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Abstract: Medical imaging plays a crucial role in modern healthcare by providing non-invasive visuali-
sation of internal structures and abnormalities, enabling early disease detection, accurate diagnosis, and
treatment  planning.  This  study  aims  to  explore  the  application  of  deep  learning  models,  particularly
focusing on the UNet architecture and its variants, in medical image segmentation. We seek to evaluate
the performance of these models across various challenging medical image segmentation tasks, address-
ing issues such as image normalization, resizing, architecture choices, loss function design, and hyperpa-
rameter tuning. The findings reveal that the standard UNet, when extended with a deep network layer, is
a proficient  medical  image segmentation model,  while the Res-UNet and Attention Res-UNet architec-
tures  demonstrate  smoother  convergence  and  superior  performance,  particularly  when  handling  fine
image details. The study also addresses the challenge of high class imbalance through careful preprocess-
ing and loss function definitions. We anticipate that the results of this study will provide useful insights
for researchers seeking to apply these models to new medical imaging problems and offer guidance and
best practices for their implementation.

Keywords: medical  imaging; segmentation; performance  analysis; UNet; Res-UNet; Attention  Res-
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1. Introduction

Medical image segmentation is a critical aspect of medical image analysis and computer-aided diagnosis, which
involves the partitioning of images into meaningful regions for identification of structures such as organs, tumors and
vessels.  Deep learning,  with its  ability to automatically extract  complex features from vast  medical  image datasets,
presents a promising solution to enhance segmentation accuracy. Note that challenges persist due to the diversity of
medical domains, necessitating tailored approaches and evaluation metrics.

The primary goal of this paper is to comprehensively study the state-of-the-art deep learning methods with the
focus on the UNet [1] and its variants (the Res-UNet [2] and attention Res-UNet [3]) which are renowned for their
effectiveness in addressing complex medical image segmentation tasks.

The main objectives of this work are to apply the UNet model and its variants to solve a number of representa-
tive medical image segmentation problems by adapting different image pre-processing and model training techniques,
identifying appropriate  performance  metrics,  and  evaluating  the  performance  of  these  models.  Hopefully,  the  find-
ings of this study will offer useful guidance to researchers when applying these models to solve new medical imag-
ing problems.

The remainder of this paper is orgainised as follows. The problems of medical imaging and previous studies on
segmentation, particularly medical image segmentation, are reviewed in Section 2. The details of the UNet, its vari-
ants, and evaluation methods are discussed in Section 3. The applications of the above models to three medical image
segmentation cases, including brain tumor segmentation, polyp segmentation, and heart segmentation, are presented
in Sections 4, 5, and 6, respectively. Finally, the findings and future work are presented in Section 7.

2. Background

Medical imaging has been widely employed by healthcare professionals to evaluate various anatomical struc-
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tures.  Medical  image  segmentation  is  the  process  of  assigning  labels  to  individual  pixels  within  an  image,  thereby
converting raw images into meaningful spatial data [4]. Currently, clinicians largely perform this segmentation manu-
ally,  resulting  in  a  time-consuming  process  prone  to  both  intra- and  inter-observer  variations  [5].  The  adoption  of
automatic segmentation methods holds significant promise, as it can enhance reproducibility and streamline clinical
workflows. This is particularly relevant accounting for the demand of growing healthcare and the shortage of health-
care  providers  [6].  The  advance  of  new  technologies  has  made  it  possible  for  automatic  organ  segmentation  [7],
tumor  segmentation  [8],  vessel  segmentation  [9],  lesion  detection  and  segmentation  [10, 11],  cardiac  segmentation
[12], brain segmentation [13, 14], and bone segmentation [15, 16].

Medical image segmentation is inherently influenced by the imaging modality employed. Computed tomogra-
phy (CT) imaging presents challenges related to similar tissue intensities, three-dimensional data, and radiation expo-
sure control [17]. Magnetic resonance imaging (MRI) introduces complexities in multi-contrast imaging, noises, and
artifacts, as well as lengthy acquisition times [18, 19]. Ultrasound imaging, although operator-dependent and prone to
speckle  noises,  offers  real-time  imaging  without  ionizing  radiation.  Understanding  the  distinct  characteristics  and
challenges of each modality is crucial for selecting appropriate segmentation techniques and optimizing the accuracy
of  medical  image  analysis  [20−22].  Positron  emission  tomography  (PET)  imaging,  commonly  used  for  functional
studies and cancer detection, faces resolution-noise trade-offs and requires advanced algorithms for accurate segmen-
tation when distinguishing physiological  regions from pathological  regions [23].  X-ray imaging faces challenges in
accurate segmentation due to the inherent two-dimensional projection of three-dimensional structures [24], overlap-
ping structures and low contrasts [25].

Historically,  image segmentation can be performed by using low-level image processing methods.  For exam-
ples, thresholding is a straightforward technique that involves selecting a threshold value and classifying pixels as the
foreground  or  background  based  on  intensity  values  [26].  Region-based  segmentation  methods  focus  on  grouping
pixels  based  on  their  spatial  and  intensity  similarities  [27].  The  Watershed  transform,  introduced  by  Beucher  and
Serge [28], is a region-based segmentation technique that has found applications in contour detection and image seg-
mentation.

Statistical  methods  have also  been developed for  image segmentation.  K-means clustering is  a  widely  recog-
nized method for partitioning an image into K clusters based on pixel intensity values [29]. Active contours,  intro-
duced by Kass,  Witkin,  and Terzopoulos,  is  often referred to as “snakes” [30].  Probabilistic modelling for medical
image segmentation has been presented in [31−33] where the expectation-maximisation process is adopted to model
each segment as a mixture of Gaussians. The graph cut method utilises the graph theory to partition an image into
distinct regions based on pixel similarities and differences. [34−37]. The level-set method, based on partial differen-
tial  equations  (PDE),  progressively  evaluates  the  differences  among neighbouring  pixels  to  find  object  boundaries,
and evolves contours to delineate regions of interests [38−40, 41].

Over  the  past  decade,  the  deep  learning  (DL)  techniques  stand  out  as  the  cutting-edge  approach  for  medical
image segmentation. The convolutional neural networks (CNN) are inherently suited for solving volumetric medical
image segmentation tasks. The CNN can be customized by adjusting network depth and width to balance between
computational efficiency and segmentation accuracy. Ensembling multiple 3D CNNs with diverse architectures has
been effective in improving robustness and generalization to different medical imaging modalities [42]. Fully convo-
lutional  networks (FCN) have been successfully adapted to solve medical  image segmentation tasks by fine-tuning
pre-trained models or designing architectures tailored to specific challenges. In scenarios where anatomical structures
exhibit varying shapes and appearances, FCN can be modified to include multiple scales and skip connections to cap-
ture both local and global information [8]. The Cov-Net has been utilised for the detection and diagnosis of COVID-
19 from chest X-ray images. These models have shown promising results in accurately identifying COVID-19 cases
[43]. A deep belief network-based multi-task learning approach for the diagnosis of Alzheimer's disease has gained
attention due to its potential to improve accuracy and efficiency in disease diagnosis [44, 45].

The UNet [1] represents the most widely embraced variation among DL networks, featuring a U-shaped archi-
tecture with skip connections that enables the accurate delineation of objects in images [8]. The SegNet, an encoder-
decoder  architecture,  offers  adaptability  to  various  medical  imaging  modalities.  Its  encoder  can  be  customized  to
incorporate domain-specific features, such as texture and intensity variations in medical images [46]. Additionally, the
decoder  can be modified to  handle the specific  shape and structure of  objects  within the medical  images,  ensuring
precise segmentation [47].

The ResUNet [2] extends the UNet architecture by introducing residual connections, which enable the network
to train effectively, even with a large number of layers, thereby improving its ability to capture complex features in
medical  images.  The  integration  of  residual  blocks  in  the  ResUNet  facilitates  the  training  of  deeper  networks  and
enhances segmentation accuracy, making it a valuable choice for tasks demanding the precise delineation of anatomi-
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cal  structures  in  medical  image analysis.  Built  on the ResUNet  framework,  the  attention ResUNet  [3]  incorporates
attention mechanisms to allow the network to selectively focus on informative regions in the input image, while sup-
pressing  noises  and  irrelevant  features.  By  introducing  self-attention  or  spatial  attention  modules,  the  attention
ResUNet enhances its segmentation capabilities,  particularly in scenarios in which fine details and subtle variations
are critical for accurate segmentation and diagnosis.

Recently, the nnUNet automatic segmentation framework, whose self-configuration mechanism takes into con-
sideration of both computer-hardware capabilities and dataset specific properties, has demonstrated segmentation per-
formance  that  matches  or  closely  approaches  the  state-of-the-art  [48].  Extended  models  of  the  nnUNet  have  been
reported in [49−51] for various medical imaging applications.

The exploration of traditional image segmentation methods has revealed both strengths and limitations in solv-
ing  simpler  tasks,  and  has  exposed  vulnerabilities  in  complex  medical  imaging.  General  segmentation  techniques
adapted for medical applications, such as the Watershed transform and active contours, have shown promise in spe-
cific areas  with  own  limitations.  The  various  domains  of  medical  image  segmentation,  each  with  its  unique  chal-
lenges, highlight the complexity of this field. These challenges range from organ shape variability to vessel intrica-
cies. In light of these challenges, the importance of the UNet and its variants becomes evident. These deep learning
approaches offer the potential to overcome the limitations of traditional methods, promising more accurate and adapt-
able segmentation solutions to complex medical images. Exploring the UNet and its variants signifies a journey into
harnessing the power of deep learning to address the intricacies of medical image segmentation. This endeavor seeks
not only to understand the foundations of the UNet but also to explore its potential in overcoming the limitations of
traditional methods. Ultimately, this exploration aims to advance medical image analysis, leading to improved health-
care quality and patient outcomes.

3. Methods

An overview of the deep learning models, including the UNet, Res-UNet, and attention Res-UNet, is provided
in this section. The details are also given including the network architectures, filters of individual layers, connections
between layers, as well as specific functional mechanisms such as attention, activation functions and normalisation.

3.1. UNet
The  UNet,  introduced  by  Ronneberger  et  al.  in  2015  [1],  is  a  convolutional  neural  network  (CNN)  initially

designed  for  biomedical  image  segmentation  but  widely  applied  to  solve  various  image  analysis  tasks.  Its  unique
architecture includes an encoder-decoder structure with skip connections. Figure 1 a shows the general UNet archi-
tecture  adopted  in  this  paper.  The  UNet’s  architecture  consists  of  two  main  components:  the  contracting  path
(encoder) and the expansive path (decoder). This design enables the UNet to capture both global and local features of
the input image, making it highly effective for solving segmentation tasks.

Contracting path (encoder): The contracting path is responsible for feature extraction. The UNet model built
in  this  paper  has  four  encoding  layers.  Each  encoding  layer  consists  of  2  convolutional  layers  or  one  convolution
block, each followed by batch normalisation layers for ensuring normalisation and a relu activation layer as shown in
Figure 1b. The output from the convolution block is then passed through a down sampling layer with max-pooling to
reduce the spatial dimensions of the feature maps. The contracting path is crucial for building a rich feature represen-
tation. After the four encoding layers, the output passes through the bottleneck layer and then the upsampling layers
(decoders).

Expansive path (decoder): The expansive path aims to recover the original resolution of the image. The UNet
model  has  four  decoding  layers.  It  comprises  up-sampling  and  transposed  convolutional  layers.  Importantly,  skip
connections connect the encoder and decoder at multiple levels. These skip connections allow the decoder to access
feature maps from the contracting path, preserving spatial information and fine details.

Skip connections: Skip connections are the key innovation in UNet's architecture. They address the challenge
of  information  loss  during  up-sampling.  By  providing  shortcut  connections  between  corresponding  layers  in  the
encoder  and  decoder,  skip  connections  enable  the  model  to  combine  low-level  and  high-level  features  effectively.
This ensures that fine details are retained during the segmentation process.

Kernel size and number of filters: Throughout the structure, a kernel size of 3 is maintained for the convolu-
tional layers, as this filter size is common in image segmentation. A smaller filter size captures local features, while a
larger filter size captures more global features. The number of filters in the first layer is set to be 64. This is a com-
mon practice to start with a moderate number of filters and gradually increase the number of filters in deeper layers.
This allows the network to learn hierarchical features.

Final  fully  connected  convolutional  layer: The  output  passes  through  a  final  fully  connected  convolutional
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layer after four decoding layers. The size of kernel in the last layer depends on the number of classes (labels) present
in the mask and is therefore tailored to satisfy task needs. The output from the convolutional layer passes through an
activation function to produce the final output. The final activation function also depends on the number of labels in
the output. The final Kernel size and the activation layer are mentioned for each task in the following sections.

The design of the UNet makes it particularly effective for solving tasks where precise localization and detailed
segmentation are required, such as medical image segmentation.
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Figure 1.  UNet. (a) Network architecture. (b) Details of the convolution block.
 

3.2. Res-UNet

The Res-UNet  is  an extension of  the UNet  that  incorporates  residual  connections.  Residual  connections have
been introduced in the context of residual networks (ResNets) [2] to address the vanishing gradient problem in deep
networks. The Res-UNet combines the strengths of the UNet with the benefits of residual connections. The convolu-
tion block in the UNet is replaced here with residual blocks, and this introduces an addition layer between the input at
each block and the output from the last 3x3 convolutional block.

Residual  connections: The  Res-UNet  incorporates  residual  connections  between  layers.  These  connections
allow gradients to flow more easily during training, enabling the training of deeper networks without suffering from
vanishing gradients.

Enhanced information flow: The  use  of  residual  connections  enhances  the  flow of  information through the
network, enabling it to capture long-range dependencies and complex structures in medical images.

The Res-UNet model adopted in this paper has four encoding and four decoding layers. The overall architec-
tures of the Res-UNet model and the residual convolutional block are provided in Figure 2a and 2b, respectively. The
Res-UNet  is  known  for  its  ability  to  handle  deeper  networks,  which  can  be  advantageous  for  capturing  intricate
details in medical images.
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Figure 2.  Res-UNet. (a) Network architecture; (b) Details of the residual convolution block.
 

3.3. Attention Res-UNet

As illustrated in Figure 3, the attention Res-UNet model [3] is built on the Res-UNet architecture, which intro-
duces spatial  attention mechanisms. This is  achieved through the gating signal which brings output from the lower
layer to match the same dimension as the current layer, and an attention block which combines information from two
sources: the input feature map (x) and the gating signal (gating) to compute attention weights. The specific attention
mechanism  used  here  is  the  spatial  attention,  where  the  attention  weights  are  computed  based  on  relationships
between different spatial regions in the input feature map. This allows the model to focus on salient parts of the image
while suppressing irrelevant regions. The attention block consists of the following components. The query convolu-
tion applies convolutions on the input feature map which is later transformed into a query that captures spatial inter-
dependencies.  The key convolution transforms the gating signal into keys to highlight relevant spatial  regions.  The
matrix multiplication combine the query and keys to determine spatial attention weights. The softmax normalises the
attention weights to values between 0 and 1; The value convolution transforms the input feature map into values rep-
resenting the original features. The weighted sum multiplies the attention weights with the values and sums all resul-
tant values up.

The attention mechanism enables the network to focus on salient regions of the input, improving its ability to
differentiate between important and less important features. The key steps to implement the two blocks are explained
below.

Gating Signal:
The gating signal is a subnetwork or a set of operations employed to modulate the flow of information in an

attention mechanism. In this specific implementation, the gating signal is generated as follows:
•  Convolutional layer: A convolutional layer is used to transform the input feature into a format compatible

with the requirement of the attention mechanism. It adjusts the feature dimensionality if necessary.
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• Batch normalization (optional): An optional batch normalization layer is applied to ensure that the output of
the convolutional layer is well-scaled and centered, thereby aiding in stabilizing the training process.

• ReLU activation: The ReLU activation function introduces non-linearity to the gating signal, helping capture
complex patterns and relationships in the data.

x
attention block: The attention  block  is  a  critical  part  of  attention  mechanisms employed in  neural  net-

works.  Its  primary purpose  is  to  combine information from two sources—the input  feature  map ( ) and the
gating signal (gating). The breakdown of the functionality of the attention block is given below.
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Figure 3.  Proposed attention Res-UNet Architecture
 

x• Spatial transformation (Theta_x): The input feature map ( ) undergoes spatial transformation using convo-
lutional operations. This transformation ensures that the feature map aligns with the dimension of the gating signal.

• Gating signal transformation (Phi_g): Similarly, the gating signal is subjected to transformation via convo-
lutional operations to ensure appropriate spatial dimensions.

•  Combining information: The transformed gating signal (Phi_g) and the spatially transformed input feature
map (Theta_x) are combined to capture relationships between different parts of the input.

• Activation (ReLU): The ReLU activation function is applied to the combined information, introducing non-
linearity and enabling the capture of complex relationships.

•  Psi  and  sigmoid  activation: The  combined  information  is  further  processed  to  produce  attention  weights
(Psi) using convolutional layers and a sigmoid activation function. The sigmoid activation ensures that the attention
weights are within the range of 0 to 1, indicating the degree of attention assigned to each spatial location.

•  Upsampling Psi: The attention weights are upsampled to match the spatial dimensions of the original input
feature map, ensuring alignment with the input.

x
•  Multiplication (attention operation): The attention weights are multiplied element-wisely with the original

input feature map ( ). This operation effectively directs attention to specific spatial locations in the feature map based
on the computed attention weights.

• Result and batch normalization: The final result is obtained by applying additional convolutional layers and
optional batch normalization, ensuring that the output is appropriately processed.

The gating signal prepares a modulating signal that influences the attention mechanism in the attention block.
The attention block computes attention weights with the focus on relevant spatial regions of the input feature map,
which is particularly useful in addressing tasks requiring the capture of fine-grained details such as image segmenta-
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tion or object detection. The attention mechanism aids the network in prioritizing and weighting different spatial loca-
tions in the feature map, ultimately enhancing the performance.

3.4. Evaluation Methods
The following metrics are adopted to evaluate the performance of the models.
Execution time: Execution time is  recorded for  the  training of  each model  to  understand how long a  model

takes to converge. This is implemented using the datetime library in Python.
Validation loss over epochs: The change in the validation loss over the training period gives a glance on model

convergence. Model  convergence graphs show that  how well  the model  is  trained and how efficient  a  model  con-
verges. These graphs show the lowest loss required for the validation data, and the fluctuation in the loss which eval-
uates model stability. The graphs provide an initial basis of comparisons between different models.

The dice similarity coefficient: Also known as the sørensen-dice coefficient, which is a metric used to quan-
tify the similarity or overlap between two sets or groups. In the context of image segmentation and binary classifica-
tion, the dice coefficient is commonly employed to evaluate the similarity between two binary masks or regions of
interest (ROIs).

Formally, the dice similarity coefficient (DSC) is defined as

DS C =
2× |A∩B|
|A|+ |B| (1)

where:

A is the first set or binary mask (e.g., the predicted segmentation mask);
B is the second set or binary mask (e.g., the ground truth or reference mask);
| · | denotes the cardinality of a set, i.e., the number of elements in the set;
∩ denotes the intersection operation, which yields the common elements between sets A and B.

The dice coefficient produces a value between 0 and 1, where
DS C = 0•   indicates no overlap or dissimilarity between the two sets. It means that there is no commonality

between the predicted and reference masks.
DS C = 1•   indicates perfect overlap or similarity between the two sets. It means that the predicted mask per-

fectly matches the reference mask.
In the context of image segmentation, the dice coefficient is a valuable metric because it  measures the agree-

ment between the segmented region and the ground truth. It quantifies how well the segmentation result matches the
true region of interest. Higher DSC values indicate better segmentation performances.

A B
Intersection over union (IoU) or Jaccard index: The IoU measures the overlap between the predicted seg-

mentation mask ( ) and the ground truth mask ( ). It is calculated as the intersection of the two masks divided by
their union. The higher the IoU, the better the segmentation accuracy.

IoU =
|A∩B|
|A∪B|

where:

A is the predicted mask;
B is the ground truth mask.

|A∩B| A B |A∪B|In this formula,  denotes the cardinality of the intersection of sets  and , and  represents the
cardinality of their union. The IoU quantifies the extent to which the predicted mask and the ground truth mask over-
lap with each other, providing a valuable measure of the segmentation accuracy. The implementation of the Jaccard
index using Python is  given below. Confusion matrix: A confusion matrix provides a detailed breakdown of true
positive, true negative, false positive, and false negative predictions. It is useful for understanding the model’s perfor-
mance  on  different  classes  or  categories  within  the  segmentation.  This  is  implemented  using  the  confusion_matrix
function in Python’s sklearn.

Precision: Precision assesses the accuracy of an algorithm in correctly identifying relevant pixels or regions. It's
the ratio of true positive pixels (correctly segmented) to all pixels identified as positive by the algorithm. High preci-
sion indicates that  it’s  usually correct  when the algorithm marks a pixel  or  region as a  part  of  the target  object.  In
medical image segmentation, high precision means that it’s likely to be accurate when the algorithm identifies an area
as a specific organ or structure, thereby reducing the false positive.

Recall: Recall, also called the sensitivity or true positive rate, gauges an algorithm's capacity to accurately iden-
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tify all relevant pixels or regions in an image. It's the ratio of true positive pixels to the total pixels constituting the
actual target object or region in the ground truth. A high recall value signifies that the algorithm excels at locating and
encompassing the genuine target object or region. In medical image segmentation, high recall  means that the algo-
rithm effectively identifies and includes most relevant anatomical structures, reducing the likelihood of the false neg-
atives

4. Brain Tumor Segmentation

The  task  of  Brain  tumor  segmentation  involves  the  process  of  identifying  and  delineating  the  boundaries  of
brain tumors in medical images, specifically in brain MRI scans. The goal of this segmentation task is to automati-
cally outline the shape and extent of lower-grade gliomas (LGG) within the brain images.

4.1. Pre-processing

The  dataset  used  in  this  study  was  obtained  from Kaggle  [52]  and  was  originally  sourced  from The  Cancer
Genome Atlas  Low Grade  Glioma Collection  (TCGA-LGG)  [53].  The  dataset  includes  brain  MR images  that  are
accompanied by manually created FLAIR abnormality segmentation masks. The dataset contains MRI FLAIR image
data of 110 patients. Each MRI image is a RGB image with three channels, and each mask is a 2D black and white
image.

The  dataset  originally  contains 1200 patient  images  and  masks,  with  420  masks  indicating  the  presence  of
tumors. To focus the model on tumor segmentation, images without tumor annotations are removed. The dataset is
then split into training, testing, and validation sets using an 8:1:1 ratio. To handle this data efficiently, a data pre-pro-
cessing step is employed — a crucial tool in deep learning, particularly for large datasets that don't fit in memory.
In  this  step,  the  data  is  processed in  smaller  batches  during training,  effectively managing computational  resources
and ensuring real-time preprocessing during model training. Details of the pre-processing steps are listed below.

1) Image resizing: Images in the dataset are resized to a standard 256 by 256 pixel dimension to ensure com-
patibility  with  neural  network  architectures.  This  choice  balances  between  preserving  important  details  (i.e.  which
smaller size might lose), and avoiding unnecessary noise (i.e. which larger size could be introduced).

2) Standardization: Both image and mask data are standardized by adjusting their pixel values to have a mean
of 0 and a standard deviation of 1. This uniform scaling simplifies data for deep learning models, promoting conver-
gence and training stability.

3) Normalisation of mask images: The mask images, initially with binary values (0 for background, 1 for the
mask), have their values become floating-point during resizing. To prepare images for model training, their dimen-
sions are expanded by one to (256x256x1), followed by a thresholding operation. Pixel values greater than 0 are set
to be 1 (indicating a tumor), while values equal to or less than 0 are set to be 0 (representing the background), thereby
maintaining binary values suitability for training.

4.2. Model Training

4.2.1. Loss Function

The Binary focal loss (BFL) is a specialized loss function used in binary classification, particularly when deal-
ing with imbalanced datasets or cases where certain classes are of greater interest than others. The BFL is designed to
address the problem of class imbalance with the focus on improving the learning of the minority class. Formally, the
BFL is defined as follows:

BFL = −(1− pt)γ · log(pt) (2)

where

pt represents the predicted probability of the true class label;
γ is a tunable hyperparameter known as the focusing parameter;
log(·) is the natural logarithm.

The BFL has the following key characteristics.
γ

γ γ

• It introduces the focusing parameter  to control the degree of importance assigned to different examples. A
higher  emphasizes the training on hard and misclassified examples, while a lower  makes the loss less sensitive to
those examples.

γ = 0• When , the BFL reduces to the standard binary cross-entropy loss.
(1− pt)γ pt• The term  is a modulating factor that reduces the loss for well-classified examples (  close to 1) and
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ptincreases the loss for misclassified examples (  close to 0).
• The BFL helps the model focus more on the minority class, which is especially useful for imbalanced

datasets where the majority class dominates.
•  The  BFL encourages  the  model  to  learn  better  representations  for  challenging  examples,  potentially

improving overall classification performances.
• The loss is applied independently to each example in a batch of data during training.
The BFL is a valuable tool for addressing class imbalance and improving the training of models for imbalanced

binary classification. By introducing the focusing parameter,  practitioners are allowed to fine-tune the loss function
according to the specific characteristics of the dataset and the importance of different classes.

4.2.2. Model Design Choices

UNet: The  UNet  model  has  input  shape  of  (256,256,3)  for  the  RGB  images  and  an  output  layer  of  shape
(256,256, 1) for the mask output. The final output layer consists of 1x1 convolutional layers followed by batch nor-
malization  and  sigmoid  activation.  These  layers  produce  the  segmentation  mask,  where  each  pixel  is  classified  as
either a part of the object or background. Sigmoid activation is used for binary segmentation. The model has a total of
31,402,501 parameters with 31,390,723 of them trainable.

Res-UNet: The Res-UNet model takes RGB images with an input shape of (256,256, 3) and produces a mask
output with an output layer of shape (256,256, 1).  The last  layer of the model comprises 1x1 convolutional layers,
followed by batch normalization and sigmoid activation.

attention Res-UNet: The attention Res-UNet follows the same input and output configuration as the previous
models due to the same input and output image and mask specifications.

4.2.3. Callbacks

Three callbacks are assigned to the models.
1) Early stopping callback (early stopping): The early stopping callback monitors validation loss during training.

If there’s no improvement (decrease) for 20 epochs, training stops early to prevent overfitting and save time, thereby
ensuring that the model does not learn noises or deviate from the optimal solution.

2) Reduce LROn Plateau callback: The reduce LROn plateau callback is used to optimize the model's training
by lowering the learning rate when the validation loss reaches a plateau or stops improving, aiding the model in fine-
tuning and avoiding the local minima. The callback monitors “val_loss” with a “min” mode, providing informative
updates (verbose = 1),  and adjusts the learning rate if  there's  no improvement in validation loss for 10 consecutive
epochs  (patience  =  10)  by  a  factor  of  0.2  (reduced  to  20%  of  its  previous  value),  thereby  ensuring  meaningful
improvement with a “min_delta” parameter set at 0.0001.

3) Check pointer: The check pointer is specified to save weights of the trained model only when the validation
loss improves.

4.2.4. Model Compilation and Fitting

The models are compiled using the the Adam optimizer with an initial learning rate of “1e-5”. Multiple initial
learning rates are tested, where higher rates cause divergence and lower rates slow down training. Two compilations
are  done  for  each model,  where  the  one  uses  the  dice-coefficient  as  the  loss  function  and the  other  uses  the  BFL.
Training is performed on both the training and validation data for 100 epochs initially.

4.3. Results
The model training times and epochs are listed in Table 1. The model differences in execution times indicate

varying computational resource requirements during training. Notably, the attention Res-UNet emerges as the model
with the longest training duration. This extended duration could be attributed to the model's complexity which neces-
sitates additional time for convergence.
 
 

Table 1    Execution time and epochs of trained models
Models Execution Time Epoch

UNet 34 min 20 sec 69

Res-UNet 42 min 1 sec 89

attention Res-UNet 1 hr 1 min 100

 

Regarding  the  raining  behavior,  the  number  of  epochs  completed  by  each  model  offers  insights  into  their
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respective convergence behaviors. The UNet model exhibits a comparatively lower number of epochs, implying rela-
tively swift convergence. This is indicative of a particularly efficient training process. Conversely, the Res-UNet and
attention Res-UNet need more extensive training, implying that potentially more intricate model architectures or more
requirements are needed to achieve convergence after extended training periods.

Furthermore, it is worth noting that some models end training prematurely due to a lack of improvement in val-
idation  loss,  as  evidenced  by  lower  epoch  counts.  This  highlights  the  consideration  of  the  early  stopping  strategy,
which is a common technique used to curtail training and prevent overfitting. This observation raises the need for dis-
cussions  on  optimizing  model  performances  and  making  thoughtful  decisions  about  the  resource  allocation  during
training. The sub-figures in Figure 4 depict the evolution of the BFL over epochs of training and validation data for
three different models. These results offer insights into how these models perform during the training process.
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Figure 4.  Changes in binary focal loss for each models, from top to bottom, UNet, Res-UNet and Attendion Res-UNet.
 

1) Initial validation loss: Initial validation losses vary among the models. The UNet starts with a high initial
loss (around 15),  indicating initial  difficulties in accurate prediction.  In contrast,  the Res-UNet begins with a lower
loss (around 8),  while the attention Res-UNet starts with an even lower loss (approximately 2),  suggesting that the
two models make relatively better prediction from the start.

2) Early epoch performance: All three models exhibit a rapid decrease in the validation loss within the first
ten epochs. This implies that models quickly learn to capture relevant patterns in the data and improve prediction per-
formances during this early training phase.
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3) Stability in training: During training, all models maintain generally low validation losses, with some fluctu-
ations. UNet exhibits significant fluctuations towards training's end, suggesting sensitivity to data variations. In con-
trast, Res-UNet shows minor early fluctuations but stabilizes. attention Res-UNet also experiences initial fluctuations,
but they are much smaller than in the other models.

4) Comparison  of  model  performance: The  UNet  quickly  reduces  the  validation  loss  at  the  start,  but  has
higher fluctuations later. The Res-UNet starts with a moderate loss, experiences some early fluctuations, and finally
stabilizes. The attention Res-UNet consistently performs well from the beginning with the minimal fluctuation.

Overall,  these results highlight trade-offs between the rapid initial  learning and the model stability.  The UNet
learns  quickly but  exhibits  greater  instability,  while  the  Res-UNet  and attention Res-UNet  provide more consistent
and reliable prediction performances. Table 2 provides performance metrics for  the UNet,  Res-UNet,  and attention
Res-UNet, when applied to test data.
  

Table 2    Performance Metrics for UNet, Res-UNet, and attention Res-UNet on test data
Model Focal Loss Accuracy Precision Recall Dice IoU

UNet 0.0169 0.987 0.852 0.623 0.72 0.563

Res-UNet 0.0062 0.996 0.923 0.939 0.931 0.870

attention Res-UNet 0.0055 0.996 0.902 0.946 0.923 0.858

 
1) Focal loss: All the models achieve low focal losses with the Res-UNet and attention Res-UNet outperform-

ing the UNet.  The attention Res-UNet achieves the lowest  focal  loss,  highlighting its  proficiency in addressing the
problem of class imbalance. This means that the variants perform better at focusing on hard-to-classify pixels, which
is the tumor class.

2) Accuracy: The  Res-UNet  and  attention  Res-UNet  exhibit  impressive  accuracies  of  approximately  99.6%,
surpassing the 98.7% accuracy of the UNet. Both Res-UNet and attention Res-UNet excel in pixel-level classifica-
tion.

3) Precision and recall: The Res-UNet demonstrates superior precision, indicating accurate positive pixel clas-
sification with the minimal false positive. The UNet and attention Res-UNet exhibit slightly lower precision values.
Conversely, the attention Res-UNet achieves the highest recall, suggesting its effectiveness in capturing a larger pro-
portion of true positives.

4) Dice  coefficient: The  Res-UNet  achieves  the  highest  dice  coefficient  at  approximately  0.931,  signifying
accurate spatial prediction performances. The UNet and attention Res-UNet yield slightly lower dice coefficients, but
maintain strong performances.

5) Intersection over union (IoU): The Res-UNet achieves the highest IoU of approximately 0.870, indicating
the  superior  spatial  overlap.  The UNet  and attention Res-UNet record slightly  lower  IoU values,  though they con-
tinue to deliver commendable results in this aspect.

In  summary,  the  Res-UNet  and attention  Res-UNet consistently  outperform the  UNet  across  multiple  perfor-
mance  metrics,  underscoring  their  superior  performances  in  image  segmentation  of  the  test  data.  The  Res-UNet
excels in the precision, dice coefficient, and IoU, while the attention Res-UNet achieves the highest recall.

4.4. Discussions
Figure 5 shows four examples with given images and ground truth masks followed by the prediction from the

three models. The four examples are chosen as they represent different types of results observed in the whole test pre-
diction.

The UNet exhibits sensitivity to tumor features and shows promising performances in identifying likely tumor
locations, but tends to misclassify tumor pixels as the background, leading to false negatives. The UNet also mistak-
enly classifies the background pixels as tumors, causing false positives and impacting precision. The Res-UNet and
attention Res-UNet, on the other hand, deliver highly accurate predictions (thereby capturing fine details and main-
taining a balance between sensitivity and specificity), but occasionally overestimate tumor presence.

The UNet and its variants perform adequately in most cases, but struggle when tumors are very small or have
complex boundaries. The UNet also faces challenges of class imbalance, resulting in misclassification and poor recall.
The Res-UNet and attention Res-UNet mitigate these limitations, successfully locating tumors in challenging condi-
tions and reducing misclassifications significantly.  The attention Res-UNet  excels  in  handling the problem of  class
imbalance.

Despite  variations  in  performances,  all  models  achieve  high  accuracy  scores.  When  tumors  are  misclassified
due to the relatively small tumor size compared to the background, accuracy may not be a reliable metric as it can
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remain high, making it unreliable for assessing model performances.
  

Figure 5.  Segmentation results by the three models for four different examples, from left to right are the input images,
ground-truth, segmentation results by UNet, Res-UNet and attention Res-UNet.

 

5. Polyp Segmentation

Polyp  segmentation  refers  to  the  process  of  identifying  and  delineating  the  boundaries  of  polyps  in  medical
images, particularly in the context of medical imaging, endoscopy, and colonoscopy. The goal of this segmentation
task is to automatically outline the shape and extent of polyps from colonoscopy images.

5.1. Pre-processing

The CVC-ClinicDB dataset [54], whcih is established in the Hospital Clinic of Barcelona, Spain, is utilized in
this  segmentation  task,  where  featuring  frames  are  extracted  from  colonoscopy  videos  showcasing  polyps.  The
dataset  is  generated  from  23  different  video  studies  of  white  light  standard  colonoscopy  interventions.  The  CVC-
ClinicDB database contains 612 polyp images with a size of 576 × 768. It includes corresponding ground truth masks
outlining polyp regions. The dataset consists of two main types of images: the original colonoscopy frames at ‘origi-
nal/frame number.tiff’ and the corresponding polyp masks at ‘ground truth/frame number.tiff’.

A pandas dataframe is employed to manage images and mask paths. The dataframe is used to split the data into
training, testing, and validation sets in an 8:1:1 ratio. A dataset generator processes images and masks in the training
and validation data one by one, using a 'tf_parse()' function to read, resize, and preprocess for compatibility with the
program's requirements. The pre-processing steps are listed below.

x1) Reading the image: The function first  reads the image from the file  path  using OpenCV (cv2.imread).
This reads the image as it is in its original form.

2) Resizing the image: After reading, the image is resized to a fixed size of 256 × 256 pixels using OpenCV's
cv2.resize function. This resizing ensures that all images have the same dimensions, which is typically necessary for
training deep learning models.

3) Normalizing the image: The pixel values of the resized image are scaled to a range between 0 and 1. This is
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done by dividing all pixel values by 255.0. Normalizing the pixel values helps the deep learning model learn more
effectively.

5.2. Model Training

5.2.1. Loss Function

The BFL is  used  as  the  loss  function  for  the  models.  The  masks  in  the  problem are  binary  (label  and  back-
ground), followimg the similar design as the brain tumor problem.

5.2.2. Model Design Choices

The model design choices for the UNet, Res-UNet and Attention Res-UNet for Polyp segmentation are simi-
lar to the the models used for brain tumor segmentation. The two problems, even though crucial in their own ways to
the  medical  community,  share  the  same  configuration  by  the  fact  that  they  involve  creating  binary  segmentation
masks from RGB images. Hence, the input shape for the images in both problems is (256,256, 3), while the output
shape is (256,256, 1). This does not require a change in the model architectures.

5.2.3. Callbacks

The callback used for this problem is the early stopping, The reducing learning rate and checkpointers are the
same as the ones mentioned in the previous problem.

5.2.4. Model Compiling and Fitting

Models are compiled and fitted for 100 epochs using the Adam optimizer with an initial learning rate 1e-5.

5.3. Results
Model training times and epochs are listed in Table 3.

  
Table 3    Execution time and epochs of trained models for Polyp Segmentation

Models Execution Time Epoch

UNet 51 min 14 sec 73

Res-UNet 45 min 12 sec 63

Attention Res-UNet 56 min 45 sec 62
 

The attention Res-UNet has the longest training duration of 56 minutes and 45 seconds, likely due to its com-
plex architecture. The UNet shows efficient training, completing in 73 epochs. The Res-UNet and attention Res-UNet
require more extensive training durations of 45 minutes, 12 seconds and 62 epochs. Some models end training early
due to no improvement in the validation loss, highlighting the importance of early stopping strategies in preventing
overfitting. This emphasizes the need for the optimal model performance as well as resource allocation decisions dur-
ing training.

Figure 6 depict the evolution of the BFL over epochs for validation data of three different models. These results
offer insights into how these models perform during the training process.
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Figure 6.  Convergence for trained models on Polyp Segmentation.
 

UNet model:
The UNet  model  initiates  training with  a  high validation loss,  approximately  1.4,  primarily  because  its  initial
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weights are far from the optimal ones.  Note that  within the initial  ten epochs,  the UNet model experiences a rapid
decrease in the validation loss,  which is  a  common case during the early training stages of  many neural  networks.
This reduction reflects the model's improvement in fitting the training data as it  adjusts weights through techniques
like backpropagation and stochastic gradient descent (SGD). After this initial phase, the UNet model maintains a rel-
atively low and stable loss for the remaining epochs, albeit with some minor fluctuations. These fluctuations are likely
attributable to inherent data noises and the stochastic nature of the optimization process.

Res-UNet and attention Res-UNet models:
Both Res-UNet and attention Res-UNet models are trained with a low initial validation loss, roughly 0.2, sug-

gesting potential pretraining or initialization and reaching to a reasonable starting point. In the initial 15 epochs, both
models experience fluctuations in the loss. This is common during initial training phases as both models adapt to the
data and fine-tuned weights, possibly indicating sensitivity to the initial configuration or data noises. As training pro-
gresses, both models achieve stable loss values, signifying that models have reached a consistent and relatively opti-
mal solution compared to the UNet within this timeframe. Eventually, all models reach the minimum loss of approx-
imately 10%, demonstrating similar performance levels in minimizing the loss on the validation data, despite differ-
ences exist in the convergence speed and early fluctuations.

In summary, these results indicate that the UNet initiates training with a higher loss but converges swiftly. In
contrast,  the Res-UNet and attention Res-UNet begin with lower losses but  may show more early training fluctua-
tions. Nevertheless, all models ultimately achieve a similar minimum loss, showcasing their ability to capture crucial
data  features  and  make  accurate  predictions. Table  4 provides  performance  metrics  for  the  UNet,  Res-UNet,  and
attention Res-UNet when applied to test data.
 
 

Table 4    Performance Metrics for the UNet, Res-UNet, and attention Res-UNet on test data
Model Focal Loss Accuracy Precision Recall Dice IoU

UNet 0.0387 0.968 0.913 0.733 0.813 0.686

Res-UNet 0.0369 0.971 0.925 0.766 0.838 0.721

Attention Res-UNet 0.0394 0.969 0.881 0.788 0.832 0.712

 

1) Focal loss: All the models achieve low focal loss values, with the Res-UNet and attention Res-UNet outper-
forming the UNet. The Res-UNet achieves the lowest focal loss, highlighting its proficiency in addressing the prob-
lem of class imbalance. This means that the variants perform better at focusing on hard-to-classify pixels, which is the
tumor class.

2) Accuracy: The Res-UNet and attention Res-UNet exhibit impressive accuracies, approximately 99.6%, sur-
passing the 98.7% accuracy of the UNet. Both Res-UNet and attention Res-UNet excel in pixel-level classification.

3) Precision and recall: The Res-UNet demonstrates superior precision, indicating accurate positive pixel clas-
sification with the minimal false positives. The UNet and attention Res-UNet exhibit slightly lower precision values.
Conversely, the attention Res-UNet achieves the highest recall, suggesting its effectiveness in capturing a larger pro-
portion of true positives.

4) Dice  coefficient: The  Res-UNet  achieves  the  highest  dice  coefficient  at  approximately  0.931,  signifying
accurate  spatial  predictions.  The  UNet  and  attention  Res-UNet  yield  slightly  lower  dice  coefficients,  but  maintain
strong performances.

5) Intersection over union (IoU): The Res-UNet achieves the highest IoU of approximately 0.870, indicating
superior spatial overlap. The UNet and attention Res-UNet record slightly lower IoU values, though they continue to
deliver commendable results in this aspect.

In  summary,  the  Res-UNet  and attention  Res-UNet consistently  outperform the  UNet  across  multiple  perfor-
mance  metrics,  underscoring  their  superior  performances  in  image  segmentation  on  the  test  data.  The  Res-UNet
excels  in  precision,  dice  coefficient,  and  IoU,  while  the  attention  Res-UNet  achieves  the  highest  recall. Figure  7
shows four examples with the given image and ground truth mask followed by predictions from the three models.
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Figure 7.  Segmentation results by the three models for four different examples, from left to right are the input images,
ground-truth, segmentation results by UNet, Res-UNet and Attention Res-UNet.

 

5.3.1. Discussion

Polyp  segmentation  presents  challenges  due  to  the  irregular  and  random sizing  of  polyps  as  well  as  limiting
generalization, which can be exacerbated by data limitations. All trained models show average segmentation results.
The UNet, as the base model, trains and converges quickly, especially benefiting from the less imbalanced nature of
polyp scans compared to brain MRI masks.

The UNet exhibits lower performances in predicting the target class (reflecting its sensitivity to polyp features),
and struggles with class imbalance. The UNet occasionally misclassifies some polyp pixels as the background (false
negatives)  and the background pixels  as  polyps (false  positives),  impacting both sensitivity  and precision.  The low
true positive score in the confusion matrix underscores these challenges in accurate polyp detection.

In contrast,  the Res-UNet and attention Res-UNet perform consistently (reflecting their performances in brain
tumor  segmentation),  and  excel  in  capturing  intricate  edge  boundaries  and  maintaining  the  accuracy  with  small
ground truth masks. There are rare instances of slight overestimation of polyp presence. Misclassifications are minor
and have the minimal impact. Accounting for its low recall score, we know that the attention Res-UNet is better at
predicting true positives than other models.

6. Heart Segmentation

The third task involves the multi-label segmentation of cardiac structures in medical images,  and specifically,
the target of the left ventricle (LV), right ventricle (RV), and myocardium. Accurate segmentation of the LV is essen-
tial  for  assessing its  size  and function,  while  RV segmentation aids  in  diagnosing cardiac  conditions.  Furthermore,
precise myocardium segmentation provides insights into its thickness and function, offering indicators of heart health
and potential issues.

6.1. Data Pre-processing

The “Automatic Cardiac Diagnosis Challenge” (ACDC) [55] dataset is used in this segmentation task. This is
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the  largest  publicly  available  and fully  annotated  dataset  for  cardiac  MRI (CMR) evaluation purposes.  The dataset
encompasses data from 150 CMRI recordings which are stored in a 4D “nifti” format, preserving the original image
resolution and primarily containing the whole short-axis slices of the heart.  This specifies the diastolic and systolic
phases of the cardiac cycle. The MRI images are in grayscale, while the mask images employ a 0 to 3 scale, with 0
representing the background, 1 corresponding to the RV cavity, 2 representing the myocardium, and 3 corresponding
to the LV cavity.

The preprocessing steps involve creating a dataframe to record image and mask volumes, reading them using
the “nibabel” library, and iterating through slices in the third dimension of both the image and mask volumes. Each
slice is cropped using a custom “crop” function with most images having a minimum dimension less than 150, and
this leads to a final size of (128,128) to avoid introducing noises or unreliable information.

Mask images, with pixel values ranging from 0 to 3 (representing the labels and background), are converted to
one-hot encoding by increasing the dimensionality to 4. This is a crucial step for generating multi-label loss func-
tions and accurate predictions. For instance, a pixel value of 0 becomes (0, 0, 0, 0), while 3 becomes (0, 0, 0, 1).

MRI pixel values, with the maximum of 3049, are normalized to a range of 0 to 1, making them compatible
with neural networks. These preprocessing steps are essential for preparing the data for model training.

6.2. Model Training

6.2.1. Loss Function

The categorical focal loss is used as the loss function in the multi label segmentation task.
The categorical focal cross-entropy combines the concepts of the categorical cross-entropy and focal loss to

create  a  loss  function suitable  for  addressing multi-class  segmentation tasks  with  class  imbalance.  It  introduces  the
focal  loss  component  into  the  standard  categorical  cross-entropy.  This  helps  the  model  focus  on  harder-to-classify
pixels when handling imbalanced datasets.

CFC(y, p) = −
N∑

i=1

αi · (1− pi)γ · yi · log(pi) (3)

In summary, the categorical focal cross-entropy is a loss function that blends the properties of the categorical
cross-entropy and focal loss to improve the training of models in imbalanced multi-class segmentation tasks. The cat-
egorical focal cross-entropy makes the model pay more attention to minority classes and focus on pixels difficult to
classify. The categoricalfocalcrossentropy loss function is implemented from the keras.losses library.

6.2.2. Model Design Choices

Input  and  output  shapes:  The  task  of  multi-label  segmentation  and  the  nature  of  greyscale  MRI  images
require  the  output  mask  shape  of  the  models  to  have  a  size  of  (128,128,  4)  and  the  input  shape  to  have  a  size  of
(128,128, 1), as shown in Figures 8, 9, and 10 for UNet, Res-UNet and Attention Res-UNet respectively. This in turn
reduces the total number of parameters in the model.

Activation function: The softmax classifier is used as the activation function in the output layer of all the mod-
els, as it is equipped to run classification/segmentation for multi-labeled prediction.

UNet number of parameters: 31401556
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Figure 8.  UNet Architecture.
 

Res-UNet number of parameters: 33157140
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Figure 9.  Res-UNet Architecture.
 

Attention Res-UNet number of parameters: 39089304
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6.2.3. Model Compiling and Fitting

All  the  models  are  compiled  with  the  Adam optimizer  at  the  initial  learning  rate  of  1e-5,  and are  fitted  with
early stopping.

6.3. Results

Model training times and epochs are listed in Table 5. The UNet has the shortest training duration of 19 min-
utes, but requires 86 training epochs to reach convergence. In contrast, the Res-UNet has a longer training duration of
25  minutes  and  20  seconds,  and  completes  98  training  epochs  before  converging.  The  attention  Res-UNet  has  the
longest training duration of 27 minutes and 48 seconds, and reaches convergence after 83 training epochs.
 
 

Table 5    Execution time and epochs of trained models for Multi-label Heart Segmentation
Models Execution Time Epoch

UNet 19 min 86

Res-UNet 25 min 20 sec 98

Attention Res-UNet 27 min 48 sec 83

 

These  results  illustrate  the  trade-offs  between  the  training  time  and  the  number  of  epochs  required  for  these
models. The UNet can be trained relatively quickly, but more epochs are required. The Res-UNet and attention Res-
UNet take more training time, but require fewer epochs to achieve convergence.

Figure 11 shows the change in the categorical focal crossentropy over epochs for validation data of three mod-
els. All models converge similarly, starting with a high initial loss that rapidly decreases within the first 10 epochs.
Afterward,  the models exhibit  noticeable fluctuations in the loss,  and the Res-UNet shows fewer fluctuations com-
pared to the others. Overall, convergence patterns of the models are similar. Table 6 provides the precision and recall
values for each class predicted by the three models.
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Table 6    Precision and Recall score for each class by three models
Precision Recall

Models 0 1 2 3 0 1 2 3

UNet 0.99 0.91 0.89 0.96 0.99 0.91 0.89 0.94

Res-UNet 0.99 0.92 0.89 0.95 0.99 0.92 0.89 0.94

Attention Res-UNet 0.99 0.91 0.89 0.94 0.99 0.91 0.88 0.95

 
Class-wise performance evaluation
• Class 0 (background): All models achieve high precision scores, indicating that they are good at minimizing

false positives for the background class. Note that the UNet and Res-UNet achieve the highest recall, suggesting that
they capture most of the background pixels.  The UNet achieves the highest dice coefficient and IoU, indicating its
accuracy in identifying the background class.

•  Class 1 (RV cavity): The Res-UNet achieves the highest  precision for this class,  indicating its  accuracy in
positive predictions. It also has the highest recall, meaning that most of the RV cavity pixels are captured. The Res-
UNet has the highest dice coefficient, indicating accurate spatial predictions, while the UNet has the highest IoU.

• Class 2 (myocardium): The UNet has the highest precision for the myocardium, indicating accurate positive
predictions. The Res-UNet has the highest recall and captures the most myocardium pixels. The UNet achieves the
highest dice coefficient and IoU for the myocardium.

• Class 3 (LV cavity): The attention Res-UNet achieves the highest precision for the LV cavity, indicating its
proficiency in minimizing false positives. It also has the highest recall, suggesting that most of the LV cavity pixels
are captured. The UNet achieves the highest dice coefficient and IoU for the LV cavity.

Details of the class-wise performane for three models are shown in Table 7, measured by both Dice and IoU
scores.
  

Table 7    Dice and IoU score for each class by three models
Dice IoU

Models 0 1 2 3 0 1 2 3

UNet 0.993 0.906 0.893 0.951 0.987 0.829 0.807 0.907

Res-UNet 0.993 0.92 0.888 0.944 0.987 0.852 0.799 0.895

Attention Res-UNet 0.993 0.908 0.884 0.945 0.985 0.831 0.792 0.895

Accuracy and Loss
The overall accuracy and loss for the three models are presented in Table 8.

  

Table 8    Accuracy and Loss score by the three models
Models Accuracy Loss

UNet 98.41% 1.00%

Res-UNet 98.41% 1.09%

Attention Res-UNet 98.28% 1.44%
 

• The UNet achieves the highest accuracy of 98.41%, indicating its proficiency in overall pixel-level clas-
sification. The UNet also has the lowest loss of 1.00%, suggesting that the difference is minimized between predicted
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and ground truth masks.
• The Res-UNet achieves the similar accuracy of 98.41%, but has a slightly higher loss of 1.09%.
• The attention Res-UNet has the accuracy of 98.28% and the highest loss of 1.44%.
In summary, the results show that each model excels in the following different aspects.
• The  UNet  demonstrates  the  high  accuracy,  low  loss,  and  strong  performance  in  capturing  the  back-

ground, myocardium, and LV cavity classes.
• The Res-UNet achieves high precision and recall for the RV cavity, and the highest dice coefficient for class

1 (RV cavity).
• The attention Res-UNet excels in precision and recall for the LV cavity and class 3 (LV cavity).

6.3.1. Discussion

Figure 12 shows four examples with the given image and ground truth mask followed by predictions from the
three models.
 
 

Figure 12.  Segmentation  results  by  the  three  models  for  four  different  examples,  from  left  to  right  are  the  input
images, ground-truth, segmentation results by UNet, Res-UNet and Attention Res-UNet.

 

The  trained  models  (the  UNet,  Res-UNet,  and  attention  Res-UNet)  exhibit  acceptable  results  in  producing
masks  similar  to  the  ground  truth  in  the  multi-class  image  segmentation  task,  involving  the  classes  myocardium
(Class 2), LV cavity (Class 3), and RV cavity.

All three models generally perform well in producing accurate image segmentation masks, particularly for the
Myocardium (Class 2) and LV cavity (Class 3), due to the abundance of training examples and distinctive features.
Note that all models struggle with the underrepresented RV cavity class (Class 1), resulting in frequent misclassifica-
tions, likely due to the limited training data of this class.

Despite these challenges, the UNet outperforms other models in capturing Class 1 pixels. This may be attributed
to the UNet’s lower focal loss score for Class 0, indicating that the problem of class imbalance is well handled and
the focus is enhanced on the RV cavity class.

In summary,  the models  encounter  typical  challenges associated with imbalanced class  distributions in multi-
class  image  segmentation.  The  models  excel  with  well-represented classes,  but  face  difficulties  with  underrepre-
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sented ones. The UNet shows promise in handling the imbalance problem, and techniques such as class balance and
data augmentation could enhance performance across all classes.

7. Conclusions

In this paper,  we have evaluated the performances of the UNet, Res-UNet and attention Res-UNet in solving
three problems of  the brain tumor,  polyp and multi-label  heart  segmentation.  All  models  have achieved acceptable
segmentation results when compared to the ground-truth provided by the datasets. Differences are visible when the
target masks become more complex in nature. The key findings of the study have been summarised as follows.

1) The UNet often misclassifies target classes as the background when overall target pixels are relatively small
such as brain tumors or small  polyp segments.  The UNet also struggles with target segmentation when mask edge
boundaries are intricate in nature. This points to the limitations of the UNet such as the vanishing gradient problem
and the inability to put focus on hard-to-classify pixels.

2) The Res-Unet and attention Res-Unet are more suitable in handling complex and irregular structures, as both
models are able to capture the complex boundaries in most cases. This is indicative of the residual connections intro-
duced in the two models, and this mitigates the vanishing gradient problem.

3)  The  attention  Res-Unet  is  more  effective  at  tackling  the  problem  of  class  imbalance,  as  it  consistently
achieves high recall  values when solving all  tasks.  The model  is  able to predict  more refined masks in most  cases
compared  to  the  Res-UNet.  Multi-label  heart  segmentation  enforces  these  theories,  as  the  mask  images  are  less
imbalanced compared to other cases, resulting in higher performances than the standard UNet model. The Res-Unet
and attention Res-UNet perform similarly due to the exclusion of major classes under-representation. One of the three
classes is often misclassified due to its scarcity in most of the images in the dataset. This indicates that datasets need
to be more inclusive of all classes in order to make these robust models perform at their full potentials.

We have investigated three UNet architectures and applied them to solve three medical imaging problems. This
is somewhat limited due to time constraints.  In the future, more architectures will  be explored, and more problems
will  be  investigated.  Other  issues  will  also  be  investigated  in  future  studies,  such  as  the  models'  performance  on
images with different levels of noises and artifacts, the data augmentation techniques to improve the models' general-
isation ability, and the feasibility and advantages of adopting transfer learning techniques [56, 57],

The implications of this work extend beyond the immediate research domain. This work sets a modern bench-
mark for segmentation techniques in the medical field, and offers future researchers valuable insights into the critical
factors when applying the UNet,  its  variants  and other deep learning methodologies to medical  image analysis.  To
enhance  this  study,  future  work could  focus  on the  application  of  the  aforementioned models  to  three-dimensional
medical images, as many medical datasets are inherently three-dimensional. Additionally, involving medical special-
ists  in  evaluating  segmentation  outputs  could  provide  more  refined  and  clinically  relevant  assessment.  More  loss
functions and their effect on these models can be explored, thus adding to the reliability of the study and these mod-
els. Similar studies on more extensions of the UNet and the corresponding suitability can also be explored to enrich
concrete guidelines.
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