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Abstract: The novel coronavirus outbreak has significantly heightened environmental costs and
operational challenges for civil aviation airlines, prompting emergency airport closures in affected
regions and a substantial decline in ridership. The consequential need to reassess, delay, or cancel
flight itineraries has led to disruptions at airports, amplifying the risk of disease transmission. In
response, this paper proposes a spatial approach to efficiently address pandemic spread in the civil
aviation network. The methodology prioritizes the use of a static gravity model for calculating route-
specific infection pressures, enabling strategic flight rescheduling to control infection levels at airports
(nodes) and among airlines (edges). Temporally, this study considers intervals between takeoffs
and landings to minimize crowd gatherings, mitigating the novel coronavirus transmission rate. By
constructing a discrete space–time network for irregular flights, this research generates a viable set
of routes for aircraft operating in special circumstances, minimizing both route-specific infection
pressures and operational costs for airlines. Remarkably, the introduced method demonstrates
substantial savings, reaching almost 53.4%, compared to traditional plans. This showcases its efficacy
in optimizing responses to pandemic-induced disruptions within the civil aviation network, offering
a comprehensive solution that balances operational efficiency and public health considerations in the
face of unprecedented challenges.

Keywords: rescheduling; discrete spatiotemporal network; infectious pressure; coronavirus pandemic

1. Introduction

In 2020, the World Health Organization (WHO) classified COVID-19 as a Public
Health Emergency of International Concern (PHEIC) due to its mode of transmission,
characterized by close-contact and droplet transmission. In response to this classification,
numerous countries and regions enacted stringent measures to restrict the entry of foreign
visitors, particularly from areas with the highest risk of transmission. Temporary bans
were imposed on all foreign passengers who had recently visited the hardest-hit regions
within the previous 14 days. The infectious disease outbreaks stemming from COVID-19
have had a substantial impact, resulting in significant disease burdens, increased energy
consumption, and economic challenges for affected countries [1,2]. To minimize the spread
of the pandemic, countries have swiftly adapted their flight adjustment policies in response
to changing pandemic dynamics, necessitating frequent modifications of flight schedules.
Even more serious is the cancellation of flights. Appendix A shows the grounding rate
of global airlines due to COVID-19 as of 23 May 2020. Simultaneously, the emergence of
new infectious diseases with pandemic potential poses a significant threat to human life
and socio-economic development [3]. An effective response to, and ideally containment
of, an infectious disease outbreak can be significantly enhanced by directing healthcare
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responses and outbreak control measures toward flights predicted to be at the highest risk
of experiencing new outbreaks.

The outbreak of COVID-19 has led to a significant decline in aviation demand, resulting
in numerous flight cancellations worldwide. For instance, the outbreak in the United States
triggered the cancellation of hundreds of flights at various major airports. Data from
the FlightAware website reveal that, on March 19th and 20th, major airlines canceled
over 700 flights at Las Vegas Airport. The confluence of the high infectivity of the novel
coronavirus and the surge in travel during the Spring Festival led to a 70% cancellation
rate by 41 Chinese mainland airlines on 7 February. Similarly, 81 international airlines
canceled 56% of their flights. Daily passenger numbers plummeted to 471,600, marking a
sharp 76.4% decline. Economic globalization is confronting formidable challenges. Boeing
reduced its monthly production of the 787 aircraft from 14 to 12 due to reduced global
demand for wide-body planes. On 24 March, the International Air Transport Association
(IATA) estimated that the aviation industry would incur a revenue loss of USD 252 billion
as compared to 2019, a 44% reduction. The IATA predicted a 48% drop in passenger
demand for the year compared to 2019, and travel restrictions will exacerbate the recession’s
impact on travel demand. By early April, global flight numbers had dwindled by 80%
compared to 2019 [4]. Amid the COVID-19 pandemic, aviation transportation services
face a multitude of challenges, extending beyond typical issues like flight delays, aircraft
malfunctions, and adverse weather conditions. Unusual flight-related phenomena, such
as cancellations, the addition of special flights, and passenger disputes, have emerged.
Simultaneously, the novel coronavirus’s person-to-person transmission within a two-meter
range has necessitated the management of crowd sizes at airports. Abnormal flights have
become increasingly common and economically burdensome. Against the backdrop of
this pandemic, the effective rescheduling of abnormal flights while minimizing airlines’
economic losses and curtailing the spread of the virus presents a formidable new challenge.

Throughout the pandemic, irregular flights have frequently led to flight delays and,
in some cases, cancellations, resulting in substantial losses for airlines and significantly
impacting the interests of passengers, airports, and airline operations [5]. Despite the
continuous evolution of irregular flights, there is currently no highly effective method
for their mitigation. Hence, the effective scheduling optimization of irregular flights
becomes of utmost significance and importance. Many scholars have put forth models
and algorithms for flight scheduling and recovery solutions under various conditions that
give rise to irregular flights. Wei and colleagues introduced a flight crew management
model based on multi-commodity network flow, incorporating a heuristic branch pricing
search algorithm to align the flight recovery scheme as closely as possible with the actual
scheduling scheme [6,7]. Kohl et al. addressed passenger recovery systems, aircraft recovery
systems, crew recovery systems, and integrated recovery systems under different conditions
and requirements, providing systematic insights into aviation recovery strategies [8–10].
To minimize flight delay costs, Li and Long designed a continuous-time flight route model
aimed at deriving an approximate optimal scheme [11,12]. The emphasis of established
objective functions and constraint conditions varied in line with differences in airline,
airport, and service group characteristics. Qian Wang adopted a collaborative development
perspective, establishing the hyper-efficiency DEA model and the Logit model for world-
class airport groups to investigate flight time scheduling among airport groups [13]. In
the presence of uncertain severe weather dynamics, Zhang et al. formulated a flight
route selection and flight takeoff model to enhance flight route capacity utilization and
reduce overall flight delay time [14]. Haibin et al. aimed to improve the service recovery
quality for flight delays. They employed the SERVQUAL model to construct an evaluation
index system for the service recovery quality of flight delays, performed a comprehensive
assessment of service recovery quality, and utilized a service quality matrix to determine
priority improvement indices [15]. Additionally, many scholars have delved into the
analysis of flight delay conditions [16]. However, the outbreak of novel coronavirus
pneumonia presented a dramatic challenge to the adjustment of irregular flight scheduling.
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In addition to the irregular flight-related issues, the development of the pandemic
posed the challenge of limited flight availability. Flight operations also needed to account
for the city-specific characteristics of disease spread. Various transmission models, in-
cluding the SI, SIS, and SIR models [17–20], were employed to explore the spatiotemporal
evolution of communicable diseases. These models offered comprehensive control over the
temporal progression of infectious diseases. The gravity model of population flow played
a pivotal role in such modeling research, effectively capturing the speed and distance of
disease spread [21,22]. Empirical data provided valuable insights into spatial transmission,
encompassing instances such as the spatial spread of measles in the UK and Nigeria, in-
fluenza spread in the United States and Europe, and the utilization of mobile operator data
to construct pandemic models for studying cholera spread in Haitian communities [23–28].
Aircraft, being enclosed environments with an inherent infection risk, coupled with their
high spatial mobility, increased route-specific infection pressure. Thus, addressing crowd
management to reduce the transmission rate of pneumonia emerged as a crucial concern.
In light of the aforementioned context, several key questions have arisen:

(1) What is the risk of disease transmission on each flight?
(2) How can the risk of infection be economically and effectively managed through

flight adjustments?

This paper focuses on flight and airport rescheduling during a pandemic, taking
into account both spatial and temporal dimensions. Our objective is to design a model
that minimizes costs and reduces the risk of infection. The second section focuses on
determining and computing safe time intervals and spatial infection pressures for airports
and flight routes. It introduces a new model and algorithm aimed at minimizing costs and
infection risks. The third section involves the calculation and verification of the irregular
flight scheduling model. The paper concludes with the fourth section.

2. Materials and Methods

This paper is primarily centered on the challenge of optimizing flight schedules to min-
imize a range of costs, including potential pandemic transmission expenses, flight delays,
flight cancellations, carbon emissions, and the perceived value of passenger transfers, all
while mitigating infectious pressure. Amidst an outbreak, all flight operations must align
with actual demand and stringent health protection guidelines. Airlines are compelled to
make adjustments, such as flight delays and cancellations, to devise viable flight plans that
minimize losses. The fundamental objective in this study, within the context of a pandemic,
is to optimize flight routing and scheduling to minimize passenger delays and economic
losses for airlines.

2.1. Assumptions

To formulate the proposed model, several assumptions have been established:

• Irregular flights: Irregular flights refer to situations where aircraft experience failures
or emergency changes, rendering the original flight plan temporarily infeasible.

• Flight adjustment actions: Depending on the duration of the irregularity, flights may
be delayed or canceled. Short time intervals result in flight delays, while excessively
long intervals lead to cancellations.

• Recovery: Flights return to their originally scheduled flight plan at the end of the
recovery time interval.

• Rescheduling methods: Flight rescheduling can be achieved through aircraft exchange,
flight delay, or flight cancellation. However, aircraft exchange is exceedingly rare in
actual operations and is therefore excluded from the model.

• Aircraft types: Different aircraft types have varying seat capacities, affecting the
execution of flight schedules.

• External factors: Changes in the original plan due to external factors, such as alterations
in aircraft maintenance plans, are not considered during the recovery process.
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• Crew conditions: It is assumed that the aircraft crew adheres to legal duty time
regulations without fatigue or flight overruns, thereby not affecting flight operations.

• Infection dynamics: The number of infectious individuals at a study airport is pro-
portionate to the cumulative reported cases at the airport over the preceding 14 days,
and the proportion of flight movements between airports mirrors the movements of
infectious persons between study areas.

• Time intervals: Determining the flight time interval in the space–time network is criti-
cal. Adequate time intervals aid in controlling airport crowding. Typically, domestic
passengers are required to arrive at the airport one hour before departure, allowing
for the setting of a one-hour flight time interval to disperse crowds.

In the flight adjustment process, the following constraints must be observed:

• Flight execution: Each flight may only be executed once or canceled at most.
• Departure time: The actual departure time for each adjusted flight must not precede

the originally planned departure time.
• Delay limit: Flight delay should not exceed the maximum allowable delay limit (not

exceeding 4 h).
• Transit time: Due to the pandemic, the transit time between aircraft should be equal to

or greater than one hour.
• Airport curfew: Compliance with airport curfew regulations is mandatory.
• Last flight destination: The last flight’s destination airport should remain consistent

with the original plan.

2.2. Methodology
2.2.1. Variable Definition

Within the milieu of the COVID-19 pandemic, the formulation of an optimization
model for the reinstatement of flight operations mandates the systematic integration of
passenger-related parameters, financial considerations, and carbon emissions metrics into
the overarching objective function. This imperative underscores a methodological commit-
ment to a comprehensive and sustainable paradigm. The primacy accorded to passenger
safety in this optimization schema assumes heightened significance as it engenders a re-
silient response to health exigencies. Simultaneously, the strategic optimization of costs
emerges as a pivotal facet, substantiating the economic viability of airline enterprises. The
integration of carbon emissions considerations within this model manifests an attunement
to global environmental imperatives, regulatory exigencies, and an industry-wide dedica-
tion to sustainable practices. A detailed explication of the discernible variables amenable
to optimization within the purview of the elucidated objective function is expounded in
Table 1:

Table 1. The definitions of variables.

Variable Definition

F A set of flights in a normal flight schedule
f The flight, f ∈ F
p A set of aircraft, p ∈ P
S All airports involved in the interrupt recovery decision
s The airport, s ∈ S
R A set of feasible paths

r(i) One feasible path, r(i) ∈ R

hs
The number of aircraft required to stay at the airport during normal
operation period

TATDr Actual time of departure
TETDr Estimated time of departure
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Table 1. Cont.

Variable Definition

ψr(i), f ψr(i), f = 1 f ∈ r, otherwise ψr(i), f = 0
κs,r(i) κs,r(i) = 1 flight schedule r(i) terminated at airport S, otherwise κs,r(i) = 0

Rs
p The delaying costs of airplane P at airport S

ω1 The churn rate of passengers caused by the flight’s delay
ω2 The churn rate of passengers caused by the flight’s cancellation

PPt
f (i)

The ticket price of passenger i on flight f at time t; i = 1, 2, 3 represents the
passengers of first class, business class, and economic class separately

m f light
ij

The average daily proportion of flight volume relocating from study area i
to j, m f light

ij ∈ M f light

Epj(t)
The infectious pressure sustained by each airport j during the period from
14 days (k) after the disease onset of the first case

ci(t) The number of reported cases in airport i at time t

O f
The operating expense of flight f , including gas cost and
flight-related expenses

CoLTO
The carbon emissions during the LTO phase (kg); i = 1, 2, 3, 4 corresponds
to the four operational phases of takeoff, climb, approach, and taxi

Ti
f The flight duration of flight f during phase i (s)

Fui
f The fuel flow rate during phase i for flight f (kg/s)

N The number of engines

C The carbon emission factor for aviation kerosene, generally established at
3.157 kg CO2/kg

CoCCD The carbon emissions of the aircraft during the CCD phase (kg)
TCCD

f The duration of the aircraft’s operation during the CCD phase (s)
FuCCD

f The fuel flow rate of the aircraft during the CCD phase (kg/s)
tsb The extra waiting time of passengers at the airport s
tsd The actual arrival time at the airport s
tsp The actual check-in time when passengers transfer at airport s

wbw
s The maximum waiting time that passengers can accept at airport s

tbw
s The actual waiting time of passengers at airport s

ms The number of passengers transferred to the airport s

α
The risk preference. The values range between 0 and 1, which are
determined by the sensitivity to the waiting time of transit passengers

β
The aversion coefficients. The values range between 0 and 1, which are
determined by the sensitivity to the waiting time of transit passengers

λ The sensitive coefficient to the cost loss caused by passenger transit waiting
y f y f = 0 flight f has been canceled, otherwise y f ̸= 0
C f C f = 0, y f ̸= 0 flight f is operating normally, otherwise C f y f = 0

D f
D f = delay cost, delay time y f ̸= 0, otherwise D f y f = 0, where
Delay Time f = y f ETD f

Pa f Pa f = passenger perceived value, y f ̸= 0, otherwise Pa f y f = 0

Co f
Co f = the carbon emissions of the aircraft during one complete takeoff and
landing cycle (kg), y f ̸= 0, otherwise Co f y f = 0

E f
E f = infectious pressure, y f ̸= 0 flight f has potential infectious pressure,
otherwise E f yy = 0

2.2.2. Modeling

minZ = ∑
f∈F

(
C f y f + D f y f + Pa f y f + Co f y f − E f y f

)
(1)

The constraint conditions of the flight scheduling model are as follows:

∑
p∈P

∑
r(i)∈R

Ψr(i), f xp,r(i) + y f = 1, ∀ f ∈ F (2)
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∑
p∈P

∑
r(i)∈R

κs,r(i)xp,r(i) = hs, ∀s ∈ S (3)

∑
r(i)∈R

xp,r(i) ≤ 1, ∀p ∈ P (4)

tds,r(i+1) ≥ tas,r(i) + Us, ∀r(i) ∈ R, s ∈ S (5)

xp,r(i), y f = {0, 1} ∀r(i) ∈ R, p ∈ P, f ∈ F (6)

When we are constructing the irregular flight scheduling model, the objective function
has a variety of selected criteria, such as the minimum passenger waiting time, the mini-
mum number of flight cancellations, avoiding the airport curfew interval, and minimizing
the loss that is caused by flight disruption. In this article, we consider the minimum cost to
airlines and the corresponding location of the infection pressure of each flight route; the
objective function mainly includes the cost minimization of potential outbreak transmission,
cost minimization of delay, and cost minimization of flight cancellations.

1. The potential pandemic transmission cost

In addition to mitigating delay costs, the distinctive challenges posed by a pandemic
underscore the critical role played by infection pressure along each route and the population
density at airports in effective pandemic control. Consequently, the precise calculation
of infection pressure, as well as the establishment of optimal flight time intervals and
frequencies, assumes significant importance. In scenarios characterized by extensive
pandemic transmission, when undertaking the task of rescheduling irregular flights, a
primary strategy involves prioritizing the cancellation of flights associated with a high
infection pressure at specific airport locations. This strategic priority serves to effectively
reduce the risk of disease transmission.

Using the flight data to construct a mobility matrix M f light, with elements m f light
ij ,

comparing the next airport location at t time with their airport at t − 1 time, the infectious
pressure Epj(t) is shown as Equation (7).

Epj(t) =
n

∑
i,i ̸=j

m f light
ij

14

∑
k=1

ci(t − k) (7)

where the departure and arrival airports of flight f are airport i and airport j. The infectious
pressure of flight f is as follows:

E f = Epi(t) + Epj(t) (8)

2. The flight delay cost

Flight delays can give rise to increased expenditure in terms of resource maintenance,
airport maintenance, and a reduction in the credibility of airlines. Moreover, flight delays
have the potential to lead to the loss of future passengers, representing a latent cost. Within
the realm of civil aviation transportation, irregular flights have the potential to diminish
passenger satisfaction. Excessively prolonged flight durations are likely to result in the loss
of passengers, thus incurring costs associated with flight cancellations. The method for
calculating airline delay costs is outlined as follows:

D f =
F

∑
f=1

Rs
p

(
TATD f − TETD f

)
+ ω1

F

∑
f=1

T

∑
t=1

PPt
f (i)Nt

f

(
TATD f − TETD f

)
(9)

3. The flight cancellation cost

Flight cancellations result in the forfeiture of anticipated revenue and the abandonment
of allocated resources, thereby inflicting financial losses upon the airline. Additionally,
airline reputation damage arising from flight cancellations constitutes an intangible, yet
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significant, loss that cannot be overlooked. The method for computing flight cancellation
costs is as follows:

C f = (1 + ω2)
F

∑
f=1

T

∑
t=1

PPt
f (i)Nt

f (i)−
F

∑
f=1

O f (10)

4. Passenger Transfer Perceived Value

Passenger perceived value pertains to the extent of time passengers are willing to
wait during the transfer process. In this context, passengers have a predefined maximum
acceptable waiting duration. Using this maximum acceptable duration as the benchmark,
if the actual waiting time exceeds this benchmark, it will result in increased route costs.
Conversely, if the actual waiting time is less than this benchmark, the route operation will
not incur additional costs.

tsb = wbw
s −

(
tsd − tsp

)
= wbw

s − tbw
s (11)

Following the value function principles of prospect theory [29], the aforementioned ab-
solute time index is transformed into a passenger-based waiting perception. Equation (12)
provides a piecewise function to represent this value function.

v(tsb) =

{
(tsb)

α, tsb ≥ 0
−λ(−tsb)

β, tsb < 0
(12)

The perceived value function considering passengers’ waiting psychology is obtained
as follows:

Pa f =
2

∑
s=1

ms

{
max

(
0, wbw

s − tbw
s

)α
−λmax

(
0, tbw

s − rbw
s

)β
}

f ∈ s1, s2 (13)

5. Carbon emissions costs

The carbon emission cost entails the computation of carbon emissions throughout
each stage of the flight’s operational life cycle [30]. The complete operational cycle of an
aircraft, commencing from the removal of wheel chocks at the departure airport to the
application of wheel chocks at the destination airport, is regarded as a singular operational
cycle. This cycle can be segmented into nine phases: taxi-out, takeoff, climb, ascent, cruise,
descent, approach, landing, and taxi-in. According to the carbon emission computation
formula introduced by the International Civil Aviation Organization (ICAO) [31,32], the
carbon emissions for one takeoff and landing cycle are roughly equivalent to the sum-
mation of emissions during the landing and takeoff (LTO) phase, as well as the climb,
cruise, and descent (CCD) phase. Based on the operational parameters and computation
formulas for the LTO and CCD phases, the emissions for each phase are calculated inde-
pendently and subsequently aggregated to derive the total carbon emissions for the entire
flight segment. The computation formulas for the LTO and CCD phases are presented as
Equations (14) and (15).

CoLTO =
4

∑
i=1

Ti
f Fui

f NC (14)

CoCCD = ∑ TCCD
f FuCCD

f NC (15)

Co f = CoLTO + CoCCD (16)

By summing the carbon emissions from both the CoLTO and CoCCD phases, Equation (16)
obtains the total carbon emissions of the aircraft during a complete takeoff and landing cycle.

2.2.3. Data Collection

The data we need to input and the meanings are shown in Table 2:
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Table 2. The definitions of data input.

Data Type Symbol Definition

Airport data

Airport_name Airport name
Curfew_time Airport curfew time

Close_starttime, Close_endtime Airport closing time. Due to the pandemic situation, weather, or
air traffic control, the time that the airport temporarily closed

Pandemic_no. The number of outbreaks in the city where the airport is located

Flight data

Flight_no Flight number
Depart_airport Departure airport

Depart_time Planned departure time
Arrive_airport Arrival airport

Arrive_time Planned arrival time
Passenger_no. Number of passengers
Ticket_price Airfare

Other data

Delay_cost Flight delay cost
Cancel_cost Flight cancellation cost

Retention_cost Passenger detention cost
Recovery_starttime, Recovery_endtime Recovery interval

MCT Minimum connection time

3. Space–Time Network Construction

The space–time network model is an approach that involves the transformation of the
problem into a network graph based on both time and space parameters, followed by the
utilization of this network graph for the development of mathematical expressions. The
space–time network diagram manifests as a two-dimensional plane network, comprising
nodes and network edges. In Figure 1 and Table 3, you can observe a flight space–time
network along with the construction algorithm. Nodes denoted as (An, Tm) are determined
by the spatial coordinates on the vertical axis and time coordinates on the horizontal
axis. The spatial coordinates {A1, A2, A3, . . . , An} correspond to all airports involved in
the flight plan, while the time {T1, T2, T3, . . . , Tm} on the horizontal axis is sequentially
arranged from left to right, with an appropriate time interval determined by practical
operational considerations. The arcs originating from the nodes signify individual flights.
These arcs extend towards the subsequent nodes, symbolizing the arrival of the aircraft at
the destination airport within the anticipated time frame. The linkage connecting the two
nodes represents the network edge.
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Table 3. The construction algorithm of space–time network.

Algorithm: Network transformation pseudo-code

input: T = original flight schedule, II = reschedule discretization plan
output: N = space-time network, A = ordered list of space-time node
1: for each airport do
2: for each time segment in reschedule period do

Place space-time mode i at beginning of time segment
i = n

3: end for
4: end for
5: let A = { }
6: for each space-time mode i do

If mark (i) < n then place mode in A
7: end for
8: end for

In comparison to the multi-commodity flow model and resource allocation model,
the space–time network model provides comprehensive consideration of the temporal
and spatial attributes of flight routes. It facilitates the direct determination of departure
and arrival times for flights through the space–time network diagram. By merging the
construction of the space–time network diagram with the mathematical model, the aircraft
route is discretized into specific intervals. Consequently, within each of these time intervals,
the node activities are interconnected. This network connectivity illustration simplifies the
mathematical modeling challenge and enables the computation of delay costs associated
with relevant flights.

4. Case Study

In this study, we chose to analyze flight operations involving ten aircraft in China
during the COVID-19 period as a representative example for validation. Our analysis
covered pandemic data from 25 January to 25 February 2020, within China. The dataset
comprises 10 flight routes, encompassing a total of 38 flights. These routes connect various
airports, including major hub airports and domestic trunk airports, located in cities ranging
from tourist destinations to first- and second-tier urban centers.

Due to the necessity of establishing specific time intervals between flights during the
pandemic, the majority of the flights are direct or air–rail combined transport, with minimal
layovers. Additionally, all flights operate using B737 aircraft to ensure passengers can
maintain physical distance. Therefore, in this context, the perceived price cost of passenger
transfers and carbon emissions costs tends toward zero. For reference, we have included
the standard flight schedule and company-designed data under normal circumstances in
Appendix B.

The creation of the space–time network is depicted in Figure 2. In a typical flight
schedule, the minimum connection time (MCT) between each flight is set to 40 min. The
airport curfew is uniformly set at midnight (24:00 h; the flights scheduled between 24:00
and 1:00 adhere to the operational constraints defined by the curfew), and any flight delay
is assumed to incur a cost of RMB 30 per minute. Delays and cancellations may lead to a
tourist churn rate of 0.3. At the same time, it is defined that each infection pressure will
lead to a pressure cost of RMB 1. In actual civil aviation operations, flights often feature
various seat classes with different pricing. For simplicity, we assume uniform pricing for
all seats. The discrete time interval for the space–time network is set at one hour.
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4.1. Infection Pressure

Based on statistics provided by the National Health Committee of the People’s Re-
public of China, spanning the period from 26 January 2020 to 26 February 2020, the daily
growth of the national pandemic is illustrated in Figure 3a. The flight network established
based on Mflight exhibits robust connectivity, connecting hub airports with large regions of
the country as well as facilitating connections between other urban areas.
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Figure 3. (a) The growth of the national pandemic of routes and (b) The growth of the infection
pressure of routes.

By employing Equations (7) and (8) in conjunction with the reported case growth data
for each city, we have calculated the potential infection pressure of each airport, as outlined
in Table 4. Subsequently, we obtained the infection pressure values for each flight route, as
depicted in Figure 3b.

Figure 3a underscores a conspicuous escalation in pandemic incidences, predomi-
nantly concentrated in Wuhan, attaining its zenith with a daily surge of 2000 cases. The
simultaneous scrutiny of infection pressure, delineated in Figure 3b, unveils that the
trajectory affiliated with Wuhan, notwithstanding its heightened epidemic growth rate,
manifests a diminished infection pressure relative to alternative pathways. Significantly,
Wuhan airport manifests the most conservative pressure transmission index, quantified at
31.57 (shown as Table 4). These discernments collectively attest to an elevated cognizance
and efficacious implementation of preventive measures within the realm of air passenger
transport in Wuhan. Furthermore, they underscore the adept stewardship of both flight
operations and the localized pandemic milieu by Wuhan.
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Table 4. Infection pressure at airports.

Airport Name City Infection Pressure

HGH Hangzhou 1316.32
PVG Shanghai 2650.05
MFM Macau 597.5
KMG Kunming 910.72
WUH Wuhan 31.57
HKG Hong Kong 84.24
SHA Shanghai 1459.77
PEK Beijing 272.75
TYN Taiyuan 1379.47
SZX Shenzhen 1300.57
CAN Guangzhou 1518.41
PKX Beijing 70.96

4.2. Results

As a consequence of the pandemic, WUH airport introduced specific operational
constraints, permitting flight operations only between 15:00 and 24:00, primarily serving
specific travel requirements to and from Wuhan. Consequently, this study employed a flight
scheduling model to compare the traditional flight operation plan with the new operational
network, as depicted in Figure 4. Notably, the traditional approach to flight adjustments did
not account for infection pressure and largely adhered to airport operational constraints,
resulting in minimal scheduling changes and cancellations.
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network and (b) is the result of the new method).

Utilizing the data presented in Figure 4 and Table 5, the new flight operation plan
effectively reduced the infection pressure by 56,131.55. It is essential to highlight that while
direct flight cancellations may mitigate the pressure on infection spread within the airport,
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such cancellations entail significant costs for airlines, rendering them a less favorable
approach. In contrast, the traditional plan resulted in an infection pressure of 26,139.02.
Additionally, examining the final results, the cost incurred by the airlines was determined
to be RMB 70,981.55. In stark contrast, the new plan contributed to cost savings totaling
RMB 167,082.47.

Table 5. Comparison of results of historic and proposed methods.

Measures Traditional Method Proposed Method

No. of delayed flights 12 24
Total delay (min) 439 495

No. of canceled flights 2 0
Total delay cost (RMB) 13,170 14,850

Total flight cancellation cost (RMB) 198,755 0
Total reduced infection pressure (after

adjusting the flight) (RMB) 26,139.02 56,131.55

Total cost (RMB) 238,064.02 70,981.55

The outcomes underscore the efficacy of formulating a minimum cost model. They
affirm that the implementation algorithm is instrumental in optimizing flight schedules
and devising corresponding recovery programs. Notably, specific flight numbers, including
11, 21, 22, 31, 32, 41, 42, 51, 61, 71, 72, 81, 91, and 101, remained unaffected, with no
cancellations. Consequently, the results validate the correctness of the model’s construction
and the applicability of the discrete space–time network approach.

4.3. Discussion

This study revolves around the profound impact of the COVID-19 pandemic on the
aviation sector in China, with a specific focus on flight operations and scheduling. The
analysis of the daily growth of the national pandemic, depicted in Figure 3a, highlighted
Wuhan as a hotspot with the most substantial increase in cases. However, our calculations
of route-specific infection pressure, as shown in Figure 3b, surprisingly revealed that routes
connected to Wuhan experienced lower infection pressure compared to other routes. This
suggests a commendable level of awareness and effective control measures implemented at
Wuhan airport, showcasing its proactive response to the health crisis.

In response to the pandemic, our study proposed a novel flight scheduling model,
considering infection pressure, operational constraints, and economic factors. The results,
as depicted in Figure 4, demonstrated a remarkable 53.4% reduction in infection pressure
compared to traditional plans, validating the effectiveness of the new approach. Impor-
tantly, the model’s consideration of infection pressure, rather than resorting to direct flight
cancellations, led to substantial cost savings for airlines—a key factor in the economic
recovery of the aviation industry.

The cost analysis revealed a noteworthy 70% reduction in costs under the new plan,
amounting to RMB 70,981.55, compared to the traditional method. This underscores the
significance of formulating a minimum cost model that not only addresses health concerns
but also proves economically advantageous for airlines. The unaffected specific flight
numbers validated the robustness of our model’s construction and the applicability of the
discrete space–time network approach, offering airlines a reliable framework for optimizing
flight schedules during challenging periods marked by pandemic-induced disruptions.

In conclusion, our study provides valuable insights into the proactive strategies and
adaptable models required for the aviation industry to navigate the complex landscape of
pandemics. The findings underscore the importance of a holistic approach that balances
health considerations, operational constraints, and economic factors to optimize flight
schedules effectively during unprecedented challenges.



Clean Technol. 2024, 6 89

5. Conclusions

This paper addresses the challenges posed by infectious outbreaks within the context
of flight scheduling. It comprehensively takes into account the spatial and temporal
attributes of flights, operational environments, and the specific characteristics of pandemic
transmission in airport cities. The contributions of this paper are as follows:

1. This paper developed a mathematical model with the objectives of minimizing costs
and reducing pandemic transmission. It leveraged real-time flight information to con-
struct a discrete space–time network for managing irregular flights. An algorithm was
devised to optimize the rescheduling of these irregular flights by utilizing the network.
The algorithm effectively generated a set of viable flight recovery paths. Empirical
testing confirmed the practicality and effectiveness of the model and algorithm.

2. The case study shows that if stringent preventive and control measures are diligently
implemented and prioritized in regions severely affected by a pandemic, the trans-
mission pressure exerted by air travel within these areas may not exceed, and in some
cases may even be lower than, that observed in less severely affected regions.

3. Furthermore, when flights are scheduled with safe time intervals during a pandemic, it
is more cost-effective to adjust flight delay times to prevent temporary airport closures
than to cancel flights. This approach results in greater cost savings, even if it involves
adjusting a larger number of flights compared to the alternative of canceling them.

The rescheduling problem is a real-time network optimization challenge, requiring
rapid decision making, particularly during a pandemic. It ensures that airlines can promptly
communicate with their crew and airports when dealing with irregular flights. Simultane-
ously, it allows for timely adjustments and responses to passengers. The next step involves
the pursuit of a more efficient optimization algorithm to enhance the time model associated
with this problem-solving algorithm.

Author Contributions: Conceptualization, Y.Y., Y.W., X.J. and C.S.L.; methodology, Y.Y.; software,
Y.Y.; validation, Y.Y., Y.W., X.J. and C.S.L.; formal analysis, Y.Y., investigation, Y.Y.; resources, Y.Y.;
data curation, Y.Y.; writing—original draft preparation, Y.Y., Y.W., X.J. and C.S.L.; writing—review
and editing, Y.Y., Y.W., X.J. and C.S.L.; visualization, Y.Y.; supervision, X.J. and C.S.L.; project
administration, X.J. and C.S.L.; funding acquisition, Y.W., X.J. and C.S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Funds of the National Natural Science Foundation of
China (62206062, U2034208 and 2022YFC3002502) and China Railway P2023X012.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in Appendix A.

Acknowledgments: The authors would like to thank the anonymous reviewers for their insightful
and constructive comments.

Conflicts of Interest: The authors declare no conflicts of interest.



Clean Technol. 2024, 6 90

Appendix A

Clean Technol. 2024, 6, FOR PEER REVIEW  15 
 

 

Appendix A 

 

Figure A1. The flight suspension rate of global airlines due to COVID-19 as of 23 March 2020. Data 
from https://www.statista.com/statistics/1111989/flights-cancelled-airlines-worldwide-covid-19/ (Access date: 
28 December 2023) 

  

Figure A1. The flight suspension rate of global airlines due to COVID-19 as of 23 March 2020. Data
from https://www.statista.com/statistics/1111989/flights-cancelled-airlines-worldwide-covid-19/
(Access date: 28 December 2023).

https://www.statista.com/statistics/1111989/flights-cancelled-airlines-worldwide-covid-19/


Clean Technol. 2024, 6 91

Appendix B

Table A1. The flight schedule and data of airlines.

Airport
No.

Airport
ID Flight No. Flight ID Depart. ETD Arrival ETA Ticket/RMB Passenger

No.

2153 1 F828 f11 HGH 1350 PVG 1450 709 241
2153 1 F807 f12 PVG 1540 MFM 1820 1081 241
2153 1 F808 f13 MFM 1910 PVG 2140 1013 241
2153 1 F819 f14 PVG 2240 HGH 2340 8269 241
2167 2 F9182 f21 KMG 1120 PVG 1325 683 127
2167 2 F829 f22 PVG 1425 WUH 1545 437 127
2167 2 F830 f23 WUH 1640 PVG 1810 492 127
2167 2 F9449 f24 PVG 1900 KMG 2050 711 127
2500 3 F845 f31 PVG 1230 HKG 1510 916 226
2500 3 F846 f32 HKG 1635 PVG 1910 888 226
2580 4 F5107 f41 SHA 1100 PEK 1320 1122 241
2580 4 F5294 f42 PEK 1635 TYN 1800 584 226
2580 4 F5299 f43 TYN 1835 PEK 2000 584 226
2580 4 F5128 f44 PEK 2105 SHA 2320 1100 241
2587 5 F5166 f51 PEK 900 SHA 1115 1122 241
2587 5 F5109 f52 SHA 1200 PEK 1425 1055 241
2587 5 F5104 f53 PEK 1500 SHA 1720 1493 241
2587 5 F5128 f54 SHA 1800 PEK 2025 1124 241
2588 6 F2437 f61 TYN 1400 WUH 1555 1047 127
2588 6 F5400 f62 WUH 1615 TYN 1750 656 127
2588 6 F4112 f63 TYN 1924 WUH 2120 518 127
2588 6 F2438 f64 WUH 2300 TYN 2440 1047 127
2145 7 F2324 f71 SZX 1000 SHA 1145 468 127
2145 7 F2567 f72 SHA 1235 CAN 1425 1049 127
2145 7 F7788 f73 CAN 1515 SHA 1705 794 127
2145 7 F1324 f74 SHA 1805 SZX 1950 468 127
2137 8 F2476 f81 CAN 1130 SHA 1335 434 241
2137 8 F2019 f82 SHA 1425 SZX 1635 352 241
2137 8 F2020 f83 SZX 1725 SHA 1935 352 241
2137 8 F1284 f84 SHA 2035 CAN 2240 434 241
2141 9 F1105 f91 PKX 1100 CAN 1310 359 226
2141 9 F1385 f92 CAN 1400 PKX 1615 536 226
2141 9 F1107 f93 PKX 1705 CAN 1915 492 226
2141 9 F3231 f94 CAN 2005 PKX 2215 462 226
2189 10 F3234 f101 SHA 1130 CAN 1330 476 241
2189 10 F3432 f102 CAN 1420 SHA 1625 625 241
2189 10 F5432 f103 SHA 1715 PKX 1920 497 241
2189 10 F4321 f104 PKX 2010 SHA 2225 417 241
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