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Abstract: It is imperative to determine the State of Health (SOH) of lithium-ion batteries precisely
to guarantee the secure functioning of energy storage systems including those in electric vehicles.
Nevertheless, predicting the SOH of lithium-ion batteries by analyzing full charge–discharge patterns
in everyday situations can be a daunting task. Moreover, to conduct this by analyzing relaxation
phase traits necessitates a more extended idle waiting period. In order to confront these challenges,
this study offers a SOH prediction method based on the features observed during the constant voltage
charging stage, delving into the rich information about battery health contained in the duration of
constant voltage charging. Innovatively, this study suggests using statistics of the time of constant
voltage (CV) charging as health features for the SOH estimation model. Specifically, new features,
including the duration of constant voltage charging, the Shannon entropy of the time of the CV
charging sequence, and the Shannon entropy of the duration increment sequence, are extracted from
the CV charging phase data. A battery’s State-of-Health estimation is then performed via an elastic
net regression model. The experimentally derived results validate the efficacy of the approach as it
attains an average mean absolute error (MAE) of only 0.64%, a maximum root mean square error
(RMSE) of 0.81%, and an average coefficient of determination (R2) of 0.98. The above statement serves
as proof that the suggested technique presents a substantial level of precision and feasibility for the
estimation of SOH.

Keywords: lithium-ion batteries; health state estimation; constant voltage charging phase;
machine learning

1. Introduction

In order to address the environmental issues stemming from traditional vehicle green-
house gas emissions, the electrification of automobiles has emerged as a primary direction
for the global automotive industry’s transformation and upgrading, with a focus on energy
conservation and emission reduction [1–3]. Against this backdrop, fuel cell electric vehicles,
pure electric vehicles, and hybrid energy electric vehicles composed of lithium-ion batteries
and fuel cells have come into existence. Fuel cell electric vehicles have garnered atten-
tion for their long-range and fast hydrogen refueling advantages [4,5]. Electric vehicles
primarily utilize lithium-ion batteries as energy storage systems, offering the advantages
of high overall energy efficiency and low operational costs [6–8]. Hybrid energy electric
vehicles combine the strengths of fuel cells and lithium-ion batteries, achieving higher
energy efficiency.

In order to ensure the efficient and safe operation of lithium-ion battery energy storage
systems, the Battery Management System (BMS) is an indispensable component [3,9–12]. Fur-
thermore, accurately estimating the SOH holds significant importance in BMS to diagnose the
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degree of battery life decay. These data play a vital role in guaranteeing the secure functioning
of energy storage systems, as well as ensuring the reliability and range performance of electric
vehicles [13–16].

Current studies have divided the techniques for evaluating the SOH into two cate-
gories: model-based and data-driven methodologies [17,18]. To perform model-based SOH
estimation, researchers usually build models of lithium-ion batteries utilizing electrochem-
ical models [19,20], equivalent circuit models [21–23], or empirical models [24,25]. This
estimation identifies and estimates battery characteristic parameters by constructing physic-
ochemical models through the computational processing of experimental data, thereby
achieving a practical SOH estimation [17]. However, building battery models requires
many multidimensional parameters, making parameter identification difficult. Choosing
the right model that finds a middle ground between the precision of SOH estimation
and computational sophistication is no easy task, leading to limitations in the practical
application of model-based approaches.

Unlike model-based approaches, data-driven techniques obviate the need of prior
knowledge on intricate battery deterioration mechanisms. Rather, they attain superior
estimation precision via the analysis and processing of copious amounts of battery data [17].
As of late, data-driven techniques have garnered considerable interest. In particular, the
estimation of SOH is deemed a customary regression quandary in data-driven method-
ologies. Among these methods, Support Vector Machine (SVM) [26–28], Relevance Vector
Machine (RVM) [29], Long Short-Term Memory (LSTM) [30–32], Gaussian Process Regres-
sion (GPR) [33,34], and other techniques have been widely used. In order to precisely
acquire the non-linear correlation between SOH and the external health attributes of batter-
ies, prompt measures are required [35,36], and there is an increasing trend toward utilizing
complex algorithms for model construction, increasing model complexity significantly.
Therefore, it is imperative to streamline the model and enhance its computational efficiency
while upholding its precision [17]. In addition to building efficient and well-performing
algorithmic models, high-quality feature engineering directly enhances the criticality of
SOH estimation methods.

Most existing research on feature engineering relies primarily on extracting health
features for the SOH estimation from complete constant current and constant voltage
(CCCV) charge–discharge curves. Ref. [37] has demonstrated that CCCV charging and
discharging cycles can gather the majority of information required for battery health
estimation. Ref. [38] incorporated the energy employed in the CC charging phase and
equal discharge voltage intervals as input features. Ref. [39] proposed 14 features from
the complete CCCV charge–discharge curve and selected eight features, including CC
charge curve area, CC charge duration, CV charge duration, and their ratios, as health
indicators. These methods achieved good estimation accuracy by extracting different
features. However, these methods require collecting relatively complete CCCV charge–
discharge process data for each battery cycle. The effective functioning of energy storage
systems greatly relies on the extent of battery charge and discharge, which is primarily
determined by the operational demands of the load, which leads to some randomness
in the starting point of charging. Therefore, applying CCCV charge–discharge curves to
estimate the SOH of batteries in energy storage systems is challenging.

For achieving practicality in an SOH estimation, extracting health features based on
relaxation voltage data is an effective solution. These methods extract features from the
relaxation voltage data after battery charge and discharge, avoiding the randomness of
the starting point of charging. In [40], relaxation time deviation voltage was extracted
as a health feature. Ref. [41] employs a 30 s rest voltage to estimate the health status of
the battery. Ref. [42] removed features from the 30 min relaxation voltage curve after
the battery was fully charged, including the variance, maximum value, and skewness of
the relaxation voltage. Although these methods do not require specific conditions and
set voltage ranges, they still require the battery to be placed for an extended period to
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extract features. Achieving an accurate SOH estimation with shorter sluggish times remains
a challenge.

In the CCCV charging mode, the initial charging state does not have any impact
on the process of charging the CV, which exhibits robustness to the previous discharge
process. This has been observed in a recent study that emphasized on extracting health
features using data from the CV charging phase [43]. CV charging refers to the battery
continuing to charge at a constant voltage after the CC charging is completed. Based on the
analysis above, using the CV charging phase data for feature extraction is unaffected by
the starting point of charging and the waiting time required compared to the relaxation
phase. Ref. [44] proposed using a CV to assess aging factors as health features. Ref. [45]
utilized the time constant of the decoupled CV current as a metric for ascertaining health,
which has proven to be effective. However, this approach entails a complex identification
process for determining the appropriate parameters. To extract features directly from
the CV charging phase, Ref. [46] suggested that the duration of CV charging may serve
as a simple yet potent measure to gauge the SOH. Additionally, Ref. [43] developed a
model for estimating the SOH focused on the duration of constant voltage charging while
also accounting for the impact of the cutoff current on the length of said charging period,
effectively improving the accuracy of SOH estimation. Ref. [47] extracted multiple time
intervals of constant voltage current differences in the CV charging phase as features and
demonstrated a strong correlation between time intervals and SOH. These methods have
achieved an SOH estimation by extracting health features from the CV charging phase.
However, a further improvement in the SOH estimation accuracy is constrained due to
the insufficient exploration of the battery health information contained in the CV charging
phase data.

To address the shortcomings identified in the existing literature mentioned above, this
study utilizes statistical methods to extract battery health information from CV charging
time data. It proposes a new set of feature combinations to enhance the SOH estimation
accuracy. Initially, CV charging durations are extracted, and the charging durations are
divided based on the intervals of CV currents. This results in CV charging duration se-
quences and CV charging duration variation sequences. Shannon entropy processing [48]
is applied to both sequences, resulting in a feature combination composed of CV charging
durations, the Shannon entropy of the CV charging duration sequence, and the Shannon
entropy of the CV charging duration variation sequence. The Pearson correlation coefficient
was wielded to validate the correlation of the three extracted features with the battery’s
SOH. A model for estimating the SOH was established using the Elastic Net Regression [49].
The estimation accuracy of the model was quantitatively analyzed using RMSE, MAE,
and R2. T The effectiveness and superiority of the proposed method were confirmed
by evaluating the feature combination’s performance in estimating the SOH under var-
ious experimental conditions. The main contributions of this study can be summarized
as follows:

(1) Thoroughly delving into the abundant data about battery health found in the dura-
tions of CV charging and suggesting the implementation of CV charging duration
statistics as indicators of battery health. A new health feature combination consists of
CV charging durations, the Shannon entropy of the CV charging duration sequence,
and the Shannon entropy of the CV charging duration variation sequence. The em-
pirical evidence confirms that the suggested combination of features brings about an
elevation in the accuracy of SOH estimation, enabling a more accurate estimation of
the battery health status.

(2) This study is completely dependent on the CV charging phase to extract features
without being influenced by the initial charging point, adapting it for a wider array
of application scenarios. In addition, when compared to relaxation phase feature
combinations that necessitate lengthy idle periods, the precision of an SOH estimation
is notably enhanced with the employment of the feature combination postulated in
this paper.
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2. Experimental Data Processing
2.1. Introduction to the Dataset

This paper compares and analyzes algorithms and models using the publicly available
large-scale battery dataset from the Clean Energy Vehicle Engineering Center at Tongji
University [42]. The batteries in the dataset undergo aging cycles in the laboratory. The
dataset consists of three sets of data, all utilizing individual cylindrical 18,650 lithium-ion
battery cells with repeatable charge–discharge cycles. Table 1 displays an overview of
the dataset.

Table 1. Introduction to dataset loop conditions.

Dataset Charge Voltage—Discharge
Voltage (V)

Capacity in
Ampere-Hours (Ah)

Cycle
Temperature (◦C)

Charge
Current/Discharge
Current Multiplier

NCA 4.2–2.65 3.5
25

0.25/1
0.5/1
1/1

35 0.5/1
45 0.5/1

NCM 4.2–2.5 3.5
25 0.5/1
35 0.5/1
45 0.5/1

NCM + NCA 4.2–2.5 2.5 25
0.5/1
0.5/2
0.5/4

Dataset 1 battery cathode material is an NCA battery, and battery aging experiments
were undertaken at 25 ◦C, 35 ◦C, and 45 ◦C, with charging current of 0.25 C, 0.5 C, and
1 C, and discharging current of 1 C, respectively. Dataset 2 battery cathode material is an
NCM battery, and the battery aging experiment was performed under the conditions of
25 ◦C, 35 ◦C, and 45 ◦C, with a charging current of 0.25 C, and a discharging current of 1 C.
Dataset 3 battery cathode material is NCM + NCA, and battery aging experiments were
executed at 25 ◦C, with a charging current of 0.5 C, and discharge current of 1 C, 2 C, and
4 C, respectively. The battery cycling temperature cell dataset contains five processes of the
complete cycle, i.e., CC charging, CV charging, post-charging relaxation, CC discharging,
and post-discharge relaxation. In this paper, the battery cathode materials NCA, NCM,
and NCM + NCA are used as the nomenclature of datasets 1, 2, and 3, respectively, and
they serve the purposes of feature extraction, model training and testing, appraisal, and
the enhancement of the overall effectiveness of the suggested approach.

2.2. Feature Extraction
2.2.1. Data Preprocessing

All experiments are conducted on Python 3.11.4 version. To exclude the wrong values
in the battery dataset due to experimental errors, measurement errors, recording errors,
etc., the dataset is firstly rejected for outliers according to the lousy value range given
by [42], i.e., the exclusion of battery data, exhibiting discharging capacities falling between
1650 mA·h and 2510 mA·h and bearing the highest values, guarantees the precision of the
model’s predictive results.

In view of the fact that the dataset encompasses the entire battery cycle process, it is
imperative that the segment of the CV charging data needs to be localized. By finding all
the constant voltage charging data segments in it and distinguishing them from the data
segments of other stages, the change curve of battery voltage is utilized to determine the
location of the CV charging stage.

Since the CV charging data segment has the characteristics of stable charging voltage
and gradually decreasing charging current, the battery voltage will be stabilized at a fixed
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value. By screening the voltage value, we can identify the precise placement of the CV
charging phase. Once the location is confirmed, we can dissect and assess this stage so as
to gain an in-depth insight into the battery’s performance.

2.2.2. Feature Analysis

There is a robust correlation between the charging duration and the lithium-ion
battery’s maximum available capacity, defining the SOH. As the internal active materials
and the electrolyte progressively degrade, the capacity of the battery decreases, its battery
performance becomes less stable, and the charging duration may become more irregular and
random. Therefore, this paper focuses on extracting constant voltage charging durations
and their related statistical features, analyzing their correlation with the SOH estimation.

Shannon entropy is typically used to measure a sequence’s uncertainty or randomness,
as shown in Equation (1). Based on the above analysis, as the battery capacity decreases, the
charging duration sequence exhibits randomness, and the Shannon entropy of the charging
duration sequence may change. This can signify the declining pattern of battery capacity
and act as a gauge in approximating the condition of battery health.

H(t) =
n

∑
t

p(ti) log
1

p(ti)
(1)

where H(t) denotes the Shannon entropy of the continuous constant voltage charging time
series signal t, and p(ti) denotes the constant voltage charging time series, i = 1, 2, 3, . . . , N.

Before calculating the Shannon entropy, it is necessary to segment the constant voltage
charging curve. Figure 1 illustrates a schematic diagram of the division of constant voltage
charging intervals. This paper adopts equal current intervals as the basis for segmenting
constant voltage charging durations. The curve of constant voltage charging durations
is divided into four intervals based on the values of the current, with the corresponding
current values of boundary points as follows:

I′ = [I41, I42, I43, I44, I45] (2)
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Recording the timestamp corresponding to each current value, where the timestamp
corresponding to I41 is marked as t1, the resulting time series is as follows:

t′ = [t1, t2, t3, t4, t5] (3)

The constant voltage charging duration for each interval is calculated as follows:

t4,i = ti+1 − ti (4)

where i = 1, 2, 3, 4.
The charging durations of each interval are combined to create a constant voltage

charging duration sequence as follows:

t = [t4,1, t4,2, t4,3, t4,4] (5)

On the basis of the constant voltage charging duration sequence given in (5), the
difference between adjacent intervals’ charging durations is calculated as follows:

∆tj = t4,(j+1) − t4,j (6)

where j = 1, 2, 3.
A constant voltage charging duration increment sequence is formed as follows:

tdiv = [∆t1, ∆t2, ∆t3] (7)

The Shannon entropy of Equations (5) and (7) is calculated based on Equation (1), the
Shannon entropy of the constant voltage charging duration sequence is obtained, defined
as Tsha, and the Shannon entropy of the constant voltage charging duration increment se-
quence is obtained, defined as Tsha2. In the following section, we will explore the correlation
between Tcv, Tsha, and Tsha2 as features and the SOH, in which Tcv represents the constant
voltage charging duration.

2.2.3. Feature Correlation Analysis

To discern how the features and the SOH relate to one another, we treat them as two
distinct variables and employ a correlation analysis methodology to ascertain the connec-
tion between their respective patterns and the intensity of correlation. In the correlation
analysis, the Pearson correlation coefficient is customarily utilized to determine the extent
of linear correlation between the two variables [50], as well as to assess the similarity
between features and categories.

Here, the Pearson coefficient is utilized to scrutinize the correlation that exists among
Tcv, Tsha, and Tsha2, and the SOH. Correlation analysis experiments are conducted using
batteries from the NCM + NCA dataset with a cycling temperature of 25 ◦C, a charging
rate of 0.5 C, and a discharge rate of 4 C.

The Pearson coefficient represents the covariance ratio between two elements equal to
the product of their respective standard deviations, as derived in Equations (8) and (9).

Cov(X, SOH) = E[(X− µX)(SOH − µSOH)] (8)

where X is the corresponding characteristic element, µX is the standard deviation of the
X element, µSOH is the standard deviation of SOH, and Cov(X, SOH) is the covariance
between X and SOH.

ρ =
Cov(X, SOH)

σXσSOH
(9)

where ρ is the Pearson coefficient.
As per the evaluative metrics of the Pearson correlation coefficient, a higher absolute

ρ value points towards a stronger correlation. Table 2 illustrates that the basic values of the
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Pearson coefficients are higher than 0.95 for all three independent variables and the SOH,
which unequivocally denotes a robust correlation.

Table 2. Pearson correlation degree of the characteristic.

Feature Pearson’s Correlation

Tcv −0.99
Tsha 0.96
Tsha2 0.97

Figure 2a–c represent the Pearson correlation plots for the three features and the SOH.
From the figures, it is evident that the feature Tcv has a pronounced negative correlation
with SOH, while Tsha and Tsha2 exhibit positive correlations with SOH.
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3. Methodology
3.1. Mathematical Model of Elastic Net Regression

The Elastic Net Regression model is a form of linear regression that incorporates
both L1 and L2 norms as regularization terms while undergoing training. Through the
amalgamation of L1 and L2 regularization, the model becomes more stable, capable of better
generalizing new data, and less susceptible to the influence of outliers or extreme values.
Additionally, when dealing with a large amount of battery information, using Elastic Net
Regression can control model complexity and prevent overfitting, which significantly aids
in simplifying SOH estimation models.

In (10), the penalty term for Elastic Net Regression is illustrated to consist of a fusion
of L1 and L2 regularization.

F(ω) = α(µ
n

∑
i=1
|ωi|+ (1− µ)

n

∑
i=1

ω2
i ) (10)

Here, F(ω) represents the penalty term for Elastic Net Regression, α represents the
regularization coefficient for Elastic Net Regression, µ represents the mixing parameter
that controls the weighting of L1 and L2 regularization in the combination, n signifies the
number of features, and ωi stands for the coefficient for the ith feature.

The loss function for Elastic Net Regression is represented by Equation (11).

L(ω) =
1

2m

m

∑
i=1

(hω(x(i))− y(i))2 (11)

Here, m is a data sample, and the ‘ith’ sample’s estimated SOH by the model is
represented by hω(x(i)), while the actual SOH label for the ‘ith’ sample is represented
by y(i).
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Due to the effective control of computational complexity, Elastic Net Regression can
efficiently handle a large amount of battery data. When estimating the battery health status,
Elastic Net Regression can rapidly extract critical information from a plethora of feature
data, reducing data dimensionality. Therefore, using Elastic Net Regression simplifies data
processing and modeling complexity, effectively conserving computational resources. It
enhances the SOH estimation efficiency while maintaining the estimation accuracy.

3.2. SOH Estimation Method Based on Elastic Net Regression Model

Figure 3 depicts the overall framework for estimating battery health status using
the Elastic Net Regression model. After thoroughly examining the tenets of the Elastic
Net Regression model and taking into account the current circumstances surrounding
lithium-ion batteries, we have crafted a model to estimate the SOH in accordance with the
Elastic Net Regression.
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The following are the steps for constructing the model.

(1) Data preprocessing: remove outliers, convert capacity to the SOH defined by capacity,
and standardize the dataset.

(2) Dataset construction: allocate the estimation dataset as a training set and a test set on
a per-battery basis, with a 1:1 ratio of training batteries to test batteries.

(3) Define input and output: use Tcv, Tsha, and Tsha2 as model inputs, with the correspond-
ing SOH data as model output.

(4) Set model hyperparameters: set the Elastic Net regression model parameters with the
best regularization coefficient as 0.00001, and the Elastic Net mixing parameter as 0.1,
representing a combination of L1 and L2 regularization penalties.

(5) Train and test the SOH estimation model, and reverse standardize the output results.

4. Analysis of Experimental Results
4.1. Evaluation Metrics

This study employs three evaluation metrics, namely, MAE, RMSE, and R2, to gauge
estimation accuracy. These metrics serve as vital benchmarks for assessing model perfor-
mance in machine learning. Here is an introduction to these three evaluation metrics:
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MAE is represented as the average of absolute errors, which is, in fact, a more general
form of the average error. A smaller MAE value indicates a higher model accuracy. Its
expression is as shown in (12).

MAE =
1
m

m

∑
i=1

∣∣∣(SOHi − ŜOHi)
∣∣∣ (12)

where m denotes the quantity of samples, SOHi stands for the factual maximum battery
capacity, while ŜOHi corresponds to the anticipated maximum battery capacity.

RMSE measures the average magnitude of errors in the measurements. A smaller
value indicates a higher model accuracy. Its expression is as shown in (13).

RMSE =

√
1
m

m

∑
i=1

(SOHi − ŜOHi)
2

(13)

The R2, referred to as the coefficient of determination, denotes the proportion of the
entire data variance that a model is capable of accounting for. It serves as a performance
metric for models and is commonly used for comparative analysis of different model
performances. Its value ranges from [0, 1]. A higher R2 indicates a better model fit. Its
expression is as shown in (14).

R2 = 1−

m
∑

i=1
(ŜOHi − SOHi)

2

m
∑

i=1
(SOHi − SOHi)

2
(14)

4.2. Comparison with Other Similar Features

For the purpose of validating the eminence of the proposed health attribute, constant
voltage charging duration, this section contrasts the outcomes of experiments performed
solely with it against the combined results of constant voltage charging duration and
the remaining two statistical features. We investigate the performance of the feature
combination, i.e., Tcv, Tsha, and Tsha2, proposed in this study, including the duration of CV
charging, the Shannon entropy of the CV charging duration sequence, and the Shannon
entropy of the CV charging duration increment sequence, in estimating the SOH.

4.2.1. Comparison Experiment with Other Similar Features under the Same Condition

Three different conditions were randomly selected from the three datasets for analysis
in the experiments conducted under the same conditions. In dataset NCA, conditions 1 and
2 were selected, where condition 1 represents batteries cycled at 25 ◦C, utilizing a charge
current rate of 0.25 C alongside a discharge rate of 1 C. Condition 2 represents batteries
cycled at 25 ◦C, with a charge current rate of 1 C, and a discharge rate of 1 C. In dataset
NCM, condition 3 was selected, representing batteries cycled at 35 ◦C, with a charge current
rate of 0.5 C, and a discharge rate of 1 C. In the dataset, NCM + NCA, conditions 4 and 5
were selected, where condition 4 represents batteries cycled at 25 ◦C, with a charge current
rate of 0.5 C, and discharge rates of 1 C and 4 C. Condition 5 represents batteries cycled at
25 ◦C, with a charge current rate of 0.5 C, and a discharge rate of 1 C.

Tables 3 and 4 present the SOH estimation errors for different combinations of constant
voltage features. As shown in the tables, when using only one constant voltage charging
feature or combining them pairwise as health features, the SOH estimation errors are
relatively large, and the estimation performance is not very stable. When using the feature
combination proposed in this study to build the SOH estimation model, the average MAE
and RMSE are the lowest, and the estimation accuracy is the highest. It can be observed
that combining constant voltage charging duration with its statistical parameters under
different operating conditions can achieve better estimation results, demonstrating that
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using statistical parameters of constant voltage charging duration as features effectively
complements the missing battery health information in constant voltage charging duration.

Table 3. SOH estimation error under the proposed feature combination and individual CV features.

Condition
Tcv, Tsha, Tsha2 Only Tcv Only Tsha Only Tsha2

MAE/% RMSE/% R2 MAE/% RMSE/% R2 MAE/% RMSE/% R2 MAE/% RMSE/% R2

Condition 1 0.38 0.53 0.97 1.14 1.69 0.72 0.45 0.60 0.96 3.07 3.38 −0.14
Condition 2 1.08 1.19 0.96 2.31 2.42 0.84 3.82 4.19 0.53 1.68 2.47 0.84
Condition 3 0.33 0.50 0.99 0.50 0.71 0.98 0.63 1.00 0.96 1.54 2.35 0.78
Condition 4 0.45 0.63 1.00 0.70 0.84 0.99 2.28 2.67 0.92 1.99 2.33 0.94
Condition 5 0.62 0.82 0.99 1.06 1.25 0.98 2.46 3.06 0.89 1.63 2.00 0.96

Cross Condition 0.98 1.20 0.98 1.09 1.35 0.98 2.52 3.04 0.89 2.03 2.48 0.93
Overall Mean 0.64 0.81 0.98 1.13 1.38 0.92 2.03 2.43 0.86 1.99 2.50 0.72

The bolded numbers in the table indicate the average values of MAE, RMSE, and R2 for the proposed feature
combination and individual CV features under different conditions.

Table 4. SOH estimation error under the proposed feature combination and its pairwise combinations.

Condition
Tcv, Tsha, Tsha2 Tcv, Tsha Tcv, Tsha2 Tsha, Tsha2

MAE/% RMSE/% R2 MAE/% RMSE/% R2 MAE/% RMSE/% R2 MAE/% RMSE/% R2

Condition 1 0.38 0.53 0.97 0.68 0.92 0.92 0.56 0.79 0.94 0.45 0.60 0.96
Condition 2 1.08 1.19 0.96 1.18 1.29 0.96 2.46 2.55 0.82 1.51 2.32 0.85
Condition 3 0.33 0.50 0.99 0.40 0.53 0.99 0.33 0.52 0.99 0.51 0.71 0.98
Condition 4 0.45 0.63 1.00 0.45 0.63 1.00 0.55 0.73 0.99 2.01 2.42 0.93
Condition 5 0.62 0.82 0.99 0.62 0.82 0.99 1.01 1.24 0.98 1.46 1.76 0.97

Cross Condition 0.98 1.20 0.98 1.00 1.22 0.98 1.12 1.37 0.98 2.03 2.52 0.93
Overall Mean 0.64 0.81 0.98 0.72 0.90 0.97 1.01 1.20 0.95 1.33 1.72 0.94

The bolded numbers in the table indicate the average values of MAE, RMSE, and R2 for the proposed feature
combination and its pairwise combinations under different conditions.

Figure 4a–e displays the SOH fitting curves using the Elastic Net Regression model
with different feature combinations under the same conditions. From the curves, it can
be observed that the fitting effect of SOH using the feature combination proposed in
this study is better, and it closely follows the real SOH curve compared to other feature
combinations. The present study has effectively demonstrated that utilizing statistics
related to the constant voltage charge duration as health indicators can duly enhance the
precision of SOH estimation. This proved the superiority of the feature combination stated
in the study.

4.2.2. Comparison Experiment with Other Similar Features under the Cross Condition

An analysis was conducted using the NCM + NCA dataset as an example of cross-
condition evaluation. The training and testing sets included batteries from three different
conditions within the NCM + NCA dataset. Batteries underwent numerous cycles at an
operating temperature of 25 ◦C, during which the charge rate was set at 0.5 C and the
discharge rates were set at 1 C, 2 C, and 4 C.

Figure 5a–g shows scatter plots of the SOH estimates for different feature combina-
tions under cross-condition conditions. In the illustration, the arrows indicate the direction
of increasing density. It is evident from the figures that when using this specific feature
combination for the SOH estimation, the estimation yields the best results, with the esti-
mation points exhibiting the highest density along the actual SOH curve. Tables 3 and 4
display the MAE, RMSE, and R2 values for the SOH estimation under cross-condition
conditions using these different feature combinations. Among them, the SOH estimation
error is the smallest, and the fitting performance is the best when employing the proposed
feature combination.
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4.3. Comparison with Relaxation Features

In addition, this section conducts comparative experiments between the proposed
feature combination and the relaxation stage feature combination. A comparison analysis
is performed with the feature combination proposed in [42], which consists of relaxation
voltage variance (Var), relaxation voltage skewness (Ske), and relaxation voltage maxi-
mum value (Max). This feature combination will be labeled as (Var, Ske, Max) in the
following text.

4.3.1. Comparison Experiment with Relaxation Features under the Same Condition

This section uses the same experimental batteries as in Section 4.2.1 for five identical
functional condition experiments. Figure 4a–e, respectively, display the SOH estimation
results under identical conditions using the feature combination proposed in this study and
the relaxation feature combination. The figures clearly show that the proposed combination
of features yields superior fitting outcomes and bears a greater resemblance to the authentic
SOH curve when juxtaposed with the relaxation feature.

The estimation error results for the SOH using the Elastic Net Regression model
with two feature combinations under the same operating conditions are presented in
Table 5, with MAE, RMSE, and R2 as evaluation metrics. As shown in the table, utilizing
the feature combination proposed in this paper for the SOH estimation demonstrates a
significant superiority, with an average MAE of 0.64%, an average RMSE of 0.81%, and an
average R2 of 0.98. The estimation errors for each operating condition using the proposed
feature combination are consistently lower than those with the relaxation segment feature
combination, indicating a better fitting performance.
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Table 5. SOH estimation error based on Elastic Net Regression under two features combination.

Condition
(Tcv, Tsha, Tsha2) (Var, Ske, Max)

MAE/% RMSE/% R2 MAE/% RMSE/% R2

Condition 1 0.38 0.53 0.97 0.63 0.87 0.93
Condition 2 1.08 1.19 0.96 1.82 2.45 0.84
Condition 3 0.33 0.50 0.99 0.79 0.93 0.97
Condition 4 0.45 0.63 1.00 0.72 0.87 0.99
Condition 5 0.62 0.82 0.99 1.17 1.28 0.98

Cross Condition 0.98 1.20 0.98 1.38 1.83 0.96
Overall Mean Value 0.64 0.81 0.98 1.09 1.37 0.94

The bolded numbers in the table indicate the average values of MAE, RMSE, and R2 for two features combination
under different conditions.

4.3.2. Comparison Experiment with Relaxation Features under the Cross Condition

This section utilizes the same cross-condition experimental conditions as in
Section 4.2.2. Under these cross conditions, the SOH estimation errors using the feature
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combination proposed in this study and the relaxation feature combination are presented in
Table 5. Additionally, the scatter plots for the SOH estimation are illustrated in Figure 5a,h.
The experimental outcomes clearly demonstrate that utilizing the suggested features in
cross-condition experiments leads to considerably lower SOH estimation errors, signifying
an overall improved fitting performance.

5. Conclusions

Based on the preceding discussion, we can summarize the main contributions and
innovations of this study. Firstly, this study extensively explores the constant voltage charg-
ing duration, which contains rich information about the battery health status. We propose
using CV charging duration statistics as a health feature, extracting feature combinations
highly correlated with the health status of lithium-ion batteries during the constant voltage
charging stage. Secondly, this study only relies on the CV charging phase for feature extrac-
tion, unaffected by the charging initiation point, making it applicable to a broader range
of scenarios. It provides a practical and highly accurate battery health estimation solution
for battery manufacturers, BMS manufacturers, and electric vehicle charger manufacturers.
This contributes to improving the safety of lithium-ion battery energy storage systems.
Additionally, it enables electric vehicle users to obtain more accurate information about the
battery’s health status, thereby advancing the safety of electric vehicles.

The experimental results indicate that the feature combination proposed in this paper
achieves a high accuracy in the SOH estimation, with both the average MAE and RMSE
less than 0.81%. The R2 is above 0.98, demonstrating a significant superiority. However,
this study should be improved in the following directions. Firstly, considering that battery
performance is influenced by other factors such as temperature and humidity, we will
further explore the impact of environmental factors on the SOH estimation based on the
above methods. Additionally, this study utilizes a laboratory battery dataset, lacking
real-world application data, which may not fully account for battery performance in
complex environmental conditions. Therefore, in the future work, to better align with real-
world usage scenarios, we plan to collect real vehicle data to train and test the proposed
method, making it more comprehensive in adapting to the complexity and variability of the
real world.
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