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Abstract 

This paper uses a seasonal long-memory model to capture the 
behaviour of the US industrial production index (IPI) over the period 
1919Q1-2022Q4. This series is found to display a large value of the 
periodogram at the zero, long-run frequency, and to exhibit an order of 
integration around 1. When first differences (of either the original data 
or their logged values) are taken, evidence of seasonality is obtained; 
more specifically, deterministic seasonality is rejected in favour of a 
seasonal fractional integration model with an order of integration 
equal to 0.14 for the original data and 0.29 for their logged values, 
which implies the presence of a seasonal long-memory mean reverting 
pattern. 

1. Introduction 

Understanding economic fluctuations is crucial for the design of 
effective macroeconomic policies. Policy makers use a variety of demand 
and supply indicators to monitor economic activity and to identify trends and 
seasonal patterns (see [1]). On the demand side, these include private 
consumption, retail sales, car registrations, electricity consumption, etc.; on 
the supply side, the most informative series are gross capital formation, 
which is available at a quarterly frequency, as well as industrial production, 
electricity production, and capacity utilisation in the industrial sector, which 
are released at a monthly frequency (see [2]). 

The present study focuses on the industrial production index (IPI), which 
is normally thought to be a good proxy for aggregate production and also to 
be informative about seasonality in the economy. According to [3]: “The 
index of industrial production (IPI) is probably the most important and 
widely analyzed high-frequency indicator, given the relevance of 
manufacturing activity as a driver of the whole business cycle”. In this paper 
a long-memory seasonal model is estimated to capture the behaviour of the 
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IPI and to obtain evidence on both its degree of persistence and seasonal 
patterns. 

The rest of the paper is organised as follows: Section 2 provides a brief 
review of the relevant literature; Section 3 presents the empirical analysis; 
Section 4 offers some concluding comments. 

2. Literature Review 

Numerous studies have analysed the behaviour of the IPI because of its 
usefulness as an indicator of economic activity. For instance, [3] assessed the 
forecasting performance of various models for the Italian IPI including a 
univariate ARIMA model, a dynamic single-equation model with a few 
indicators, a dynamic multiple-equation model disaggregated by sector, an 
average of bivariate autoregressive distributed lag model forecasts, h-step 
forecasts and sequential one-step forecasts of a static factor model, and 
generalized dynamic factor models with fixed rules and optimal criteria 
respectively to determine the number of factors. [4] instead analysed business 
survey data for France, Germany, and Italy and estimated dynamic factor and 
unobserved components models. [5] modeled monthly IPI in Turkey, Brazil, 
and the G7 economies over the period from 1990 to 2017 using linear, 
quadratic, cubic, and hyperbolic specifications as well as non-linear ones 
(Weibull, Negative Exponential, Brody, Gompertz, Logistic, Von 
Bertalanffy, Richards), while [6] examined persistence in the Indian IPI by 
carrying out augmented Dickey-Fuller (ADF), Phillips Perron (PP), and 
KPSS tests. 

An important feature of the IPI often overlooked in the existing literature 
is its seasonality. [7] showed that cross-sectional aggregation or structural 
changes can result in fractional orders of integration at the seasonal 
frequencies. Therefore [8] proposed a framework allowing for unit and 
fractional roots at both the seasonal and long-run frequencies. In particular, 
they analysed the behaviour of the IPI in four Latin American countries, 
namely Brazil, Argentina, Colombia, and Mexico, and found evidence of 
long-memory behaviour in the seasonal component in the two former 
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economies. The present study also uses a framework allowing for long 
memory in the seasonal component, as explained below.1 

3. Empirical Analysis 

We use quarterly, seasonally unadjusted data on the US Industrial 
Production Index, for the sample period from 1919Q1 to 2022Q4, which 
have been obtained from the St. Louis Federal Reserve Bank database. 

 
The red lines in the correlograms refer to the 95% confidence bands for no autocorrelation. 

Figure 1. Plots of IPI and log IPI with their correlograms and periodograms. 

                                                           
1Note that seasonal long-memory models have also been used for GDP ([9], M1 [10]), 

tourism series [11], inflation [12, 13], climatological series [14], and energy consumption 
[15]. 
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The red lines in the correlograms refer to the 95% confidence bands for no autocorrelation. 

Figure 2. First differences of IPI and log IPI with their correlograms and 
periodograms. 

Figure 1 displays both the original data and their logged values together 
with their respective correlograms and periodograms, the latter exhibiting a 
large value at the zero, long-run frequency. Figure 2 shows instead the first 
differenced series, a seasonal pattern being clearly visible. 

Given the large value of the periodogram at the long-run, zero frequency 
we focus first on the degree of integration of the series at this frequency. 
Standard unit root tests [16-18] provide evidence of unit roots in all cases 
(these results are not reported). However, it is well known that such tests 
have very low power if the true data generating process (DGP) is in fact 
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fractionally integrated (see, e.g., [19-21]); therefore we allow for the 
possibility of fractional degrees of integration by estimating a model of the 
following form: 

...,,2,1,1,10 tuxLxty tt
d

tt  (1) 

where ty  stands for the observed time series, 0  and 1  are the intercept 

and the coefficient on a linear time trend respectively, and tx  is assumed to 

be ,dI  where d is another parameter to be estimated from the data. As for 

the error term ,tu  this is assumed to be in turn a white noise and a (weakly) 

autocorrelated process, where the non-parametric approach of Bloomfield 
[22] (which is an approximation to AR structures based on the spectral 
density function) is used first, and then, given the quarterly frequency of the 
data, a seasonal AR(1) process is also considered of the following form: 

...,,2,1,12 tuu ttt  (2) 

where t  is a white noise process. The estimated values of d together with 

their 95% confidence bands are reported in Table 1 for three different 
specifications, namely: (i) without deterministic terms, (ii) with a constant, 
and (iii) with both a constant and a linear time trend. 

Table 1. Estimates at the long-run or zero frequency 
(i) Original data 

Type of errors No deterministic terms An intercept 
An intercept and a time 

trend 

White noise 1.03 (0.96, 1.10) 1.03 (0.97, 1.11) 1.03 (0.97, 1.11) 

Bloomfield 1.07 (0.97, 1.25) 1.07 (0.96, 1.24) 1.08 (0.97, 1.25) 

Seasonal AR1 1.03 (0.97, 1.10) 1.03 (0.96, 1.11) 1.04 (0.96, 1.12) 

(ii) Logged values 

Type of errors No deterministic terms An intercept 
An intercept and a time 

trend 

White noise 1.04 (0.96, 1.13) 1.20 (1.10, 1.31) 1.19 (1.10, 1.30) 

Bloomfield 0.98 (0.84, 1.14) 0.90 (0.80, 1.08) 0.90 (0.80, 1.08) 

Seasonal AR1 1.02 (0.96, 1.13) 1.20 (1.11, 1.30) 1.19 (1.10, 1.30) 

  In bold, evidence of unit roots at the 95% level. 
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In the majority of cases the unit root null hypothesis cannot be rejected. 
The only exception is the logged series with white noise and seasonal AR 
disturbances when deterministic terms are included in the model. Given the 
overwhelming evidence in favour of the presence of unit roots, first 
differences are then taken of both the raw data and their logged values, the 
latter being a measure of the growth rate. 

After removing the long-run frequency, seasonality is still present in the 
data as shown by the correlograms and periodograms of the first differenced 
series displayed in Figure 2. To capture it, we adopt the following 
specification: 

4
1

4 ,1,
s tt

d
titit uxLxDy  (3) 

where tu  is again a seasonal AR(1) process. 

Table 2. Estimated coefficients for a seasonally fractionally integrated 
process 

Series d  1  2  3  4  

Original 
0.14 

(0.04, 0.32) 

–0.05768 

(–0.30) 

–0.05701 

(–0.30) 

0.17705 

(0.93) 

–0.09637 

(–0.50) 

0.00005 

(0.16) 

Logged values 
0.29 

(0.02, 0.65) 

–0.00719 

(–0.67) 

0.00314 

(0.32) 

–0.00107 

(–0.10) 

0.00632 

(0.64) 

–0.00001 

(–0.44) 

  The values in parenthesis are the t-values of the estimated coefficients. 

Table 2 reports the estimated coefficients. It can be seen that, for both      
the original and logged values, the deterministic terms are statistically 
insignificant in all cases, which represents evidence against deterministic 
seasonality. The seasonal AR coefficient, is insignificant for the original data 
(0.0006) while significant for the logged ones (-0.2456); also, the seasonal 
fractional parameter d is positive and below 0.5 in both cases (0.14 for the 
original series and 0.29 for the logged one), which implies the presence of 
stationary seasonal long-memory in both series, the effects of shocks being 
mean reverting with a hyperbolic rate of decay to zero. 
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4. Conclusions 

This paper uses a seasonal long-memory model to capture the behaviour 
of the US Industrial Production Index (IPI) over the period 1919Q1-2022Q4. 
This series is found to display a large value of the periodogram at the zero, 
long-run frequency, and to exhibit an order of integration around 1. When 
first differences (of either the original data or their logged values) are taken, 
evidence of seasonality is obtained; more specifically, deterministic 
seasonality is rejected in favour of a seasonal fractional integration model 
with an order of integration equal to 0.14 for the original data and 0.29 for 
their logged values, which implies the presence of a seasonal long-memory 
mean reverting pattern. These findings confirm the importance of allowing 
for (stochastic) seasonality when modelling IPI, which is a very useful proxy 
for aggregate economic activity often used by policy makers and agents to 
monitor developments in the economy. 
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