
Citation: Zhao, R.; Luo, C.; Gao, F.;

Gao, Z.; Li, L.; Zhang, D.; Yang, W.

Application-Layer Anomaly Detection

Leveraging Time-Series Physical

Semantics in CAN-FD Vehicle

Networks. Electronics 2024, 13, 377.

https://doi.org/10.3390/

electronics13020377

Academic Editor: Myung-Sup Kim

Received: 5 December 2023

Revised: 10 January 2024

Accepted: 15 January 2024

Published: 16 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Application-Layer Anomaly Detection Leveraging Time-Series
Physical Semantics in CAN-FD Vehicle Networks
Rui Zhao 1, Cheng Luo 2, Fei Gao 1,3,* , Zhenhai Gao 1,3, Longyi Li 1, Dong Zhang 4 and Wengang Yang 5

1 College of Automotive Engineering, Jilin University, Changchun 130025, China; rzhao@jlu.edu.cn (R.Z.);
gaozh@jlu.edu.cn (Z.G.); lilongyi2001@163.com (L.L.)

2 School of Automotive Studies, Tongji University, Shanghai 201804, China; cluo@tongji.edu.cn
3 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
4 Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, UK;

dong.zhang@brunel.ac.uk
5 Ji Hua Laboratory, Foshan 528251, China; yangwg@jihualab.ac.cn
* Correspondence: gaofei123284123@jlu.edu.cn

Abstract: The Controller Area Network with Flexible Data-Rate (CAN-FD) bus is the predominant
in-vehicle network protocol, responsible for transmitting crucial application semantic signals. Due to
the absence of security measures, CAN-FD is vulnerable to numerous cyber threats, particularly those
altering its authentic physical values. This paper introduces Physical Semantics-Enhanced Anomaly
Detection (PSEAD) for CAN-FD networks. Our framework effectively extracts and standardizes
the genuine physical meaning features present in the message data fields. The implementation
involves a Long Short-Term Memory (LSTM) network augmented with a self-attention mechanism,
thereby enabling the unsupervised capture of temporal information within high-dimensional data.
Consequently, this approach fully exploits contextual information within the physical meaning
features. In contrast to the non-physical semantics-aware whole frame combination detection method,
our approach is more adept at harnessing the physical significance inherent in each segment of the
message. This enhancement results in improved accuracy and interpretability of anomaly detection.
Experimental results demonstrate that our method achieves a mere 0.64% misclassification rate for
challenging-to-detect replay attacks and zero misclassifications for DoS, fuzzing, and spoofing attacks.
The accuracy has been enhanced by over 4% in comparison to existing methods that rely on byte-level
data field characterization at the data link layer.

Keywords: anomaly detection; physical semantics; timing prediction; CAN-FD

1. Introduction

With the progression of information technology and the rise of the Internet of Things
(IoT), intelligent connected vehicles (ICVs) have emerged as the forefront of automobile
evolution. ICVs represent a next-generation breed of vehicles, outfitted with cutting-edge
chips and sensors, seamlessly integrated with the Internet, and endowed with sophisticated
environmental perception and advanced intelligent control systems. As vehicle interfaces
proliferate and the frequency of information exchange between automotive systems and
the external environment intensifies, the vulnerability of the automobile network to hacker
intrusions significantly escalates. The in-vehicle Controller Area Network with Flexible
Data-Rate (CAN-FD) network plays a pivotal role in facilitating real-time data exchange
among multiple sensors, actuators, and ECUs situated within critical subsystems. This
network is responsible for transmitting crucial physical information, such as vehicle speed,
brake pressure, and the operational status of each subsystem. Vehicle manufacturers
segment this data into distinct fields within the CAN-FD payload in accordance with
application layer requirements. Consequently, a single CAN-FD data frame can encapsulate
multiple physical attributes.

Electronics 2024, 13, 377. https://doi.org/10.3390/electronics13020377 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020377
https://doi.org/10.3390/electronics13020377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4195-5033
https://doi.org/10.3390/electronics13020377
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020377?type=check_update&version=1

Electronics 2024, 13, 377 2 of 24

Potential security vulnerabilities in ICVs enable attackers to breach the CAN-FD net-
work, gaining access to essential ECUs for the purpose of reading and writing through
external interfaces, including physical connections (e.g., OBD II and cellular interfaces),
short-range wireless connections (e.g., Bluetooth and Wi-Fi), and long-range wireless con-
nections (e.g., over-the-air updates and GPS), as illustrated in Figure 1. Such compromise
could impact specific services within the vehicle, such as the powertrain and body/chassis
server. Given that CAN-FD messages encapsulate a substantial amount of information with
tangible physical significance, this information is integral for actuator control. Moreover,
due to the absence of robust security mechanisms, CAN-FD networks remain susceptible to
a range of attacks, including denial-of-service (DoS) attacks [1], fuzzing attacks [2,3], replay
attacks [4,5], and spoofing attacks [6]. These attacks involve injecting attack messages to
manipulate their authentic physical meaning. In Figure 1, the first 16 bits of the message
with ID 0x304 have been tampered with. Its physical meaning is linked to the speed of the
vehicle and, in accordance with the communication matrix definition, can be translated into
a speed signal value. The last frame with ID 0x304 in the message corresponds to a vehicle
speed of 5.76 m/s. However, the tampered message now corresponds to a vehicle speed of
22.76 m/s, introducing a potential risk of loss of speed control and posing a grave threat to
vehicle safety. To ensure the stability and safety of vehicle operations, it is imperative to
detect anomalies within the CAN-FD network, particularly focusing on any irregularities
in the physical characteristics associated with each field in the CAN-FD message. This
aspect is fundamental to maintaining the normal functionality of vehicle operations.

Electronics 2024, 13, x FOR PEER REVIEW 2 of 24

accordance with application layer requirements. Consequently, a single CAN-FD data
frame can encapsulate multiple physical attributes.

Potential security vulnerabilities in ICVs enable attackers to breach the CAN-FD net-
work, gaining access to essential ECUs for the purpose of reading and writing through
external interfaces, including physical connections (e.g., OBD II and cellular interfaces),
short-range wireless connections (e.g., Bluetooth and Wi-Fi), and long-range wireless con-
nections (e.g., over-the-air updates and GPS), as illustrated in Figure 1. Such compromise
could impact specific services within the vehicle, such as the powertrain and body/chassis
server. Given that CAN-FD messages encapsulate a substantial amount of information
with tangible physical significance, this information is integral for actuator control. More-
over, due to the absence of robust security mechanisms, CAN-FD networks remain sus-
ceptible to a range of attacks, including denial-of-service (DoS) attacks [1], fuzzing attacks
[2,3], replay attacks [4,5], and spoofing attacks [6]. These attacks involve injecting attack
messages to manipulate their authentic physical meaning. In Figure 1, the first 16 bits of
the message with ID 0x304 have been tampered with. Its physical meaning is linked to the
speed of the vehicle and, in accordance with the communication matrix definition, can be
translated into a speed signal value. The last frame with ID 0x304 in the message corre-
sponds to a vehicle speed of 5.76 m/s. However, the tampered message now corresponds
to a vehicle speed of 22.76 m/s, introducing a potential risk of loss of speed control and
posing a grave threat to vehicle safety. To ensure the stability and safety of vehicle opera-
tions, it is imperative to detect anomalies within the CAN-FD network, particularly focus-
ing on any irregularities in the physical characteristics associated with each field in the
CAN-FD message. This aspect is fundamental to maintaining the normal functionality of
vehicle operations.

Figure 1. In-vehicle network architecture and attack surface: The CAN/CAN-FD bus functions as
the primary network application in both the powertrain and body/chassis domains within in-vehicle
network architectures, exposing attack surfaces to potential threats, including near-physical contact,
short-range wireless, and long-range wireless attacks.

Numerous studies have applied cryptographic algorithms, such as digital signatures,
encryption, and message authentication codes, to improve message security in both CAN-
FD and its foundational version, CAN. Farag [7] employs synchronized key generators
across all nodes to dynamically alter the symmetric key, facilitating the encryption of the
8-byte payload data of a CAN message. This algorithm ensures the uniqueness of the en-
crypted message at any given time, rendering it effective in preventing replay attacks. Jo
et al. [8] propose the MAuth-CAN authentication protocol to counter masquerade attacks
on the CAN bus. Xie et al. [9] enhance security by incorporating message authentication
codes into CAN-FD messages, achieved by promptly discarding most sequences to

Figure 1. In-vehicle network architecture and attack surface: The CAN/CAN-FD bus functions as
the primary network application in both the powertrain and body/chassis domains within in-vehicle
network architectures, exposing attack surfaces to potential threats, including near-physical contact,
short-range wireless, and long-range wireless attacks.

Numerous studies have applied cryptographic algorithms, such as digital signatures,
encryption, and message authentication codes, to improve message security in both CAN-
FD and its foundational version, CAN. Farag [7] employs synchronized key generators
across all nodes to dynamically alter the symmetric key, facilitating the encryption of the
8-byte payload data of a CAN message. This algorithm ensures the uniqueness of the
encrypted message at any given time, rendering it effective in preventing replay attacks.
Jo et al. [8] propose the MAuth-CAN authentication protocol to counter masquerade attacks
on the CAN bus. Xie et al. [9] enhance security by incorporating message authentication
codes into CAN-FD messages, achieved by promptly discarding most sequences to es-
tablish a lower bound for the on-board application and employing a generous interval
from the lower bound to the deadline. Subsequently, they introduced the two-pointer
moving rule to dynamically adjust the message authentication code size of each CAN-FD
message, ensuring real-time performance [10]. However, the communication overhead

Electronics 2024, 13, 377 3 of 24

associated with these techniques is generally high, posing challenges for their deployment
in demanding real-time CAN bus networks.

In recent years, numerous intrusion detection algorithms have been proposed for CAN
buses, categorized into periodicity-based and data-domain-based methods based on their
detection scope and foundation. Periodicity-based methods leverage the regularity of CAN
messages to identify potential anomalous behaviors within the CAN bus. Electronic Control
Units (ECUs) typically generate CAN messages at specific frequencies, and deviations in
message transmission frequency [11,12] or arrival interval time [13,14] can signal potential
anomalies introduced by external attackers injecting messages. Normal, attack-free CAN
messages exhibit standard or stable entropy, leading some researchers to propose entropy-
based methods for anomaly detection in CAN [15,16]. External attacks on the CAN bus can
induce abnormal changes in the physical attributes of the ECU, prompting the utilization
of clock drift [17,18], clock skew [19], or voltage [20–22] of the ECU for anomaly detection.
Olufowobi et al. [23] detect anomalies in the network based on the real-time schedulable
response time of the CAN bus, while Marchetti et al. [24] construct transformation matrices
using a standard CAN dataset, comparing sequences of attacked CAN message IDs to
detect attacks. Yu et al. [25] establish and validate the network topology through simple
random wandering-based network topology to identify external intrusion devices. Despite
their effectiveness in determining the normality of message periodic properties, the afore-
mentioned periodicity-based methods cannot identify anomalies within the data domain
of the message.

Data-field-based anomaly detection methods identify anomalies by predicting the data
fields of the message. Wang et al. [26] introduce an anomaly detection method based on
hierarchical temporal memory (HTM) learning, wherein pre-decoded binary data streams
are input into individual data sequence predictors. The output predictions are subsequently
processed by an anomaly scoring mechanism. Taylor et al. [27] employ an LSTM network on
CAN message data fields for prediction, utilizing prediction errors as signals for anomaly
detection in the sequence. Dong et al. [28] construct a multi-observation Hidden Markov
Model (HMM) based on the ID and data fields of normal CAN bus traffic. This model
calculates the probability of frame existence within a defined time window and identifies
anomalies based on whether the probability exceeds a threshold value. Zhang et al. [29]
develop the CAN message graph, integrating statistical message sequences with message
contents to construct and train Graph Neural Networks (GNNs) suitable for directed
attribute graphs to predict intrusions. However, the aforementioned data-domain-based
anomaly detection methods typically rely on the entire frame or individual bytes within
the frame as the detection unit, resulting in a coarser detection granularity or potential
segmentation of the complete physical meaning of the application. This may impede the
machine’s ability to effectively learn and comprehend relevant physical features, posing
challenges to improving detection accuracy.

CAN-FD presents clear advantages over CAN, including elevated data transfer rates,
expanded data frames, and flexible data rates, positioning CAN-FD as a gradual replace-
ment for conventional CAN. Current anomaly detection endeavors have concentrated on
traditional CAN, with minimal consideration directed towards CAN-FD. The increased
size of data frames implies that CAN-FD harbors greater physical meaning within its data
fields. Given that each distinct physical meaning exhibits a unique pattern of variation,
approaching the comprehensive data frame as a singular unit for detection poses a chal-
lenge in precisely delineating the normal and abnormal characteristics inherent in this
heterogeneous application data. To enhance the precision and granularity of anomaly
discrimination in CAN-FD networks, a shift from the data link layer to a higher network
application layer is essential. Fine-grained detection for each application’s physical field
within the CAN-FD data frame becomes necessary to accurately identify anomalies in the
genuine physical meaning of each key feature. As a result, a Physical Semantics-Enhanced
Anomaly Detection (PSEAD) method for CAN-FD data fields is proposed.

The contributions of this paper can be summarized as follows:

Electronics 2024, 13, 377 4 of 24

1. Utilizing distinct physical meaning extraction rules for various ID messages, this
approach extracts the genuine physical meaning features present in the data fields of
CAN-FD messages. This enables the model to effectively identify abnormal variations
in the vehicle’s key physical parameters. Additionally, based on the number of
data types, the features associated with different CAN-FD IDs are reorganized and
consolidated. The rearranged features undergo one-hot encoding and minimum-
maximum scaling, significantly mitigating the dimensionality expansion introduced
by one-hot encoding while preserving the numerical relationships intrinsic to the
physical meanings.

2. A novel CAN-FD timing prediction model, Multiple self-attention mechanisms for
time-series prediction, which combines the multi-head self-attention mechanism
with an LSTM network, is introduced. This model is well-suited for forecasting
the physical meaning of CAN-FD messages, offering lower computational overhead
and excellent real-time performance. By incorporating the multi-head self-attention
mechanism, the model adeptly directs its attention to various segments within the
input sequence, facilitating the acquisition of temporal feature representations across
distinct hierarchical levels and granularities. This architectural choice empowers the
model to holistically capture sequence information, thereby enhancing the precision
of abnormal traffic detection within CAN-FD networks.

3. Differing from data sources generated in simulated environments, our approach for
the first time employs a dataset collected from an actual vehicle, utilizing a gen-
uine communication protocol matrix to parse the physical meanings in CAN-FD
messages. Meanwhile, attack datasets were curated by considering the mechanisms
and distinctive characteristics of various attack methods. The experimental out-
comes demonstrate that our method attains an accuracy improvement exceeding
4% when compared with the non-physical content-aware whole-frame combination
detection method.

The remainder of this paper is structured as follows: Section 2 provides an overview
of the CAN-FD message data frame composition, in-vehicle network architecture, various
types of attacks, and problem definitions; Section 3 outlines the data preprocessing methods
and delineates the construction of the attack dataset; Section 4 delves into the intricate
design particulars of the constructed multiple self-attention mechanisms for the time-series
prediction model; Section 5 focuses on the performance evaluation of the anomaly detection
model; and, finally, the paper draws its conclusions in Section 6.

2. Background Information and Problem Definition
2.1. CAN-FD Background

As automotive electronic systems have grown in complexity, the traditional CAN bus
protocol has faced limitations in terms of bandwidth and transmission rate. In response,
CAN-FD was developed as an extension of CAN. CAN-FD offers support for data phase
bit rates of up to 10 Mbps, accompanied by 64-byte payloads for messages. This extension
of data fields [30] empowers CAN-FD with several advantages over CAN, including faster
object pool transfer, reduced bus load usage, shorter worst-case response times, and lower
jitter [31]. These characteristics render CAN-FD particularly well-suited for application
scenarios where substantial data transfer is required, such as Advanced Driver Assistance
Systems (ADAS) and autonomous driving. The composition of a complete CAN-FD
standard data frame, as shown in Figure 2, comprises several key components:

Electronics 2024, 13, 377 5 of 24Electronics 2024, 13, x FOR PEER REVIEW 5 of 24

Figure 2. CAN-FD frame structure and physical meaning of the data field.

• Start of Frame (SOF): This signals the beginning of data frame transmission.
• Arbitration Field: This field consists of the ID identifier and the RRS bit, which serve

as the identification number of the receiving ECU and indicate the message’s priority.
Generally, a lower ID value indicates a higher message priority.

• Control Field: This section provides control over various aspects of the data frame.
• Data Field: The core part of the message, it carries the actual data and is interpreted

by the receiving ECU to discern its true physical meaning. In the case of CAN-FD,
this field can hold up to 64 bytes of data.

• CRC Check Field: This field aids in detecting transmission errors. The sending node
computes the CRC value and places it in this field, while the receiving node calculates
the CRC using the same algorithm and compares it with the received CRC value to
determine the accuracy of the message transmission.

• ACK Answer Field: All receiving nodes provide an ACK response to confirm
whether the data frame was transmitted correctly.

• End of Frame (EOF): This bit marks the conclusion of the data frame.
Within the in-vehicle network, communication protocols such as CAN-FD primarily

operate at the physical layer and data link layer. Automakers typically need to construct
application layer protocols atop the data link layer. These three layers collaborate to facil-
itate the exchange of data and information among the internal components of the vehicle
system connected to the CAN-FD network. The application layer protocol is responsible
for defining and overseeing the data to be transmitted. For instance, it establishes the ID
and the rules for the division and filling of the data domain fields. Additionally, it conveys
information regarding the true physical significance of the vehicle’s speed, engine rpm,
and brake pressure. To enhance cost-effectiveness, resource utilization, and network
maintenance, it is often necessary to aggregate multiple signals interacting with the same
ECU into a single CAN-FD frame, as illustrated in Figure 2. For instance, a message with
ID 0x010 encompasses data such as shift, motor feedback speed, and torque. Both the
sender and receiver of a CAN-FD message interpret the data based on a universal com-
munication matrix. The sender of the message with ID 0x010 is the ECU responsible for
powertrain, while the receivers include the ECUs associated with engine control and
transmission control. The physical and data link layer communication capabilities pro-
vided by CAN-FD are then utilized to transmit this data.

2.2. Type of Attack
The broadcast nature of the CAN-FD network allows all ECUs connected to the bus

to access the transmitted messages in the network. Upon receiving a CAN-FD message,
each ECU arbitrates whether to accept the message based on its ID. However, the ID alone

Figure 2. CAN-FD frame structure and physical meaning of the data field.

• Start of Frame (SOF): This signals the beginning of data frame transmission.
• Arbitration Field: This field consists of the ID identifier and the RRS bit, which serve

as the identification number of the receiving ECU and indicate the message’s priority.
Generally, a lower ID value indicates a higher message priority.

• Control Field: This section provides control over various aspects of the data frame.
• Data Field: The core part of the message, it carries the actual data and is interpreted

by the receiving ECU to discern its true physical meaning. In the case of CAN-FD, this
field can hold up to 64 bytes of data.

• CRC Check Field: This field aids in detecting transmission errors. The sending node
computes the CRC value and places it in this field, while the receiving node calculates
the CRC using the same algorithm and compares it with the received CRC value to
determine the accuracy of the message transmission.

• ACK Answer Field: All receiving nodes provide an ACK response to confirm whether
the data frame was transmitted correctly.

• End of Frame (EOF): This bit marks the conclusion of the data frame.

Within the in-vehicle network, communication protocols such as CAN-FD primarily
operate at the physical layer and data link layer. Automakers typically need to construct
application layer protocols atop the data link layer. These three layers collaborate to facili-
tate the exchange of data and information among the internal components of the vehicle
system connected to the CAN-FD network. The application layer protocol is responsible
for defining and overseeing the data to be transmitted. For instance, it establishes the
ID and the rules for the division and filling of the data domain fields. Additionally, it
conveys information regarding the true physical significance of the vehicle’s speed, engine
rpm, and brake pressure. To enhance cost-effectiveness, resource utilization, and network
maintenance, it is often necessary to aggregate multiple signals interacting with the same
ECU into a single CAN-FD frame, as illustrated in Figure 2. For instance, a message with ID
0x010 encompasses data such as shift, motor feedback speed, and torque. Both the sender
and receiver of a CAN-FD message interpret the data based on a universal communication
matrix. The sender of the message with ID 0x010 is the ECU responsible for powertrain,
while the receivers include the ECUs associated with engine control and transmission
control. The physical and data link layer communication capabilities provided by CAN-FD
are then utilized to transmit this data.

2.2. Type of Attack

The broadcast nature of the CAN-FD network allows all ECUs connected to the bus
to access the transmitted messages in the network. Upon receiving a CAN-FD message,
each ECU arbitrates whether to accept the message based on its ID. However, the ID alone

Electronics 2024, 13, 377 6 of 24

cannot authenticate the origin of a CAN-FD message without supplementary security
measures. Attackers can exploit this security vulnerability to inject abnormal traffic into the
CAN-FD network through various wired and wireless connections, posing a grave threat
to vehicle security. Common attacks on CAN-FD networks encompass the following:

• DoS Attack: Crafted with the intent to impede authorized entities from accessing
resources or to introduce delays in the operation of time-critical systems [32]. This
disrupts the ability of other ECUs in the vehicle to process legitimate messages prop-
erly, potentially leading to interference, blockage, or paralysis of the CAN-FD bus.
Consequently, the vehicle may become unable to function normally or carry out
essential tasks.

• Fuzzing Attack: Involves the injection of randomly or semi-randomly generated data
into a target system, aimed at scrutinizing the system’s response under the influence
of anomalous or invalid inputs [33]. This is achieved by sending a large number of
abnormal or random CAN-FD messages, which can result in erratic vehicle behavior.
Symptoms may include actions such as steering wheel shaking, irregular activation of
signal lights, or unexpected gear shifting [2].

• Replay Attack: Involves the recording of data from a node over a specific time interval,
followed by its subsequent replay at a later point in time [34]. Legitimate CAN-FD
messages are intercepted and subsequently resent to the CAN-FD bus to execute
malicious operations or disrupt the vehicle’s normal operation. This can lead to the
repetition of actions or inappropriate operations by the vehicle system, potentially
endangering vehicle safety.

• Spoofing Attack: By transmitting counterfeit data frames to the targeted node with
the aim of impersonating legitimate data or commands from an authentic source [35].
By simulating legitimate ECU communication through forged CAN-FD messages,
attackers can spoof other ECUs or the vehicle control system. This can result in
a loss of control over the vehicle, unintended operations, or confusion within the
vehicle’s systems.

2.3. Problem Definition

The anomaly detection challenge in the CAN-FD network can be addressed by employ-
ing a network model that has acquired knowledge of typical timing variations to forecast
messages. If the variance between the observed message and the predicted outcome is sub-
stantial, it can be inferred that an anomaly exists within the observed message. Assuming
the training dataset is denoted as Ms, the feature extraction process can be represented
as follows:

Xs = Φ(Ms) (1)

where Xs represents the features extracted from the training set and Φ denotes the feature
extraction function. The process of training the network model, denoted as Ψ, can be
expressed as follows:

∼
Ψ = Γ(Ψ, Xs) (2)

where Ψ represents the initial network model,
∼
Ψ stands for the trained network model, and

Γ symbolizes the training process. Assuming that a specific count of CAN-FD messages
before the moment t is represented as lt, where the feature Xin,t = Φ(lt), and a specific count
of CAN-FD messages after the moment t is denoted as lt+1, with the feature Xout,t = Φ(lt+1).

The prediction of the message change utilizing
∼
Ψ can be expressed as follows:

∼
Xout,t =

∼
Ψ(Xin,t) (3)

Electronics 2024, 13, 377 7 of 24

where
∼
Xout,t represents the anticipated feature of the CAN-FD message at a subsequent

time interval, the loss value is computed by comparing
∼
Xout,t with Xout,t:

θt = Loss
(∼

Xout,t, Xout,t

)
(4)

The threshold is defined as θ; if θt < θ, Mt+1 is considered normal, otherwise, an
anomaly is detected.

3. Data Preprocessing
3.1. Data Acquisition

The initial attack-free CAN-FD dataset MBenign =
(

m1, m2, . . . , mNBenign

)T
was gath-

ered, comprising all CAN-FD messages transmitted on the vehicle’s CAN bus during a
specific time interval. This dataset includes information such as timestamps of CAN-FD
messages, IDs, data fields, and their lengths. The distribution of individual ID messages
is illustrated in Figure 3a, while the variation in different CAN ID data fields is depicted
in Figure 3b. To facilitate training and testing, part of the originally collected CAN-FD
dataset is partitioned into the training set Ms = (ms,1, ms,2, . . . , ms,Ns)

T , while the remaining
data is designated as the test set Mt = (mt,1, mt,2, . . . , mt,Nt)

T . Here, m signifies a frame
of message instances, and ms and mt represent message instances in the training and test
sets, respectively.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 24

where 𝑿෩௨௧,௧ represents the anticipated feature of the CAN-FD message at a subsequent
time interval, the loss value is computed by comparing 𝑿෩௨௧,௧ with 𝑿௨௧,௧: 𝜃௧ = 𝐿𝑜𝑠𝑠൫𝑿෩௨௧,௧, 𝑿௨௧,௧൯ (4)

The threshold is defined as 𝜃; if 𝜃௧ < 𝜃, 𝑴௧ାଵ is considered normal, otherwise, an
anomaly is detected.

3. Data Preprocessing
3.1. Data Acquisition

The initial attack-free CAN-FD dataset 𝑴 = ቀ𝑚ଵ, 𝑚ଶ, . . . , 𝑚ேಳቁ்
 was gath-

ered, comprising all CAN-FD messages transmitted on the vehicle’s CAN bus during a
specific time interval. This dataset includes information such as timestamps of CAN-FD
messages, IDs, data fields, and their lengths. The distribution of individual ID messages
is illustrated in Figure 3a, while the variation in different CAN ID data fields is depicted
in Figure 3b. To facilitate training and testing, part of the originally collected CAN-FD
dataset is partitioned into the training set 𝑴௦ = ൫𝑚௦,ଵ, 𝑚௦,ଶ, . . . , 𝑚௦,ேೞ൯், while the remain-
ing data is designated as the test set 𝑴௧ = ൫𝑚௧,ଵ, 𝑚௧,ଶ, . . . , 𝑚௧,ே൯் . Here, 𝑚 signifies a
frame of message instances, and 𝑚௦ and 𝑚௧ represent message instances in the training
and test sets, respectively.

(a) (b)

Figure 3. Examples of the distribution of messages with varying IDs in the training set and changes
in data fields: (a) various colors depict the distribution of messages with distinct IDs within the
training set; (b) various colors represent alterations in the corresponding bits within the data field.
Light yellow signifies that the bit remains consistently at 0, dark blue indicates that the bit remains
consistently at 1, while other colors denote bits that are subject to change.

3.2. Data Augmentation
Data augmentation is a technique that expands the volume of trainable data by in-

troducing modified versions of existing data or generating new data based on the existing
dataset [36]. In our work, data augmentation was applied to the training set by altering
the sliding step size of the original time-series data window and changing the sequence
order of the original time-series data. Data augmentation effectively amplifies the diver-
sity of data, intending to empower the model to grasp the inherent data domain invariants
more adeptly [37]. This augmentation not only boosts the model’s generalization capabil-
ities but also fortifies its robustness, thereby mitigating the risk of overfitting. The size of
the sliding window for the input message sequence of the training set, denoted as 𝑳௦, is
represented by 𝑢, and the sliding step is denoted as 𝑧. Additionally, the size of the output
message sequence 𝑳௦௨௧, is represented as 𝑣. In this context, the following relationships
apply: 𝑳௦ = ൫𝒍௦,ଵ , 𝒍௦,ଶ , … , 𝒍௦, ൯் (5)

Figure 3. Examples of the distribution of messages with varying IDs in the training set and changes
in data fields: (a) various colors depict the distribution of messages with distinct IDs within the
training set; (b) various colors represent alterations in the corresponding bits within the data field.
Light yellow signifies that the bit remains consistently at 0, dark blue indicates that the bit remains
consistently at 1, while other colors denote bits that are subject to change.

3.2. Data Augmentation

Data augmentation is a technique that expands the volume of trainable data by intro-
ducing modified versions of existing data or generating new data based on the existing
dataset [36]. In our work, data augmentation was applied to the training set by altering the
sliding step size of the original time-series data window and changing the sequence order
of the original time-series data. Data augmentation effectively amplifies the diversity of
data, intending to empower the model to grasp the inherent data domain invariants more
adeptly [37]. This augmentation not only boosts the model’s generalization capabilities but
also fortifies its robustness, thereby mitigating the risk of overfitting. The size of the sliding
window for the input message sequence of the training set, denoted as Lin

s , is represented
by u, and the sliding step is denoted as z. Additionally, the size of the output message
sequence Lout

s , is represented as v. In this context, the following relationships apply:

Lin
s =

(
lin
s,1, lin

s,2, . . . , lin
s,p

)T
(5)

Electronics 2024, 13, 377 8 of 24

Lout
s =

(
lout
s,1 , lout

s,2 , . . . , lout
s,p

)T
(6)

p = ceil
(

Ns − u− v
z

)
(7)

where lin
s,i and lout

s,i (i ∈ [1,2, . . ., p]) represent pairs of lin
s,i and lout

s,i corresponding to each
other’s input and output sequences, respectively. The “ceil” function denotes the ceiling
function, which rounds a number up to the nearest integer. These relationships satisfy the
following conditions:

lin
s,i = (ms,1+iz, ms,2+iz, . . . , ms,u+iz)

T (8)

lout
s,i = (ms,1+u+iz, ms,2+u+iz, . . . , ms,v+u+iz)

T (9)

The sliding interval of the window can be controlled by employing various step sizes zi
(where i ∈ [1,2, . . ., Nstep], and Nstep represents the total number of steps). In this manner, a
broader range of input sequences Lin

s,zi
and corresponding target output sequences Lout

s,zi
can

be generated based on the original data. This variation in step sizes allows for the creation
of multiple input-output sequence pairs, providing a more diverse set of training data.

Lin
s,zi

=

ms,1+zi ms,2+zi
ms,1+2zi ms,2+2zi

· · · ms,u+zi

ms,u+2zi
...

. . .
...

ms,1+lzi
ms,2+lzi

· · · ms,u+lzi

 (10)

Lout
s,zi

=

ms,1+u+zi ms,2+u+zi
ms,1+u+2zi ms,2+u+2zi

· · · ms,v+u+zi

ms,v+u+2zi
...

. . .
...

ms,1+u+lzi
ms,2+u+lzi

· · · ms,v+u+lzi

 (11)

The training set data augmentation method is implemented in Algorithm 1, with the
required initialization parameters including the training set Ms, various sliding step sizes
z, the number of shuffle disruptions Nshu f f le, the size of the sliding window u, and the
size of the output sequence v. The algorithm proceeds as follows: It begins by generating
the input sequence Lin

s,zi
and the corresponding output sequence Lout

s,zi
for different sliding

step sizes zi. The input and output sequences created with different sliding steps are
then randomly disrupted in correspondence, with this process being repeated Nshu f f le
times. This operation combines the input and output sequences produced in the previous
step to obtain the data-enhanced input sequence Lin

s,augment and output sequence Lout
s,augment.

For data augmentation of the training set, we employed a sliding window step z = [1–3].
Subsequently, we sequentially merged the datasets generated by these three distinct sliding
window steps. Following this, we subjected the merged dataset to two random disruptions.
Finally, we merged the undisturbed dataset with the dataset generated by the two ran-
dom disruptions, resulting in the ultimate data-augmented dataset. The aforementioned
additions have been annotated in blue within the latest manuscript.

Electronics 2024, 13, 377 9 of 24

Algorithm 1: Data augmentation

Input: Training dataset Ms, different slide step lengths z, number of disruptions Nshu f f le, sliding
window size u, output sequence size v
Output: Input sequence Lin

s,augment and output sequence Lout
s,augment after data augmentation.

Lin
s,augment = empty,Lout

s,augment = empty
For zi in z do:(

Lin
s,zi

, Lout
s,zi

)
←calculate the input sequence and output sequence (Ms, u, v, zi)

append Lin
s,zi
→Lin

s,augment,L
out
s,zi
→Lout

s,augment
End
For k in range

(
Nshu f f le

)
do:(

Lin
s,shu f f lek

, Lout
s,shu f f lek

)
←disrupt in a random and corresponding order(

Lin
s,augment, Lout

s,augment

)
End
For k in range

(
Nshu f f le

)
do:

append Lin
s,shu f f lek

→Lin
s,augment,L

out
s,shu f f lek

→Lout
s,augment

End
Return

(
Lin

s,augment, Lout
s,augment

)
3.3. Construction of the Attack Dataset

Based on the attack characteristics, this section outlines algorithms for generating
attack datasets to simulate scenarios where an attacker conducts DoS, fuzzing, replay, and
spoofing attacks against the CAN-FD network, as depicted in Algorithm 2. The initialization
parameters needed for creating the attack dataset include the test set Mt, the total number
of selected data segments Nattack, the number of messages contained in each data segment
nattack, the range of data frames to be inserted

[
kattack

min , kattack
max

]
, and the attack messages

mattack. To determine the insertion locations of the attack messages, the algorithm starts
by randomly choosing non-overlapping data segments nattack from the test set Mt. These
selected non-overlapping data segments are denoted as Mattack,i

t (i ∈ [1, 2, . . . , Nattack]). Sub-
sequently, the attack dataset Mattack is formed by randomly inserting kattack frames of attack
messages mattack, where kattack is a random number within the range

[
kattack

min , kattack
max

]
, after

each message frame within these data segments. The parameters Nattack, nattack, kattack
min ,

kattack
max , and mattack can be fine-tuned to align with the attack characteristics of various

attack methods.
To create the attack dataset, the principles of different attack methods are followed, and

the appropriate attack messages are injected into the normal dataset at a certain frequency.
We sequentially executed denial-of-service (DoS), fuzzing, replay, and spoofing attacks on
the test set. Furthermore, each of these attack messages is labeled according to the type of
attack to generate the attack dataset. The attack message mattack associated with each attack
exhibits the following characteristics:

DoS attack: This type of attack is designed to disrupt the normal operation of the
system by consuming the bandwidth or resources of the CAN bus. The mattack are charac-
terized by having an ID field of 0x000 with all zero data fields.

Fuzzy Attack: This type of attack involves searching for vulnerabilities or anomalies
within the system by sending specially crafted or randomly generated CAN-FD messages.
The mattack have random ID numbers ranging from 0×000 to 0×7FF, and their data fields
are filled with random data.

Replay Attack: This type of attack imitates legitimate communication by recording or
intercepting a previously legitimate message and then resending it to the bus. The mattack

are identical to the previous frame messages at their insertion locations.

Electronics 2024, 13, 377 10 of 24

Algorithm 2: Attack dataset generation

Input: Test dataset Mt, total number of selected paragraphs Nattack, number of messages in each

data segment nattack, range of frames inserted
[
kattack

min , kattack
max

]
, attack message mattack

Output: Datasets subjected to attack Mattack
t .

Mattack
t = empty(

Mattack,1
t , Mattack,2

t , . . . ,Mattack,Nattack
t

)
←select non-overlapping data segments(

Mt, Nattack, pattack
)

For mt,i in Mt do:
append mt,i→Mattack

t

For mt,i in (Mattack,1
t , Mattack,2

t , . . . ,Mattack,Nattack
t

)
do:

kattack ← random
(

kattack
min , kattack

max

)
For k in range

(
kattack

)
do:

append mattack→Mattack
t

End
End

End
Return Mattack

t

Spoofing Attack: In this type of attack, the vehicle’s system is spoofed by sending
forged CAN-FD data frames. To generate the mattack, the message with a specific ID is
selected from the test set, and a physical feature within the message is chosen. This feature
has a start bit at bstart and an end bit at bend. Prior to the insertion point of the mattack, the
nearest normal message mBenign with the same ID is searched for, and the data within the
range of [bstart, bend] of mBenign is modified to create the mattack. To ensure that the generated
attack message closely simulates the scenario where an attacker performs a spoofing attack,
it is crucial to make the modified feature value, xSpoo f ing, sufficiently different from the
original normal feature value, xBenign. Therefore, the provision:

xSpoo f ing =

{
xmax xBenign ≤ 1

2 xmax
0 xBenign > 1

2 xmax
(12)

To simulate the DoS attack scenario, six data segments, each containing 100 frames
of messages, were randomly selected from the original test set. Subsequently, 0–6 frames
of the mattack were randomly inserted after each frame in these segments, as depicted in
Figure 4a. To simulate the fuzzy attack scenario, six segments were randomly selected from
the original test set, each containing 100 frames of messages. Subsequently, 0–3 frames
of the mattack were randomly inserted after each frame in every segment, as depicted in
Figure 4b. To simulate the replay attack scenario, five data segments were randomly
selected from the original test set, each containing 120 frames of messages. Furthermore,
0–2 frames of the mattack were then randomly inserted after each frame in every segment,
as illustrated in Figure 4c, to simulate the replay attack scenario. To simulate a spoofing
attack scenario, five data segments were randomly selected from the original test set, each
containing 120 frames. Moreover, 0–2 frames of mattack were then randomly inserted after
each frame in each segment to simulate the spoofing attack scenario. For example, a mattack

can be constructed by modifying bits [20,36] in the data field of the normal message with
the ID of 0x010, which corresponds to the physical quantity of motor feedback torque. This
simulates the scenario of a spoofing attack, as illustrated in Figure 4d.

Electronics 2024, 13, 377 11 of 24Electronics 2024, 13, x FOR PEER REVIEW 11 of 24

(a) (b)

(c) (d)

(e)

Figure 4. Generation of attack dataset: (a) DoS attack, (b) fuzzing attack, (c) replay attack, (d) spoof-
ing attack, and (e) the distribution of attack messages.

4. Physical Semantics-Enhanced Anomaly Detection
4.1. Model Framework

To detect potential anomalous messages in CAN-FD datasets, an innovative CAN-
FD anomaly detection method is introduced, grounded in the genuine physical interpre-
tations of data fields. The schematic representation of this framework is visually depicted
in Figure 5, comprising four integral components: extraction and standardization of fea-
tures, model training, and anomaly evaluation. Initially, feature extraction involves the
extraction of authentic physical meaning features pertinent to various ID messages within
the dataset, adhering to predefined extraction rules for each ID message. Subsequently,
feature standardization entails the expansion of feature counts for all ID messages to align
with a standardized dimension denoted as 𝑞, where 𝑞 signifies the maximum feature
count value across all ID messages. The aforementioned features are subsequently restruc-
tured, consolidated, and normalized to correspond to the number of feature types within 𝑴௦. The same feature extraction procedure is applied to each frame, yielding the concate-
nated input sequence 𝑿 and output sequence 𝑿௨௧ . Model training is facilitated
through the utilization of 𝑿 and 𝑿௨௧ for multiple self-attention mechanisms for time-
series prediction model training. Anomaly evaluation requires the prediction of timing
features using the trained multiple self-attention mechanisms for the time-series

Figure 4. Generation of attack dataset: (a) DoS attack, (b) fuzzing attack, (c) replay attack, (d) spoofing
attack, and (e) the distribution of attack messages.

4. Physical Semantics-Enhanced Anomaly Detection
4.1. Model Framework

To detect potential anomalous messages in CAN-FD datasets, an innovative CAN-FD
anomaly detection method is introduced, grounded in the genuine physical interpretations
of data fields. The schematic representation of this framework is visually depicted in
Figure 5, comprising four integral components: extraction and standardization of features,
model training, and anomaly evaluation. Initially, feature extraction involves the extrac-
tion of authentic physical meaning features pertinent to various ID messages within the
dataset, adhering to predefined extraction rules for each ID message. Subsequently, feature
standardization entails the expansion of feature counts for all ID messages to align with
a standardized dimension denoted as q, where q signifies the maximum feature count
value across all ID messages. The aforementioned features are subsequently restructured,
consolidated, and normalized to correspond to the number of feature types within Ms.
The same feature extraction procedure is applied to each frame, yielding the concatenated
input sequence Xin and output sequence Xout. Model training is facilitated through the
utilization of Xin and Xout for multiple self-attention mechanisms for time-series predic-
tion model training. Anomaly evaluation requires the prediction of timing features using
the trained multiple self-attention mechanisms for the time-series prediction model and

Electronics 2024, 13, 377 12 of 24

determines whether an anomaly has occurred by comparing the difference between the
predicted features and the actual features to determine whether the difference exceeds the
threshold value.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 24

prediction model and determines whether an anomaly has occurred by comparing the
difference between the predicted features and the actual features to determine whether
the difference exceeds the threshold value.

Figure 5. The CAN-FD anomaly detection framework based on genuine physical implications.

4.2. Extraction and Standardization of Features
The extraction and standardization of genuine physical meaning features were con-

ducted on the training data, as illustrated in Figure 6, and are detailed in Algorithm 3.
This algorithm necessitates initialization parameters, encompassing the training set de-
noted as 𝑴௦, the rule base for extracting genuine physical meaning features from various
ID messages represented as 𝓡, the filler feature 𝑓, and the maximum number of genu-
ine physical meaning features 𝑞. For each frame of messages within the training set 𝑴௦,
the genuine physical meaning features were extracted based on their corresponding ID,
following the extraction rule 𝓡 to preserve dataset integrity. In cases where the number
of extracted features fell below 𝑞, the feature count was augmented to 𝑞 using the 𝑓.
Subsequently, the extracted features were organized in descending order, taking into ac-
count the number of data types for each feature within each ID. This arrangement effec-
tively mitigated the dimensionality inflation resulting from subsequent selective thermal
encoding. These rearranged features were also standardized. Finally, eigenvalues for fea-
tures with constant values were aggregated to enhance the model’s capacity to capture
changing patterns in other critical features and to mitigate the risk of overfitting.

Algorithm 3: Feature extraction and standardization

Input: Training dataset 𝑴௦, genuine physical meaning extraction rule base 𝓡,additional feature 𝑓, maximum number of genuine physical meaning features 𝑞

Output: Standardized features 𝑿௦. 𝑿௦ = empty,𝑿௦, = empty

For 𝑚௦, in 𝑴௦ do:

 𝒊𝒅 ← 𝑚௦,
 𝑭 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝓡, 𝒊𝒅, 𝑚௦,)

 If 𝑙𝑒𝑛(𝑭) < 𝑞 then:

 append (𝑞-𝑙𝑒𝑛(𝑭))*𝑓→𝑭

Figure 5. The CAN-FD anomaly detection framework based on genuine physical implications.

4.2. Extraction and Standardization of Features

The extraction and standardization of genuine physical meaning features were con-
ducted on the training data, as illustrated in Figure 6, and are detailed in Algorithm 3. This
algorithm necessitates initialization parameters, encompassing the training set denoted
as Ms, the rule base for extracting genuine physical meaning features from various ID
messages represented as R, the filler feature f f ill , and the maximum number of genuine
physical meaning features q. For each frame of messages within the training set Ms, the gen-
uine physical meaning features were extracted based on their corresponding ID, following
the extraction rule R to preserve dataset integrity. In cases where the number of extracted
features fell below q, the feature count was augmented to q using the f f ill . Subsequently,
the extracted features were organized in descending order, taking into account the number
of data types for each feature within each ID. This arrangement effectively mitigated the
dimensionality inflation resulting from subsequent selective thermal encoding. These
rearranged features were also standardized. Finally, eigenvalues for features with constant
values were aggregated to enhance the model’s capacity to capture changing patterns in
other critical features and to mitigate the risk of overfitting.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 24

 End

 append 𝑭→𝑿௦

End 𝑰𝑫 ← 𝑐𝑜𝑢𝑛𝑡 𝑎𝑙𝑙 𝐼𝐷 𝑡𝑦𝑝𝑒𝑠(𝑴௦)

For 𝒊𝒅 in 𝑰𝑫 do:

 𝑿௦ ←descend order by data type(𝑿௦, 𝒊𝒅)

 𝑿௦ ←standardized(𝑿௦, 𝒊𝒅)

End
For 𝑿௦, in 𝑿௦ do:

 If unique(𝑿௦,)==1 then:

 𝑿௦,+= 𝑿௦,
 drop 𝑿௦,→𝑿௦
 End

End

Return 𝑿௦

Figure 6. The process of extracting genuine physical meaning features.

To standardize the features, a min–max scaling approach is employed. For each fea-
ture type 𝑿, its minimum value 𝑥 and maximum value 𝑥௫ are calculated. Subse-
quently, the feature values 𝑥 within 𝑿 are mapped to 𝑥 using the following equation: 𝑥 = ௫ି௫௫ೌೣି௫ (13)

The features that are incorporated include the message IDs and their corresponding
genuine physical meaning features. Features with a count of variable types not exceeding 𝑛ௗ are encoded uniquely through a thermal encoding method, effectively mitigating
the influence of weight bias and distance metrics. Conversely, for features with a variable
type of count surpassing 𝑛ௗ, their physical-value relationships are maintained to en-
rich the model’s comprehension of their authentic physical meaning features.

It is essential to note that, in cases where a message lacks a corresponding extraction
rule in 𝓡, its features will be populated with 𝑓. During feature rearrangement in the
test set 𝑴௧, the order of rearrangement for each ID and the minimum 𝑥 and maximum 𝑥௫ for each feature type, used for standardization, remain consistent with those from
the training set 𝑴௦.

4.3. Training and Evaluation of Time-Series Prediction Models with Multiple Self-Attention
Mechanisms

To obtain the input and output of the network model, features are extracted from all
messages in the training set, which is denoted as 𝑿௦ = (𝑿௦,ଵ, 𝑿௦,ଶ, . . . , 𝑿௦,). Where 𝑿௦, =(𝑥ଵ,, 𝑥ଶ,, . . . , 𝑥ೄ,)்(𝑖 ∈ ሼ1,2, . . . , 𝑞ሽ), indicating the 𝑖-th class of features extracted from the
message. Meanwhile, 𝑥, (j ∈ {1, 2, ..., 𝑁ௌ}) represents a feature value extracted from the

Figure 6. The process of extracting genuine physical meaning features.

Electronics 2024, 13, 377 13 of 24

Algorithm 3: Feature extraction and standardization

Input: Training dataset Ms, genuine physical meaning extraction rule base R, additional feature
f f ill , maximum number of genuine physical meaning features q
Output: Standardized features Xs.
Xs = empty, Xs,combine = empty
For ms,i in Ms do:

id← ms,i
F← extract f eature

(
R, id, ms,i

)
If len(F) < q then:

append (q-len(F))* f f ill→F
End
append F→Xs

End
ID← count all ID types(Ms)
For id in ID do:

Xs ←descend order by data type (Xs, id)
Xs ← standardized (Xs, id)

End
For Xs,i in Xs do:

If unique
(
Xs,i

)
==1 then:

Xs,combine+ = Xs,i
drop Xs,i→Xs

End
End
Return Xs

To standardize the features, a min–max scaling approach is employed. For each feature
type X, its minimum value xmin and maximum value xmax are calculated. Subsequently,
the feature values x within X are mapped to xnor using the following equation:

xnor =
x− xmin

xmax − xmin
(13)

The features that are incorporated include the message IDs and their corresponding
genuine physical meaning features. Features with a count of variable types not exceeding
nencode are encoded uniquely through a thermal encoding method, effectively mitigating
the influence of weight bias and distance metrics. Conversely, for features with a variable
type of count surpassing nencode, their physical-value relationships are maintained to enrich
the model’s comprehension of their authentic physical meaning features.

It is essential to note that, in cases where a message lacks a corresponding extraction
rule in R, its features will be populated with f f ill . During feature rearrangement in the
test set Mt, the order of rearrangement for each ID and the minimum xmin and maximum
xmax for each feature type, used for standardization, remain consistent with those from the
training set Ms.

4.3. Training and Evaluation of Time-Series Prediction Models with Multiple
Self-Attention Mechanisms

To obtain the input and output of the network model, features are extracted from
all messages in the training set, which is denoted as Xs =

(
Xs,1, Xs,2, . . . , Xs,q

)
. Where

Xs,i =
(

x1,i, x2,i, . . . , xnS ,i
)T

(i ∈ {1, 2, . . . , q}), indicating the i-th class of features extracted
from the message. Meanwhile, xj,i (j ∈ {1, 2, . . ., NS}) represents a feature value extracted

Electronics 2024, 13, 377 14 of 24

from the j-th frame of the message in the training set, and NS denotes the total number of
training samples. Therefore, for Xs, the following relationship holds:

Xs =

Xs,1
Xs,2
...

Xs,q

T

=

x1,1 x1,2 . . . x1,q
x2,1 x2,2 · · · x2,q
...

xnS ,1

...
xnS ,2

. . .
...

. . . xnS ,q

 (14)

The input sequence, denoted as Xin, and the output sequence, denoted as Xout, are
composed of features extracted from distinct sliding windows, as depicted in Figure 7a:

Xin =
(
Xin,1, Xin,2, . . . , Xin,p

)T (15)

Xout =
(
Xout,1, Xout,2, . . . , Xout,p

)T (16)

where Xin,i and Xout,i (i ∈ {1, 2, . . . , p}) form a paired relationship within the sequences Xin
and Xout. In other words, when Xin,i is provided as input, the anticipated output is Xout,i
for which Xin,i and Xout,i have the following relationship:

Xin,i =

x1+iz,1 x1+iz,2 . . . x1+iz,q
x2+iz,1 x2+iz,2 · · · x2+iz,q

...
xu+iz,1

...
xu+iz,2

. . .
...

. . . xu+iz,q

 (17)

Xout,i =

xu+1+iz,1 xu+1+iz,2 . . . xu+1+iz,q
xu+2+iz,1 xu+2+iz,2 · · · xu+2+iz,q

...
xu+v+iz,1

...
xu+v+iz,2

. . .
...

. . . xu+v+iz,q

 (18)

Electronics 2024, 13, x FOR PEER REVIEW 14 of 24

𝑗-th frame of the message in the training set, and 𝑁ௌ denotes the total number of training
samples. Therefore, for 𝑿௦, the following relationship holds:

𝑿௦ = ⎣⎢⎢
⎡𝑿௦,ଵ𝑿௦,ଶ⋮𝑿௦,⎦⎥⎥

⎤் = ⎣⎢⎢
⎡ 𝑥ଵ,ଵ 𝑥ଵ,ଶ … 𝑥ଵ,𝑥ଶ,ଵ 𝑥ଶ,ଶ ⋯ 𝑥ଶ,⋮𝑥ೄ,ଵ ⋮𝑥ೄ,ଶ ⋱ ⋮… 𝑥ೄ,⎦⎥⎥

⎤
 (14)

The input sequence, denoted as 𝑿, and the output sequence, denoted as 𝑿௨௧, are
composed of features extracted from distinct sliding windows, as depicted in Figure 7a: 𝑿 = ൫𝑿,ଵ, 𝑿,ଶ, … , 𝑿,൯் (15)

𝑿௨௧ = ൫𝑿௨௧,ଵ, 𝑿௨௧,ଶ, … , 𝑿௨௧,൯் (16)

where 𝑿, and 𝑿௨௧, (𝑖 ∈ ሼ1,2, . . . , 𝑝ሽ) form a paired relationship within the sequences 𝑿 and 𝑿௨௧. In other words, when 𝑿, is provided as input, the anticipated output is 𝑿௨௧, for which 𝑿, and 𝑿௨௧, have the following relationship:

𝑿, = ⎣⎢⎢
⎡𝑥ଵା௭,ଵ 𝑥ଵା௭,ଶ … 𝑥ଵା௭,𝑥ଶା௭,ଵ 𝑥ଶା௭,ଶ ⋯ 𝑥ଶା௭,⋮𝑥௨ା௭,ଵ ⋮𝑥௨ା௭,ଶ ⋱ ⋮… 𝑥௨ା௭,⎦⎥⎥

⎤
 (17)

𝑿௨௧, = ⎣⎢⎢
⎡𝑥௨ାଵା௭,ଵ 𝑥௨ାଵା௭,ଶ … 𝑥௨ାଵା௭,𝑥௨ାଶା௭,ଵ 𝑥௨ାଶା௭,ଶ ⋯ 𝑥௨ାଶା௭,⋮𝑥௨ା௩ା௭,ଵ ⋮𝑥௨ା௩ା௭,ଶ ⋱ ⋮… 𝑥௨ା௩ା௭, ⎦⎥⎥

⎤
 (18)

(a) (b)

Figure 7. The training process of the model includes: (a) model inputs and outputs; (b) multiple self-
attention mechanisms for time-series prediction model architecture.

The architecture of the multiple self-attention mechanisms for time-series prediction
model, as depicted in Figure 7b, incorporates a two-layer LSTM network following the
input layer. This addition is aimed at enhancing the model’s ability to grasp temporal
patterns and trends in the data, facilitating predictions for future time steps. Given that
the cell states of the LSTM can transfer information across different time steps within the
sequence, they are proficient at capturing long-term dependencies and prove effective in
handling prediction tasks that demand the retention of extended historical information.
LSTM’s gating mechanism enables superior management of gradient flow, mitigating the
issue of gradient vanishing or explosion that traditional RNNs often encounter when deal-
ing with lengthy sequences. The primary components of the LSTM cell architecture

Figure 7. The training process of the model includes: (a) model inputs and outputs; (b) multiple
self-attention mechanisms for time-series prediction model architecture.

The architecture of the multiple self-attention mechanisms for time-series prediction
model, as depicted in Figure 7b, incorporates a two-layer LSTM network following the
input layer. This addition is aimed at enhancing the model’s ability to grasp temporal
patterns and trends in the data, facilitating predictions for future time steps. Given that
the cell states of the LSTM can transfer information across different time steps within the
sequence, they are proficient at capturing long-term dependencies and prove effective in
handling prediction tasks that demand the retention of extended historical information.
LSTM’s gating mechanism enables superior management of gradient flow, mitigating
the issue of gradient vanishing or explosion that traditional RNNs often encounter when

Electronics 2024, 13, 377 15 of 24

dealing with lengthy sequences. The primary components of the LSTM cell architecture
include an input gate it, an output gate ot, and a forget gate ft. The LSTM relies on these
three gates for feature selection, and their computation is as follows:

it = σ(Wi[ht−1, xt] + bi) (19)

ft = σ
(

W f [ht−1, xt] + b f

)
(20)

ot = σ(Wo[ht−1, xt] + bo) (21)

where Wi, W f , and WC represent the weighting matrices, bi, b f , and bC are biases that are
learned during the training process, xt are input vectors, ht−1 are hidden input vectors, and
σ signifies a sigmoid function. The process of generating candidate storage units Ct for
updating the information is as follows:

Ct = tanh(WC[ht−1, xt] + bC) (22)

Let Ct denote the new cell state and Ct−1 represent the old cell state. The process of
updating the cell state is as follows:

Ct = ftCt−1 + itCt (23)

The hidden output vector ht is defined as:

ht = ottanh(Ct) (24)

The forgetting gate ft chooses the information to retain from the old cell state Ct−1,
while the input gate ot decides the amount of information to be preserved.

In order to facilitate the modeling of associations among different positions within
the sequence, capturing long-range dependencies and crucial information, a self-attention
layer is introduced after the two-layer LSTM network. The core concept of the self-attention
mechanism is to project each element within the sequence into a high-dimensional space
and then determine element-specific weights by assessing the similarity between different
elements [38]. These weights signify the degree of interconnection between the elements.
This correlation empowers the model to focus on significant information at various posi-
tions, thus enhancing the processing of sequence data.

To enhance the model’s performance and bolster the network’s expressive capacity, an
Add layer for residual concatenation is integrated within the self-attention layer. Subse-
quently, an LSTM layer is incorporated to capture and analyze temporal characteristics and
patterns within the dataset. The final stage entails feature extraction and transformation
through a fully connected layer, resulting in the generation of the output, denoted as Xout.

5. Performance Evaluation and Comparative Analysis
5.1. Experiment Setup

Our experiments were conducted using Python 3.10 in the PyCharm IDE version 2023.1.2,
and we implemented Keras 2.13.1 with TensorFlow 2.13.0 as the backend on a computer
system equipped with an AMD Ryzen 7925HX with Radeon Graphics CPU, operating at
2.50 GHz, and 16 GB of RAM. The operating environment was Windows 11 (64-bit), and
the system was equipped with an NVIDIA GeForce GTX 4060 laptop GPU.

The sliding window size for the input sequence was configured as u = 4, and the size
of the output sequence was set to =1. After data preprocessing, the relevant input features
and desired outputs were extracted from the training set. Subsequently, the training of
the LSTM network model, combined with the attention mechanism, was carried out. The
parameters of the network model were set in accordance with the specifications outlined in
Table 1.

Electronics 2024, 13, 377 16 of 24

Table 1. The configuration of model parameters.

Hyperparameter Value

Learning Rate 10−1, 10−2, 10−3, 10−4, 10−5

Epoch Number 100

Batch Size 16, 32, 64, 128, 256

LSTM Unit Number 512, 256, 64

Self-Attention Unit Number 128

Dropout 0.2

Recurrent Dropout 0.2

Loss Function MSE, MAE, MSLE, Huber, Log Cosh

Activation ReLU, Sigmoid, Tanh, Leaky Relu, ELU, SeLU

Number of attentions 0, 12, 3

CAN-FD datasets were procured from real vehicles, as illustrated in Figure 8. The
CAN-FD transceiver, Kvaser HybridPro 2XCAN/LIN (manufactured by Kvaser, based in
Brumma, Sweden), was employed to receive each CAN-FD message from the vehicle’s
powertrain subnetwork interface. Subsequently, it facilitated the conversion of these
messages into information, including ID, timestamp, and data fields, which were then
uploaded to a PC server. On the PC side, the data fields of the CAN-FD message for each
ID are correlated with the physical meaning of the characterization application through
the utilization of the CAN-FD application layer protocol matrix supplied by the vehicle
manufacturer. The original format of this dataset is in hexadecimal and comprises a total
of 84,956 frames. Eighty percent of the messages in this dataset were allocated to the
training set, with the remaining 20% reserved for the test set. The training set encompasses
67,964 frames, while the test set comprises 16,992 frames. Subsequently, various types of
attack messages were introduced into the training set to create the attack dataset, and the
distinct message types were appropriately labeled. Among the novel classification labels
introduced in the dataset, mBenign signifies normal messages, mDoS represents DoS attack
messages, mFuzzy characterizes fuzzy attack messages, mReplay designates replay attack
messages, and mSpoo f ing denotes spoofing attack messages. The newly generated CAN-FD
attack dataset comprises a total of 20,928 frames, with the distribution of attack messages
illustrated in Figure 4e. Within this dataset, there are 1789 frames containing DoS attack
messages, 837 frames containing fuzzing attack messages, 571 frames featuring replay attack
messages, and 607 frames containing spoofing attack messages. As indicated in Table 2,
the proportion of normal messages in the generated attack dataset stands at 81.71%, with
DoS attack messages constituting 8.60%, fuzzing attack messages comprising 4.02%, replay
attack messages accounting for 2.75%, and spoofing attack messages representing 2.92%.

These datasets were segregated in accordance with the concrete physical interpreta-
tions of data fields associated with various IDs. This partitioning facilitated the extraction
of data segments with discernible physical connotations, which were subsequently trans-
muted into the corresponding real-world physical significance eigenvalues. The initial set
of IDs encompassed 0x010, 0x142, 0x060, 0x304, and 0x18f.

The data field associated with the message ID 0x010 denoted physical quantities linked
to MCU torque feedback. Message ID 0x142 was indicative of DBS state-related quantities,
while message ID 0x060 encapsulated physical quantities associated with MCU drive motor
feedback. Moreover, message ID 0x304 featured a data field representing the physical
quantity of VCU vehicle state 2, and message ID 0x18f contained a data field representing
the physical quantity associated with EPS state.

Electronics 2024, 13, 377 17 of 24Electronics 2024, 13, x FOR PEER REVIEW 17 of 24

Figure 8. Collection of authentic CAN-FD datasets from real vehicles.

These datasets were segregated in accordance with the concrete physical interpreta-
tions of data fields associated with various IDs. This partitioning facilitated the extraction
of data segments with discernible physical connotations, which were subsequently trans-
muted into the corresponding real-world physical significance eigenvalues. The initial set
of IDs encompassed 0x010, 0x142, 0x060, 0x304, and 0x18f.

The data field associated with the message ID 0x010 denoted physical quantities
linked to MCU torque feedback. Message ID 0x142 was indicative of DBS state-related
quantities, while message ID 0x060 encapsulated physical quantities associated with MCU
drive motor feedback. Moreover, message ID 0x304 featured a data field representing the
physical quantity of VCU vehicle state 2, and message ID 0x18f contained a data field
representing the physical quantity associated with EPS state.

All data segments with genuine physical meanings embedded within these data
fields were extracted. The values within these segments were converted to decimal format,
categorized in accordance with Table 3, and assigned the corresponding feature labels in
a sequential order. In order to ensure consistency, “−1” was employed to augment the
number of features within each ID message, aligning them with the maximum number of
features as specified in Table 3.

Additionally, the features within each ID message were sorted in descending order
based on the nature of their values. Concurrently, they underwent normalization through
min-max scaling. Finally, feature merging was carried out on features that maintained
unchanged values.

Table 3. The genuine physical content encapsulated within the data fields corresponding to different
IDs.

ID 0x010 0x142 0x060 0x304 0x18f

Message
MCU Torque

Feedback DBS Status
MCU Drive Motor

Feedback
VCU Vehicle Status

2 EPS Status

Feature 1 MCU Shift DBS System Status Motor Udc Vehicle Speed EPS Work Mode

Feature 2 MCU Speed DBS Park Warning Motor ldc Vehicle Brake
Pressure

EPS Fault

Feature 3 MCU Torque DBS Work Mode Motor Control
Temp

 Vehicle Steering
Angle

EPS Calibration
Status

Feature 4 MCU Current Brake Pressure Reg
ACK

MCU Motor Error
Grade

- EPS Str Angle Act

Figure 8. Collection of authentic CAN-FD datasets from real vehicles.

Table 2. The types and corresponding percentages of messages within the attack dataset.

Message Type Number of Instances Percentage of Instances

mBenign 16,992 81.71%

mDoS 1789 8.60%

mFuzzy 837 4.02%

mReplay 571 2.75%

mSpoo f ing 607 2.92%

All data segments with genuine physical meanings embedded within these data fields
were extracted. The values within these segments were converted to decimal format,
categorized in accordance with Table 3, and assigned the corresponding feature labels in
a sequential order. In order to ensure consistency, “−1” was employed to augment the
number of features within each ID message, aligning them with the maximum number of
features as specified in Table 3.

Table 3. The genuine physical content encapsulated within the data fields corresponding to differ-
ent IDs.

ID 0x010 0x142 0x060 0x304 0x18f

Message MCU Torque Feedback DBS Status MCU Drive Motor
Feedback VCU Vehicle Status 2 EPS Status

Feature 1 MCU Shift DBS System Status Motor Udc Vehicle Speed EPS Work Mode

Feature 2 MCU Speed DBS Park Warning Motor ldc Vehicle Brake Pressure EPS Fault

Feature 3 MCU Torque DBS Work Mode Motor Control Temp Vehicle Steering Angle EPS Calibration Status

Feature 4 MCU Current Brake Pressure Reg ACK MCU Motor Error Grade - EPS Str Angle Act

Feature 5 MCU Motor temp DBS HP Pressure Clamping Brake Status - EPS Motor Current

Feature 6 MCU Error Code DBS Peadal Opening - - EPS Temperature

Feature 7 - DBS Ref Iq - - -

Feature 8 - DBS Rolling Counter - - -

Feature 9 - DBS Estop Flag - - -

Feature 10 - DBS Pedai Flag - - -

Feature 11 - DBS Check Sum - - -

Additionally, the features within each ID message were sorted in descending order
based on the nature of their values. Concurrently, they underwent normalization through

Electronics 2024, 13, 377 18 of 24

min-max scaling. Finally, feature merging was carried out on features that maintained
unchanged values.

5.2. Performance Evaluation
5.2.1. Evaluation Metrics

The trained model is validated through the utilization of the input features from the
attack dataset in conjunction with their corresponding actual outputs. The evaluation
of the model’s performance relies on a set of metrics, including TP (true positives), FP
(false positives), TN (true negatives), FN (false negatives), accuracy, precision, recall, and
F1 score. In order to assess the model’s performance, the trained model is loaded, and
predictions are made for each element in the input features of the attack dataset. For each
prediction, the mean squared loss value is computed, comparing the predicted value with
its corresponding actual output.

A mean squared error threshold θ is established. If the mean square error loss value
falls below θ, the prediction result aligns with our expectations, and the message is classified
as normal. Conversely, if the mean square error loss value exceeds θ, the prediction result
deviates from our expectations, and the message is deemed abnormal. The definitions of
TP, FP, TN, and FN are as follows:

• TP: Represents instances where the model correctly identifies positive cases as positive.
• FP: Denotes cases where the model incorrectly identifies negative instances as positive.
• TN: Corresponds to cases where the model accurately identifies negative instances

as negative.
• FN: Refers to instances where the model mistakenly identifies positive cases as negative.

Accuracy is calculated as the ratio of correctly predicted samples to the total number
of samples in the model. A higher accuracy value indicates superior model performance.
The accuracy can be calculated using the following formula:

Accuracy =
TP + TN

TP + FP + TN + FN
(25)

Precision measures the proportion of correctly predicted positive cases among all
samples that were predicted to be positive by the model. A high precision rate signifies a
high degree of accuracy in the model’s positive case predictions. It can be calculated using
the following formula:

Precision =
TP

TP + FP
(26)

Recall measures the proportion of all actual positive examples that the model correctly
predicts as positive. A high recall indicates the model’s proficiency in recognizing positive
examples. It is calculated as follows:

Recall =
TP

TP + FN
(27)

The F1 score is a metric that harmonizes precision and recall, providing a more
comprehensive evaluation of the model’s performance. It is calculated as follows:

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(28)

5.2.2. Experimental Verification

To obtain a lucid assessment of the model’s performance, it is imperative to evaluate
the model’s efficacy using the aforementioned performance metrics. Figure 9 graphically
depicts the relationship between the model’s predictions and the actual observations
through the use of a confusion matrix, especially the model’s predictive accuracy and the
rate of misclassification for normal and anomalous messages.

Electronics 2024, 13, 377 19 of 24

Electronics 2024, 13, x FOR PEER REVIEW 19 of 24

The F1 score is a metric that harmonizes precision and recall, providing a more com-
prehensive evaluation of the model’s performance. It is calculated as follows: 𝐹1 𝑆𝑐𝑜𝑟𝑒 = ଶ∗௦∗ ோ௦ ା ோ (28)

5.2.2. Experimental Verification
To obtain a lucid assessment of the model’s performance, it is imperative to evaluate

the model’s efficacy using the aforementioned performance metrics. Figure 9 graphically
depicts the relationship between the model’s predictions and the actual observations
through the use of a confusion matrix, especially the model’s predictive accuracy and the
rate of misclassification for normal and anomalous messages.

(a) (b) (c)

(d) (e)

Figure 9. The model’s performance in recognizing various types of attacks: (a) DoS attacks, (b) fuzz-
ing attacks, (c) replay attacks, (d) spoofing attacks, and (e) hybrid attacks.

Leveraging the incorporation of authentic physical meanings in the data fields as in-
put features and the utilization of an LSTM-based network model combined with a multi-
head self-attention mechanism, the model accurately anticipates changes in the temporal
characteristics of the genuine physical meanings. Table 4 illustrates the model’s accuracy
in identifying different types of attacks. Under the optimal hyper-parameter configura-
tion, the model achieves a remarkable accuracy of 99.646% in identifying anomalous mes-
sages, with an impressive F1 score of 0.99782. The recognition accuracy for DoS, fuzzing,
and spoofing attacks reaches 100%, while the recognition accuracy for replay attacks,
which are typically challenging to discern, remains notably high at 99.36%.

Table 4. The model’s accuracy in recognizing a multitude of attack types.

Type 𝒎𝐃𝐨𝐒 𝒎𝐅𝐮𝐳𝐳𝐲 𝒎𝐑𝐞𝐩𝐥𝐚𝐲 𝒎𝐒𝐩𝐨𝐨𝐟𝐢𝐧𝐠
TN 1813 864 624 622
FN 0 0 4 0

Accuracy 100% 100% 99.36% 100%

To ascertain the significance of learning features with genuine physical meaning in
messages and their impact on enhancing the model’s anomaly detection capability, it is
imperative to evaluate the model’s performance when learning different input features.
Reference [39] employs a deep learning-based LSTM algorithm for the detection of timing

Figure 9. The model’s performance in recognizing various types of attacks: (a) DoS attacks, (b) fuzzing
attacks, (c) replay attacks, (d) spoofing attacks, and (e) hybrid attacks.

Leveraging the incorporation of authentic physical meanings in the data fields as
input features and the utilization of an LSTM-based network model combined with a multi-
head self-attention mechanism, the model accurately anticipates changes in the temporal
characteristics of the genuine physical meanings. Table 4 illustrates the model’s accuracy in
identifying different types of attacks. Under the optimal hyper-parameter configuration,
the model achieves a remarkable accuracy of 99.646% in identifying anomalous messages,
with an impressive F1 score of 0.99782. The recognition accuracy for DoS, fuzzing, and
spoofing attacks reaches 100%, while the recognition accuracy for replay attacks, which are
typically challenging to discern, remains notably high at 99.36%.

Table 4. The model’s accuracy in recognizing a multitude of attack types.

Type mDoS mFuzzy mReplay mSpoofing

TN 1813 864 624 622

FN 0 0 4 0

Accuracy 100% 100% 99.36% 100%

To ascertain the significance of learning features with genuine physical meaning in
messages and their impact on enhancing the model’s anomaly detection capability, it is
imperative to evaluate the model’s performance when learning different input features.
Reference [39] employs a deep learning-based LSTM algorithm for the detection of timing
data anomalies in CAN networks. This approach demonstrates a combination of a low
false alarm rate and a high detection rate, leveraging message data field byte features as
input at the data link layer level. The approach in this paper, employing application layer
physical semantics as input, was compared with the approach from the literature [39],
which employs data link layer byte features as input, under identical training and test sets.
Following the approach presented in [39], each byte (every 4 bits) within the data field
was treated as a feature. In addition to this, the model’s performance was assessed when
considering every two bytes (every 8 bits) as input features.

The specific outcomes are detailed in Table 5. Remarkably, models that employ input
features derived from the genuine physical interpretation of data fields exhibit a 4–5% en-
hancement in anomaly detection accuracy when contrasted with non-physical content-aware
approaches. Meanwhile, our method exhibits a misclassification rate of merely 0.412% for
normal messages and a mere 0.102% for anomalous messages, whereas the method intro-

Electronics 2024, 13, 377 20 of 24

duced in [39] demonstrates a misclassification rate exceeding 2.4% for normal messages and
surpassing 12.9% for anomalous messages. This observation underscores the effectiveness
of employing application-layer physical interpretations in anomaly detection, enabling the
differentiation of fluctuations arising from typical operations from genuine anomalies and
thereby substantially diminishing the misclassification rate for normal messages.

Table 5. Comparison of model performance when learning different input features.

Input Features TP FP TN FN Accuracy Precision Recall F1 Score

Methodology of
this paper 16,918 70 3923 4 99.646% 99.588% 99.976% 0.99782

Each byte [39] 16,395 593 3420 507 94.741% 96.509% 97.000% 0.96754

Every two bytes [39] 16,580 408 411 516 95.582% 97.589% 96.982% 0.97289

5.2.3. Ablation Study

To determine the optimal learning rate, batch size, and activation function for further
enhancing model performance, a comprehensive analysis was conducted. The model’s
performance was assessed by comparing loss curves obtained under varying hyperparam-
eters. Figure 10a displays the loss curves derived from training the model with different
learning rates. Notably, when the learning rate is set at 0.001, the model exhibits a consistent
decline in loss values throughout the training epochs, ultimately yielding the lowest loss
value, thus yielding the most favorable training outcome. Subsequently, using this optimal
learning rate, the impact of different batch sizes on the training performance was evaluated,
as depicted in Figure 10b. The most favorable training outcome was achieved with a batch
size of 128. Following this, the effect of various activation functions on model training was
explored, as illustrated in Figure 10c, where it was observed that the leaky ReLU activation
function demonstrated superior performance.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 24

data anomalies in CAN networks. This approach demonstrates a combination of a low
false alarm rate and a high detection rate, leveraging message data field byte features as
input at the data link layer level. The approach in this paper, employing application layer
physical semantics as input, was compared with the approach from the literature [39],
which employs data link layer byte features as input, under identical training and test
sets. Following the approach presented in [39], each byte (every 4 bits) within the data
field was treated as a feature. In addition to this, the model’s performance was assessed
when considering every two bytes (every 8 bits) as input features.

The specific outcomes are detailed in Table 5. Remarkably, models that employ input
features derived from the genuine physical interpretation of data fields exhibit a 4–5%
enhancement in anomaly detection accuracy when contrasted with non-physical content-
aware approaches. Meanwhile, our method exhibits a misclassification rate of merely
0.412% for normal messages and a mere 0.102% for anomalous messages, whereas the
method introduced in [39] demonstrates a misclassification rate exceeding 2.4% for nor-
mal messages and surpassing 12.9% for anomalous messages. This observation under-
scores the effectiveness of employing application-layer physical interpretations in anom-
aly detection, enabling the differentiation of fluctuations arising from typical operations
from genuine anomalies and thereby substantially diminishing the misclassification rate
for normal messages.

Table 5. Comparison of model performance when learning different input features.

Input Features TP FP TN FN Accuracy Precision Recall F1 Score
Methodology of

this paper
16,918 70 3923 4 99.646% 99.588% 99.976% 0.99782

Each byte [39] 16,395 593 3420 507 94.741% 96.509% 97.000% 0.96754
Every two bytes [39] 16,580 408 411 516 95.582% 97.589% 96.982% 0.97289

5.2.3. Ablation Study
To determine the optimal learning rate, batch size, and activation function for further

enhancing model performance, a comprehensive analysis was conducted. The model’s
performance was assessed by comparing loss curves obtained under varying hyperpa-
rameters. Figure 10a displays the loss curves derived from training the model with differ-
ent learning rates. Notably, when the learning rate is set at 0.001, the model exhibits a
consistent decline in loss values throughout the training epochs, ultimately yielding the
lowest loss value, thus yielding the most favorable training outcome. Subsequently, using
this optimal learning rate, the impact of different batch sizes on the training performance
was evaluated, as depicted in Figure 10b. The most favorable training outcome was
achieved with a batch size of 128. Following this, the effect of various activation functions
on model training was explored, as illustrated in Figure 10c, where it was observed that
the leaky ReLU activation function demonstrated superior performance.

(a) (b)

Electronics 2024, 13, x FOR PEER REVIEW 21 of 24

(c) (d)

Figure 10. Evaluation of different hyperparameters on model performance: (a) learning rate, (b)
batch size, (c) activation function, and (d) ROC curves for different loss functions.

Furthermore, multiple loss functions were considered, including mean squared er-
ror, mean absolute error, mean squared logarithmic error, Huber, and log cosine error.
The formula for mean squared error is provided below: 𝑀𝑆𝐸 = ଵ ∑ (𝑦 − 𝑦ො)ଶୀଵ (29)

where 𝑛 is the number of samples, 𝑦 is the true value of the 𝑖-th sample, and 𝑦ො is the
predicted value of the 𝑖-th sample.

The formula for the mean absolute error is as follows: 𝑀𝐴𝐸 = ଵ ∑ |𝑦 − 𝑦ො|ୀଵ (30)

The formula for the mean squared logarithmic error is expressed as follows: 𝑀𝑆𝐿𝐸 = ଵ ∑ (log (𝑦) − log (𝑦ො))ଶୀଵ (31)

The Huber loss function is defined by the following formula: 𝐻𝑢𝑏𝑒𝑟 = ଵ ∑ ቊ (𝑦 − 𝑦ො)ଶ |𝑦 − 𝑦ො| ≤ δ− ଵଶ δଶ + δ|𝑦 − 𝑦ො| |𝑦 − 𝑦ො| > δୀଵ (32)

where 𝛿 is a non-negative constant.
The formula for the logarithmic cosine error can be expressed as follows: Logcosℎ = ଵ ∑ log൫𝑒௬ି௬ො + 𝑒௬ොି௬൯ୀଵ (33)

The performance of the aforementioned five loss functions on the attack dataset is
detailed in Table 6, while their corresponding receiver operating characteristic (ROC)
curves are presented in Figure 10d. With the exception of MSLE, the area under the curve
(AUC) scores of the other loss functions exhibit proximity to one another. Among these,
Huber demonstrates a remarkable level of accuracy and F1 score in recognizing attack
messages, second only to MSE, while concurrently achieving the highest AUC score. Con-
sequently, it is concluded that Huber is the optimal choice for the loss function.

Table 6. The impact of various loss functions on model performance.

Loss Function TP FP TN FN Accuracy Precision Recall F1 Score
Mean Squared Error 16,925 63 3925 2 99.689% 99.629% 99.988% 0.99808
Mean Absolute Error 16,805 183 3926 1 99.120% 98.923% 99.994% 0.99456

Mean Squared
Logarithmic Error

15,296 1692 3843 84 91.508% 90.040% 99.454% 0.94513

Huber 16,918 70 3923 4 99.646% 99.588% 99.976% 0.99782

Figure 10. Evaluation of different hyperparameters on model performance: (a) learning rate, (b) batch
size, (c) activation function, and (d) ROC curves for different loss functions.

Electronics 2024, 13, 377 21 of 24

Furthermore, multiple loss functions were considered, including mean squared error,
mean absolute error, mean squared logarithmic error, Huber, and log cosine error. The
formula for mean squared error is provided below:

MSE =
1
n∑n

i=1(yi − ŷi)
2 (29)

where n is the number of samples, yi is the true value of the i-th sample, and ŷi is the
predicted value of the i-th sample.

The formula for the mean absolute error is as follows:

MAE =
1
n∑n

i=1|yi − ŷi| (30)

The formula for the mean squared logarithmic error is expressed as follows:

MSLE =
1
n∑n

i=1(log(y i)− log(ŷi))
2 (31)

The Huber loss function is defined by the following formula:

Huber =
1
n∑n

i=1

{
(yi − ŷi)

2|yi − ŷi| ≤ δ

− 1
2δ

2 + δ|yi − ŷi||yi − ŷi| > δ
(32)

where δ is a non-negative constant.
The formula for the logarithmic cosine error can be expressed as follows:

Logcosh =
1
n∑n

i=1 log
(

eyi−ŷi + eŷi−yi
)

(33)

The performance of the aforementioned five loss functions on the attack dataset is
detailed in Table 6, while their corresponding receiver operating characteristic (ROC) curves
are presented in Figure 10d. With the exception of MSLE, the area under the curve (AUC)
scores of the other loss functions exhibit proximity to one another. Among these, Huber
demonstrates a remarkable level of accuracy and F1 score in recognizing attack messages,
second only to MSE, while concurrently achieving the highest AUC score. Consequently, it
is concluded that Huber is the optimal choice for the loss function.

Table 6. The impact of various loss functions on model performance.

Loss Function TP FP TN FN Accuracy Precision Recall F1 Score

Mean Squared Error 16,925 63 3925 2 99.689% 99.629% 99.988% 0.99808

Mean Absolute Error 16,805 183 3926 1 99.120% 98.923% 99.994% 0.99456

Mean Squared
Logarithmic Error 15,296 1692 3843 84 91.508% 90.040% 99.454% 0.94513

Huber 16,918 70 3923 4 99.646% 99.588% 99.976% 0.99782

Log Cosh 16,913 75 3926 1 99.637% 99.559% 99.994% 0.99776

To assess the effectiveness of the self-attention mechanism in enhancing the model’s
ability to capture temporal features within the input data, models with variations were de-
veloped. These variations included models devoid of the attention mechanism and models
employing different quantities of self-attention heads. The performance of these models is
presented in Table 7. Notably, the most superior AUC score and overall performance were
attained when utilizing two self-attention heads.

Electronics 2024, 13, 377 22 of 24

Table 7. Comparison of model performance with an equal number of self-attention heads.

Number of Attention Accuracy Precision Recall F1 Score AUC

None 99.627% 99.546% 99.994% 0.99770 0.999811

One 99.574% 98.488% 99.988% 0.99737 0.999790

Two 99.646% 99.588% 99.976% 0.99782 0.999833

Three 99.603% 99.529% 99.982% 0.99755 0.999805

6. Conclusions

In this paper, an anomaly detection method for CAN-FD networks is proposed, with
a focus on ascertaining the presence of abnormal network traffic by analyzing temporal
changes in the genuine physical semantics within message data fields. The method com-
mences by initially gathering CAN-FD datasets obtained from real vehicles devoid of any
cyberattacks. These datasets are subsequently partitioned into a training set and a test set.
The training set is further enriched through the adjustment of the sliding window step size
and the introduction of sequence order disruptions. Simultaneously, the attack dataset is
formulated by infusing distinct categories of attack messages into the test set, each with
varying frequencies based on their specific attack attributes. Genuine physical semantic
features within the message data fields are extracted and subsequently subjected to prepro-
cessing, encompassing tasks such as padding, reordering, normalization, and consolidation.
Following this, a hybrid coding methodology is applied to effectively mitigate the dimen-
sionality inflation that typically arises from one-hot encoding. The multiple self-attention
mechanisms for time-series prediction model architecture integrates the LSTM network
and incorporates a multi-head self-attention mechanism to capture temporal features in
the training set. The model’s hyperparameters are meticulously fine-tuned to optimize
its performance. The model’s performance is then validated using the attack dataset, and
its performance under varying input features is assessed. The results reveal a substantial
enhancement in anomaly detection accuracy, approximately 4–5%, when utilizing the gen-
uine physical semantics of message data fields as inputs, compared to the utilization of
byte features at the data link layer level. The proposed method proves highly effective in
detecting various attack types, including DoS, fuzzing, replay, and spoofing, achieving
exceptional performance metrics with an F1 score of 0.99782 and an accuracy of 99.646%.
Future research will delve into anomaly detection in vehicular networks, leveraging graph
theory and the incorporation of the genuine physical semantics of messages.

Author Contributions: Conceptualization, R.Z. and C.L.; methodology, R.Z.; software, C.L.; valida-
tion, R.Z., C.L. and F.G.; formal analysis, C.L.; investigation, D.Z.; resources, Z.G.; data curation, L.L.
and W.Y.; writing—original draft preparation, C.L.; writing—review and editing, F.G.; visualization,
C.L.; supervision, R.Z.; project administration, F.G.; funding acquisition, Z.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grants 52202494 and 52202495.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the need for confidentiality of
application layer protocols for car companies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, C.W.; Sangiovanni-Vincentelli, A. Cyber-security for the controller area network (CAN) communication protocol. In

Proceedings of the 2012 International Conference on Cyber Security, Alexandria, VA, USA, 14–16 December 2012; pp. 1–7.
2. Lee, H.; Jeong, S.H.; Kim, H.K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame. In

Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, AB, Canada, 28–30 August 2017;
pp. 57–5709.

Electronics 2024, 13, 377 23 of 24

3. Islam, R.; Refat, R.U.D. Improving CAN bus security by assigning dynamic arbitration IDs. J. Transp. Secur. 2020, 13, 19–31.
[CrossRef]

4. Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; et al.
Experimental security analysis of a modern automobile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 16–19 May 2010; pp. 447–462.

5. Greenberg, A. Hackers remotely kill a jeep on the highway—With me in it. Wired 2015, 7, 21–22.
6. Iehira, K.; Inoue, H.; Ishida, K. Spoofing attack using bus-off attacks against a specific ECU of the CAN bus. In Proceedings of the

2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018;
pp. 1–4.

7. Farag, W.A. CANTrack: Enhancing automotive CAN bus security using intuitive encryption algorithms. In Proceedings of
the 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab
Emirates, 4–6 April 2017; pp. 1–5.

8. Jo, H.J.; Kim, J.H.; Choi, H.Y.; Choi, W.; Lee, D.H.; Lee, I. Mauth-can: Masquerade-attack-proof authentication for in-vehicle
networks. IEEE Trans. Veh. Technol. 2019, 69, 2204–2218. [CrossRef]

9. Xie, G.; Yang, L.T.; Wu, W.; Zeng, K.; Xiao, X.; Li, R. Security enhancement for real-time parallel in-vehicle applications by CAN
FD message authentication. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5038–5049. [CrossRef]

10. Xie, G.; Yang, L.T.; Liu, Y.; Luo, H.; Peng, X.; Li, R. Security enhancement for real-time independent in-vehicle CAN-FD messages
in vehicular networks. IEEE Trans. Veh. Technol. 2021, 70, 5244–5253. [CrossRef]

11. Moore, M.R.; Bridges, R.A.; Combs, F.L.; Starr, M.S.; Prowell, S.J. Modeling inter-signal arrival times for accurate detection of
can bus signal injection attacks: A data-driven approach to in-vehicle intrusion detection. In Proceedings of the 12th Annual
Conference on Cyber and Information Security Research, Oak Ridge, TN, USA, 4–6 April 2017; pp. 1–4.

12. Kuwahara, T.; Baba, Y.; Kashima, H.; Kishikawa, T.; Tsurumi, J.; Haga, T.; Ujiie, Y.; Sasaki, T.; Matsushima, H. Supervised and
unsupervised intrusion detection based on CAN message frequencies for in-vehicle network. J. Inf. Process. 2018, 26, 306–313.
[CrossRef]

13. Song, H.M.; Kim, H.R.; Kim, H.K. Intrusion detection system based on the analysis of time intervals of CAN messages for
in-vehicle network. In Proceedings of the 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu,
Malaysia, 13–15 January 2016; pp. 63–68.

14. Salem, M.; Crowley, M.; Fischmeister, S. Anomaly detection using inter-arrival curves for real-time systems. In Proceedings of the
2016 28th Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, 5–8 July 2016; pp. 97–106.

15. Müter, M.; Asaj, N. Entropy-based anomaly detection for in-vehicle networks. In Proceedings of the 2011 IEEE Intelligent Vehicles
Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 1110–1115.

16. Marchetti, M.; Stabili, D.; Guido, A.; Colajanni, M. Evaluation of anomaly detection for in-vehicle networks through information-
theoretic algorithms. In Proceedings of the 2016 IEEE 2nd International Forum on Research and Technologies for Society and
Industry Leveraging a Better Tomorrow (RTSI), Bologna, Italy, 7–9 September 2016; pp. 1–6.

17. Cho, K.T.; Shin, K.G. Fingerprinting electronic control units for vehicle intrusion detection. In Proceedings of the 25th USENIX
Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016; pp. 911–927.

18. Ji, H.; Wang, Y.; Qin, H.; Wu, X.; Yu, G. Investigating the effects of attack detection for in-vehicle networks based on clock drift of
ECUs. IEEE Access 2018, 6, 49375–49384. [CrossRef]

19. Halder, S.; Conti, M.; Das, S.K. COIDS: A clock offset based intrusion detection system for controller area networks. In Proceedings
of the 21st International Conference on Distributed Computing and Networking, Kolkata, India, 4–7 January 2020; pp. 1–10.

20. Choi, W.; Joo, K.; Jo, H.J.; Park, M.C.; Lee, D.H. VoltageIDS: Low-level communication characteristics for automotive intrusion
detection system. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2114–2129. [CrossRef]

21. Levy, E.; Shabtai, A.; Groza, B.; Murvay, P.S.; Elovici, Y. CAN-LOC: Spoofing detection and physical intrusion localization on an
in-vehicle CAN bus based on deep features of voltage signals. IEEE Trans. Inf. Forensics Secur. 2023, 18, 4800–4814. [CrossRef]

22. Yin, L.; Xu, J.; Wang, C.; Wang, Q.; Zhou, F. Detecting CAN overlapped voltage attacks with an improved voltage-based in-vehicle
intrusion detection system. J. Syst. Archit. 2023, 143, 102957. [CrossRef]

23. Olufowobi, H.; Young, C.; Zambreno, J.; Bloom, G. Saiducant: Specification-based automotive intrusion detection using controller
area network (can) timing. IEEE Trans. Veh. Technol. 2019, 69, 1484–1494. [CrossRef]

24. Marchetti, M.; Stabili, D. Anomaly detection of CAN bus messages through analysis of ID sequences. In Proceedings of the 2017
IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1577–1583.

25. Yu, T.; Wang, X. Topology verification enabled intrusion detection for in-vehicle CAN-FD networks. IEEE Commun. Lett. 2019, 24,
227–230. [CrossRef]

26. Wang, C.; Zhao, Z.; Gong, L.; Zhu, L.; Liu, Z.; Cheng, X. A distributed anomaly detection system for in-vehicle network using
HTM. IEEE Access 2018, 6, 9091–9098. [CrossRef]

27. Taylor, A.; Leblanc, S.; Japkowicz, N. Anomaly detection in automobile control network data with long short-term memory
networks. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal,
QC, Canada, 17–19 October 2016; pp. 130–139.

28. Dong, C.; Wu, H.; Li, Q. Multiple Observation HMM-based CAN bus Intrusion Detection System for In-Vehicle Network. IEEE
Access 2023, 11, 35639–35648. [CrossRef]

https://doi.org/10.1007/s12198-020-00208-0
https://doi.org/10.1109/TVT.2019.2961765
https://doi.org/10.1109/TITS.2020.3000783
https://doi.org/10.1109/TVT.2021.3061746
https://doi.org/10.2197/ipsjjip.26.306
https://doi.org/10.1109/ACCESS.2018.2841884
https://doi.org/10.1109/TIFS.2018.2812149
https://doi.org/10.1109/TIFS.2023.3297444
https://doi.org/10.1016/j.sysarc.2023.102957
https://doi.org/10.1109/TVT.2019.2961344
https://doi.org/10.1109/LCOMM.2019.2953722
https://doi.org/10.1109/ACCESS.2018.2799210
https://doi.org/10.1109/ACCESS.2023.3265018

Electronics 2024, 13, 377 24 of 24

29. Zhang, H.; Zeng, K.; Lin, S. Federated graph neural network for fast anomaly detection in controller area networks. IEEE Trans.
Inf. Forensics Secur. 2023, 18, 1566–1579. [CrossRef]

30. Xie, Y.; Zeng, G.; Ryo, K.; Xie, G.; Dou, Y.; Zhou, Z. An optimized design of CAN-FD for automotive cyber-physical systems. J.
Syst. Archit. 2017, 81, 101–111. [CrossRef]

31. Zago, G.M.; de Freitas, E.P. A quantitative performance study on CAN and CAN-FD vehicular networks. IEEE Trans. Ind. Electron.
2017, 65, 4413–4422. [CrossRef]

32. Lee, Y.; Woo, S. CAN Signal Extinction-based DoS Attack on In-Vehicle Network. Secur. Commun. Netw. 2022, 2022, 9569703.
[CrossRef]

33. Lee, H.; Choi, K.; Chung, K.; Kim, J.; Yim, K. Fuzzing can packets into automobiles. In Proceedings of the 2015 IEEE 29th
International Conference on Advanced Information Networking and Applications, Gwangju, Republic of Korea, 24–27 March
2015; pp. 817–821.

34. Naha, A.; Teixeira, A.; Ahlén, A.; Dey, S. Sequential detection of replay attacks. IEEE Trans. Autom. Control 2022, 68, 1941–1948.
[CrossRef]

35. Yang, Y.; Duan, Z.; Tehranipoor, M. Identify a spoofing attack on an in-vehicle CAN bus based on the deep features of an ECU
fingerprint signal. Smart Cities 2020, 3, 17–30. [CrossRef]

36. Arantes, R.B.; Vogiatzis, G.; Faria, D.R. Learning an augmentation strategy for sparse datasets. Image Vis. Comput. 2022,
117, 104338. [CrossRef]

37. Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation strategies from data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 113–123.

38. Qiu, D.; Yang, B. Text summarization based on multi-head self-attention mechanism and pointer network. Complex Intell. Syst.
2022, 8, 555–567. [CrossRef]

39. Qin, H.; Yan, M.; Ji, H. Application of controller area network (CAN) bus anomaly detection based on time series prediction. Veh.
Commun. 2021, 27, 100291. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIFS.2023.3240291
https://doi.org/10.1016/j.sysarc.2017.10.008
https://doi.org/10.1109/TIE.2017.2762638
https://doi.org/10.1155/2022/9569703
https://doi.org/10.1109/TAC.2022.3174004
https://doi.org/10.3390/smartcities3010002
https://doi.org/10.1016/j.imavis.2021.104338
https://doi.org/10.1007/s40747-021-00527-2
https://doi.org/10.1016/j.vehcom.2020.100291

	Introduction
	Background Information and Problem Definition
	CAN-FD Background
	Type of Attack
	Problem Definition

	Data Preprocessing
	Data Acquisition
	Data Augmentation
	Construction of the Attack Dataset

	Physical Semantics-Enhanced Anomaly Detection
	Model Framework
	Extraction and Standardization of Features
	Training and Evaluation of Time-Series Prediction Models with Multiple Self-Attention Mechanisms

	Performance Evaluation and Comparative Analysis
	Experiment Setup
	Performance Evaluation
	Evaluation Metrics
	Experimental Verification
	Ablation Study

	Conclusions
	References

