum and minimum RH, solar radia-
tion, and precipitation have been selected on a lumped basis 
and used for each station of the sub-basin. If any sub-basin 
has four gauge stations, then its model inputs have been 
selected as five multiplied by four, i.e., twenty, to prepare 
a streamflow model for that particular sub-basin. So, there 
are 20 inputs and a single output, which is streamflow for 
the MLP model. Besides these selections, the number of 
neurons in each hidden layer, transfer function, and learning 
algorithms is extremely important to obtain a suitable MLP 
architecture (selection of the number of hidden layers). In 
this study, several trials have been performed to obtain an 
appropriate MLP architecture as a schematic diagram shown 
in Fig. 3.

Results

Streamflow simulation using SWAT model

Sensitivity analyses

The rank, t-test, and p-value for selected parameters 
achieved using the Global sensitivity analyses across each 
sub-basin is shown in Table 3. The t-test, which is calculated 
by dividing the coefficient by standard error, demonstrates 
the precision for measuring the regression coefficient. In 

Fig. 3   Schematic diagram for the MLP model used in the current study
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another way, t-test illustrates the importance of selected 
parameter (the high magnitude of the absolute t-test depicts 
the most sensitive parameter). On the other hand, p-values 
depict variations in the mean of sample (streamflow obser-
vations). The minimum p-value and maximum t-test value 
show that the parameter is very sensitive (Abbaspour et al. 
2015). The most sensitive parameters (as listed in Table 3) 
for most sub-basins were CN2, SOL_AWC, SOL_K, TIMP, 
SMFMX, and CH_K2. The major source of water in UIB 
is the melting of snow-cover and glaciers; therefore, SWAT 
model was found sensitive to SMFMX (maximum rate of 
snowmelt in the year) and TIMP (snowpack temperature lag 
factor). On the other hand, soil characteristics of plays an 
important role in the infiltration and surface-runoff. There-
fore, the SWAT model in UIB is sensitive to SOL_AWC 
(available water capacity of soil layer) and SOL_K (satu-
rated hydraulic conductivity). Further, curve number (CN2, 
across the basins) and hydraulic conductivity (CH_K2, along 

the streams) are the two important parameters in stream-
flow simulation across the basin. For the sensitivity analysis, 
it can be observed that SWAT model is sensitivity to two 
parameters of each snow-cover, channel flow paths and soil 
characteristics.

Calibration and validation of SWAT model

SWAT model was calibrated at the Gilgit sub-basin of UIB 
by fitting the initial values for each parameter. Several itera-
tions with 1000 simulations each are performed to get the 
final values for each parameter (which were narrowed down 
after each iteration). After calibrating the SWAT model at 
Gilgit, the model is then calibrated at Hunza, Shatial bridge, 
Yugo, Doyian, and Bisham Qila sub-basins using the ini-
tial values for the same set of parameters. Four parameters, 
i.e., CN2, SOL_AWC, SOL_K, and CH_K2 were initially 
selected for the calibration process. These parameters were 

Table 3   The rank, t-test, and 
p-values for selected sensitive 
parameters across each of the 
six sub-basins (Gilgit, Hunza, 
Shatial bride, Yugo, Doyian, 
Bisham Qila)

Gilgit Shatial bridge Hunza

Parameters Rank t-test p-value Rank t-test p-value Rank t-test p-value

CN2 1 2.20 0.02 1 2.45 0.01 1 2.3 0.01
SOL_AWC​ 2 1.76 0.15 2 2.18 0.17 2 2.16 0.10
SOL_K 3 1.51 0.20 3 2.09 0.21 3 2.02 0.18
CH_K1 7 − 0.99 0.57 5 1.82 0.39 4 2.06 0.30
CH_K2 11 0.66 0.88 12 0.82 0.81 10 1.35 0.74
CH_N2 8 − 0.82 0.71 7 − 1.59 0.48 6 − 1.88 0.45
CANMX 14 − 0.33 0.97 13 − 0.77 0.87 11 − 1.16 0.83
SURLAG 12 − 0.53 0.92 14 − 0.61 0.93 12 − 1.02 0.86
CH_N1 9 − 0.78 0.79 8 − 1.38 0.57 9 − 1.46 0.66
SNO50COV 13 0.40 0.94 11 0.93 0.71 13 0.93 0.91
TMIP 4 1.34 0.26 4 1.98 0.32 5 1.93 0.41
SMFMX 5 1.22 0.37 6 1.77 0.45 7 − 1.74 0.54
SMFMN 10 0.76 0.86 9 1.21 0.61 8 1.60 0.63
SMTMP 6 1.10 0.45 10 1.15 0.66 14 − 0.78 0.94

Yugo Doyian Bisham Qila
Parameters Rank t-test p-value Rank t-test p-value Rank t-test p-value
CN2 1 2.10 0.03 1 2.31 0.05 1 2.23 0.02
SOL_AWC​ 2 1.97 0.12 2 2.17 0.08 2 2.15 0.06
SOL_K 3 1.90 0.21 3 2.09 0.16 3 2.12 0.12
CH_K1 5 1.73 0.32 4 1.97 0.21 4 − 2.01 0.20
CH_K2 11 0.98 0.79 12 0.79 0.85 14 0.73 0.98
CH_N2 8 − 1.48 0.59 7 − 1.52 0.47 6 − 1.77 0.38
CANMX 13 − 0.76 0.90 13 − 0.73 0.91 12 − 0.98 0.89
SURLAG 14 − 0.72 0.95 14 − 0.64 0.97 11 − 1.13 0.84
CH_N1 9 − 1.29 0.67 8 − 1.37 0.54 8 − 1.53 0.59
SNO50COV 12 − 0.89 0.85 11 0.93 0.81 10 1.29 0.80
TMIP 6 1.67 0.45 5 1.73 0.30 5 − 1.89 0.27
SMFMX 4 1.81 0.27 6 − 1.60 0.43 7 1.65 0.45
SMFMN 10 − 1.09 0.74 9 1.21 0.66 9 1.40 0.67
SMTMP 7 1.55 0.52 10 1.08 0.73 13 0.82 0.93
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found very sensitive to streamflow simulation in a number 
of studies (Immerzeel and Droogers, 2008; Rahman et al. 
2020a; Shen et al. 2008; Shrestha et al. 2016). After every 
simulation, the remaining parameters (shown in Table 2) 
are supplemented in groups comprised of five parameters 
each. The SWAT model was calibrated at each station in 
the six sub-basins using the final selected list of parameters. 
The final calibrated fitted parameter values are presented in 
Table 4.

Evaluation of SWAT model performance

The accuracy (performance) of SWAT model was evalu-
ated using NSE, PBIAS, and R2 based on the criteria sug-
gested by Moriasi et al. (2007) and MAPE (Lewis, 1982). 
Table 5 presents the performance of SWAT model during 
calibration and validation periods. Results showed that 
the performance of SWAT model during the calibration 
period in selected sub-basins of UIB ranged from good to 
very good evaluated in terms of NSE and PBIAS. MAPE 
showed accurate streamflow simulation across all the sub-
basins except for the Indus River at Shatial bridge and 
Bisham Qila sub-basins during the calibration period. 
However, the performance of SWAT during the validation 

period assessed using NSE and PBIAS ranged from good 
to very good. MAPE depicted good streamflow simulation 
for all the sub-basin while reasonable streamflow simula-
tion at Indus River at Shatial bridge. PBIAS shows that the 
simulated streamflow is overestimated at most sub-basins 
during the calibration and validation periods except for 
Gilgit and Bisham Qila (only during the validation period) 
sub-basins.

Figure 4 shows the daily scale calibration and validation 
of the SWAT model across Shatial bridge, Yugo, Doyian, 
and Bisham Qila sub-basins. Results from Gilgit and Hunza 
sub-basins (the remaining two sub-basins) are presented 
in the next section in comparison with MLP-based simu-
lated streamflow. Overall, the performance of SWAT model 
ranged from good to very good during calibration and vali-
dation periods. PBIAS shows that SWAT model underesti-
mated the streamflow across Bisham Qila sub-basin during 
the validation period. The simulated streamflow is mostly 
underestimated at the peaks during the monsoon season 
(May to September). Further, the analyses also demonstrated 
high overestimation during the validation period as com-
pared with the calibration period.

Table 4   List of selected 
sensitive parameters with the 
final calibrated values in each 
sub-basin

Parameters Gilgit Hunza Shatial bridge Yugo Doyian Bisham Qila

CN2 − 0.75 − 0.71 − 0.61 − 0.67 − 0.81 − 0.91
SOL_AWC​ 0.76 0.72 0.79 0.66 0.71 0.81
SOL_K 0.50 0.49 0.66 0.34 0.46 0.65
CH_K1 276 266 229 262 232 254
CH_K2 148.48 128.48 158.48 134.54 142.34 145.23
CH_N2 0.20 0.23 0.13 0.22 0.18 0.28
CANMX 2.92 2.67 2.61 2.54 2.43 2.12
SURLAG 6.51 6.21 6.12 5.34 5.98 7.3
CH_N1 0.34 0.39 0.33 0.45 0.41 0.34
SNO50COV 0.43 0.41 0.49 0.46 0.55 0.51
TMIP 0.32 0.22 0.21 0.31 0.43 0.22
SMFMX 8.70 7.70 7.76 8.91 7.85 7.23
SMFMN 1.79 2.19 2.29 2.42 2.21 1.87
SMTMP 3.59 2.59 2.59 3.89 3.41 3.32

Table 5   Performance evaluation 
of SWAT model during 
calibration and validation period 
using NSE, PBIAS, R2, and 
MAPE statistical indices

Sub-basins Calibration (1998–2005) Validation (2006–2013)

NSE PBIAS R2 MAPE NSE PBIAS R2 MAPE

Gilgit 0.84 − 6.98 0.86 9.34 0.77 − 7.90 0.79 13.51
Hunza 0.85 3.51 0.83 7.61 0.73 8.40 0.76 12.33
Shatial bridge 0.83 8.61 0.80 15.71 0.71 14.20 0.74 24.03
Yugo 0.84 4.79 0.87 8.50 0.73 9.88 0.74 12.87
Doyian 0.86 3.49 0.84 8.73 0.74 9.04 0.75 11.87
Bisham Qila 0.81 9.84 0.80 10.10 0.72 − 8.70 0.73 16.34
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Streamflow simulation using MLP and its 
comparison with the SWAT model

Recent studies show that the application of data-driven 
approaches in hydrological modeling increases, and these 
models are proved more robust and accurate. Streamflow in 
the current research was also simulated using MLP across 
UIB, and the results are compared with the SWAT model 
(shown in Table 6 and Fig. 5). Table 6 shows that the MLP 
simulated streamflow with high accuracy as compared with 
the SWAT model. The performance of MLP is very good 

during the calibration and validation periods across all sub-
basins evaluated based on criteria specified by Moriasi et al. 
(2007). In the MLP model, a training dataset was used to 
tune the parameters of MLP, and the remaining dataset has 
been applied to check model performance with the unknown 
testing dataset.

Figure  5 shows the comparison of MLP and SWAT 
simulated streamflow across Gilgit and Hunza sub-basins. 
Figure 5a shows that SWAT underestimated the streamflow 
across the Gilgit sub-basin while MLP has accurately cap-
tured the streamflow. A contrasting trend is observed for 

Fig. 4   Calibration (left) and validation (right) of SWAT model across a Shatial bridge, b Yugo, c Doyian, d Bisham Qila sub-basins
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the Hunza sub-basin, where the SWAT model overestimated 
while MLP underestimated the streamflow. Maximum over/
underestimation is observed during the monsoon season 
having peak flows. The network architecture (shown in 
Table 6), for example, 20–5–1 in Gilgit sub-basin, represents 
that there are 20 neurons in the input layer (one neuron per 
input), five neurons in one hidden layer, and one neuron in 
the output layer (one neuron per output).

The comparison of SWAT with MLP against the observed 
flow (considered as a reference) in the validation period is 
presented with the Tylor diagram (shown in Fig. 6). The 
results illustrate high performance of the MLP model (mini-
mum standard deviation and maximum correlation coeffi-
cient values) across all sub-basins in UIB. The performance 
of both the models also varies with the area of sub-basins 
and magnitude of streamflow, i.e., relatively poor perfor-
mance across Indus River at Shatial bridge and Bisham Qila 
sub-basins while significantly higher across the remaining 
sub-basins. Overall, the results demonstrate relatively accu-
rate streamflow estimates across the UIB with a correlation 
coefficient greater than 0.90 (while 0.85 to 0.90 for Indus 
River at Shatial bridge and Bisham Qila sub-basins). More-
over, the standard deviation ranges from 169 to 3132 for 
SWAT and 138 to 2908 for the MLP model.

Discussion

It is an extremely arduous task to perform hydrological 
modeling (e.g., streamflow simulation) in poorly gauged 
basins characterized by complex topography and perma-
nent glacier cover. Accurate hydrological modeling often 
requires a dense network of in-situ gauges or stations that 
can provide in-situ observations with high quality as input 
to hydrological models. However, the in-situ gauges/stations 
are sparsely distributed, especially in developing countries 
like Pakistan (Rahman et al. 2019), particularly across the 
complex topographic and diverse climatic regions of UIB. 
There are several factors associated with the relatively poor 
performance of different hydrological models in the gla-
cial regions; including the unavailability of enough in-situ 
observations for calibration and validation of hydrological 

models (Rahman et al. 2020a), complex topography, the sea-
sonal impact of snow, and glaciers on streamflow and river 
discharge (Tuo et al. 2018), and climate change (Huss and 
Hock, 2018; Lettenmaier et al. 2015).

Streamflow simulation in the glacial basin is extremely 
difficult and important from the perspective of effective 
water management, and it is considered an unsolved prob-
lem, which deserves the attention of hydrologists. Numerous 
studies have appraised the performance of different hydro-
logical models to simulate streamflow in glacial basins 
(Chen et al. 2019; Shrestha et al. 2016; Sleziak et al. 2020; 
Wang et al. 2019; Wortmann et al. 2019). Some studies have 
employed the SWAT model in basins characterized by gla-
cier and snow cover (Bhatta et al. 2019; Debele et al. 2010; 
Garee et al. 2017; Grusson et al. 2015; Khan et al. 2018; Luo 
et al. 2013; Rahman et al. 2013; Shah et al. 2020; Shahid 
et al. 2021; Troin and Caya, 2014; Tuo et al. 2018). How-
ever, these studies reported that the performance of hydro-
logical models varies from satisfactory to good, which is 
subjected to several factors.

The relatively poor performance of the physical or dis-
tributed hydrological model across different basins has 
shifted the paradigm towards data-driven approaches. In 
the recent few decades, the application of machine learn-
ing approaches, e.g., ANN, ANFIS, and SVM, etc., have 
been significantly increased due to their high accuracy and 
robustness. Based on the results obtained, it was found that 
machine learning models (such as the MLP structure of 
ANN used in the current study) are time and computation-
ally efficient, which do not require extensive investigations 
and have no restrictions for the type and number of input 
selection. To the best of our knowledge, very few studies 
extensively evaluated the performance of machine learn-
ing-based models in glacial regions like UIB. In the current 
study, the performance SWAT model is comprehensively 
compared with MLP (ANN-based data-driven model) to 
simulate streamflow in UIB.

Table 5 and Fig. 4 illustrated that set of parameters 
obtained through the calibrating and validating SWAT 
model has a strong influence on streamflow simulation. 
Sensitivity analyses in hydrological modeling demonstrate 
the share of each individual parameter in the propagation 

Table 6   Evaluation of MLP 
model performance in the 
calibration and validation 
periods using NSE, PBIAS, R2, 
and MAPE statistical indices

Sub-basins Network 
architecture

Calibration (1998–2005) Validation (2006–2013)

NSE PBIAS R2 MAPE NSE PBIAS R2 MAPE

Gilgit 20–5–1 0.991 0.024 0.990 0.102 0.982 0.033 0.984 0.167
Hunza 20–4–1 0.985 − 0.037 0.986 0.008 0.982 − 0.046 0.984 0.027
Shatial bridge 20–9–1 0.904 0.095 0.925 0.216 0.877 0.105 0.911 0.228
Yugo 20–4–1 0.968 0.049 0.948 0.112 0.952 0.088 0.930 0.201
Doyian 20–5–1 0.981 0.032 0.974 0.088 0.963 0.040 0.943 0.135
Bisham Qila 20–4–1 0.901 0.115 0.890 0.267 0.887 0.131 0.885 0.301
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of uncertainties in model output. Hence, highly sensitive 
parameters will result in high shares of model uncertainty 
compared with less sensitive parameters. Therefore, sen-
sitivity analysis is the first step that must be performed 
in model calibration. The regionalization procedure (one 
basin at a time) adopted in the current research helped 
in selecting sub-basin specific SWAT parameters, which 

resulted in good to very good (good to reasonable) per-
formance in streamflow simulation evaluated using NSE, 
PBIAS, and R2 (MAPE). On the other hand, the MLP 
model depicted better performance during both calibration 
and validation periods as compared to SWAT by matching 
the observed streamflow, peak flows and presented bet-
ter statistical indices (NSE > 0.90, PBIAS < 1, R2 > 0.90, 

Fig. 5   Comparison of streamflow simulated by SWAT (left panel) across a Gilgit and c Hunza sub-basins with MLP (right panel) across b Gilgit 
and d Hunza sub-basins
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Fig. 6   Performance comparison of SWAT and MLP models with Tylor diagram across all sub-basins



	 Applied Water Science (2022) 12:178

1 3

178  Page 16 of 19

and MAPE < 10%) across all sub-basin except for Shatial 
bridge and Bisham Qila (shown in Table 6).

The relatively poor performance of the SWAT model as 
compared with the MLP model might be attributed to several 
factors: (a) SWAT model may suffer from the identification 
of the most sensitive parameters (Cibin et al. 2010; Shen 
et al. 2008), (b) selected set of snow specific parameters for 
each sub-basin could not fit the snow conditions of each sub-
basin, (c) the identified sensitive snow specific parameters 
might also be influenced by different sources of uncertain-
ties, (d) the potential limitation of SCS-CN method used 
in SWAT model to simulate streamflow, which produces 
relatively poor results when there is significant proportion 
of impermeable land surface as in the case of UIB (Tas-
dighi et al. 2018), (e) discharge is accumulating from each 
sub-basin to the Indus River (Shatial bridge and Bisham 
Qila) and hydropeaking of discharge cannot be accurately 
reproduced by SWAT model. Therefore, the performance of 
the SWAT model in simulating streamflow is relatively poor 
compared with the MLP model.

During the analyses, few limitations associated with MLP 
were observed that cannot be ignored. These limitations 
include the transformation of MLP from input to output can 
be affected by the techniques having no physical bases. Since 
MLP is a lumped approach, there may be errors in aver-
aging the sub-catchment parameters. Moreover, empirical 
models like MLP cannot make spatial predictions within the 
watershed for processes (e.g., runoff generation, soil mois-
ture, or nutrient export). On the other hand, process-based 
models like the SWAT model requires many kinds of input 
data (e.g., elevation, land use/land cover, soil type, drainage, 
geology, climate data, etc.). However, some of these data 
are not fully available in many regions because of inevitable 
problems such as poor distributions observed stations, social 
and political issues, and restricted data sharing among coun-
tries in transboundary basins. In this case, machine learn-
ing models like MLP is useful as it is not a data-intensive 
approach. This study shows that with significantly less mod-
eling effort and resources, still the performance of MLP is 
better than that of the SWAT model.

Conclusions

Streamflow simulation is extremely important in snow and 
glacier-dominated Upper Indus Basin (UIB), Pakistan, 
which serves as a water tower for domestic, agriculture, 
and industrial use downstream of the Indus River. In this 
study, streamflow across UIB was simulated using the SWAT 
model, and its performance was compared with the machine 
learning-based MLP (Multi-Layered Perceptron) model. The 
main findings of the current study are listed below:

1.	 Evaluation with multiple statistical indicators showed 
SWAT model performed reasonably well in simulating 
daily streamflow across different sub-basins of UIB, 
with model performance ranging from “good” to “very 
good”. However, the performance of SWAT is relatively 
poor as compared with the MLP model.

2.	 MLP model captured the streamflow dynamics and peak 
flows with extremely high accuracy. Evaluation with 
multiple statistical indicators showed that MLP per-
formed better than SWAT and yielded very good and 
high accurate streamflow simulation with NSE > 0.90, 
PBIAS < 1%, R2 > 0.90, and MAPE < 10% for all the six 
sub-basins of UIB.

3.	 The comparatively poor performance of the SWAT 
model might be associated with several factors, includ-
ing issues in the identification of sensitive parameters, 
selected snow parameters that might not fit the snow 
conditions in sub-basins, and the potential limitation of 
the SCS-CN method employed to simulate streamflow.

4.	 The poor performance of the SWAT model in Shatial 
bridge and Bisham Qila is due to the large size of the 
sub-basin and accumulation of sub-basin discharges to 
the Indus River resulting in hydropeaking, which cannot 
be accurately captured by hydrological models.

5.	 The results demonstrated that the development of a 
local hydrological model, e.g., MLP, might suit better 
in simulating streamflow, which considers the sub-basin 
specific characteristics.

Keeping in view the high performance and robustness 
of machine learning-based models, this study recommends 
the development and evaluation of further machine learn-
ing models across UIB. Moreover, in view of the advan-
tages and disadvantages of SWAT and machine learning 
models, the hybrid models are expected to improve stream-
flow simulation and our understanding of the hydrological 
processes in snow-glacier-dominated regions.
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