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Optimal subsampling proportional subdistribution
hazards regression with rare events in big data∗

Li Erqian, Tang Man-Lai Tian Maozai and Yu Keming†

The proportional subdistribution hazards (PSH) model
has been widely employed for analyzing competing risks
data which have mutually exclusive events with multiple
causes and commonly occur in clinical research. With the
rapid development of healthcare industry, massively sized
survival data sets are becoming increasingly prevalent and
classical PSH models are computationally intensive with
large data sets. In this article, we propose the optimal sub-
sampling estimators and two-step algorithm for the Fine-
Gray model. Asymptotic properties of the proposed esti-
mators are established and an extensive simulation study
is conducted to demonstrate the efficiency of the estima-
tors. Our proposed methodology is then illustrated with the
large dataset from the SEER (Surveillance, Epidemiology,
and End Results) database.

AMS 2000 subject classifications: Primary 62N01;
secondary 62P10.
Keywords and phrases: Big data, Competing risks data,
Optimal subsampling.

1. INTRODUCTION

Massively sized survival data sets are becoming increas-
ingly prevailing with the rapid development of the health-
care industry [1]. For example, the world has recently ex-
perienced a record-breaking pressure placed on healthcare
systems since the outbreak of COVID-19 in Wuhan at the
end of 2019 [2]. As a result of the fast-growing demand for
medical care in hospitals, with limited space and number
of intensive care units, estimation of the length of stay of
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patients with COVID-19 in hospitals can provide insight-
ful information to decision makers for efficient allocation of
equipment and managing hospital overload in different coun-
tries. Competing risks models extend the classical survival
setting to consider a collection of mutually exclusive poten-
tial event types, which is common in clinical trails [3]. The
Fine-Gray subdistribution hazard model [4] has garnered its
popularity to analyze data in the presence of competing risks
[5, 6, 7]. Some popular computational approaches for esti-
mating the Fine-Gray model include the weighted estimat-
ing equations [4] and pseudo-observations [8, 9]. However,
there is evidence that both approaches could be computa-
tionally intensive and impractical even for data sets with
moderate sample sizes [10, 11]. As a result, subsampling has
been a popular technique to extract useful information from
massive data.

Subsampling-based methods have recently been devel-
oped for various areas. For linear regression models, sub-
sampling methods include subsampling the covariance ma-
trix [12], leveraging methods [13] and information-based op-
timal subdata selection [14]. [15] and [16] extended subsam-
pling methods to logistic regression analysis. [17] investi-
gated the optimal subsampling method under the A- and
L-optimality criteria for generalized linear models. [18, 19]
developed efficient subsampling method for quantile regres-
sion. [20] relaxed the assumption of distribution and derived
optimal Poisson subsampling probabilities in the context of
quasi-likelihood estimation.

Recently, subsampling methods have been successfully
extended for handling massive data in survival analysis, such
as illness-death model under semi-competing risks settings
[21, 22], additive hazards model [23] and Cox regression
[1, 24]. To the best of our knowledge, subsampling meth-
ods for competing risks data have not been fully considered.
The occurrence of massive data sets as well as relatively
rare events of failures motivates us to propose subsampling
methods based on Fine-Gray model. This paper extends the
subsampling methods of [1] to the Fine-Gray model and de-
rives explicit L- and A-optimal probabilities. Although our
work is motivated by [1], we make the following contribu-
tions:

• We propose an explicit and efficient subsampling ap-
proach for rare-event competing risks data. The con-
sistency and asymptotic normality are established for
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regression coefficients and cumulative baseline hazard
function based on the Fine-Gray model.

• According to our simulation study with large sample
sizes (e.g., 106), we found that the existing R pack-
age cmprsk would encounter severe computational chal-
lenges. Our subsampling method however requires sub-
stantially less computing time with comparable root
mean squared error (RMSE). Moreover, the higher the
censoring rate, the less running time, indicating high
efficiency of our proposed estimators.

The rest of this paper is organized as follows. Section 2 in-
troduces the model setup and the subsampling methodology
under Fine-Gray model. Section 3 presents the asymptotic
properties of the coefficient estimates, the L- and A-optimal
probabilities as well as a two-step algorithm. Section 4 illus-
trates the performance of our methodology through numer-
ical simulation and presents a real application based on the
publicly available data set from SEER. The results indicate
that our subsampling methods are not only theoretically
sound but also computationally highly efficient and fast.

2. METHODOLOGY

Assume that there exist K causes of failure, denoted
by ε ∈ {1, ...,K}. Without loss of generality, set K = 2.
Let T and C denote the failure and censoring time, re-
spectively. Denote X = min(T,C), and censoring indica-
tor δ = I(T ≤ C), where I(·) is the indicator function.
Denote ν × 1-dimensional bounded time-independent co-
variate vector as Z. The observed data are then given as
{Xi, δi, δiεi,Zi; i = 1, ..., n}. Denote the number of censored
observation as nc. ne = n−nc =

∑n
i=1 δi is then the number

of observed failures.
The cumulative incidence function (CIF) for failure from

Cause 1 conditional on the covariate is F1(t|Z) = P (T ≤
t, ε = 1|Z). The subdistribution hazard [25] is then defined
as

λ1(t|Z) = lim
∆t→0

1

∆t
P {t < T ≤ t+ ∆t, ε = 1∣∣(T ≥ t) ∪ (T ≤ t ∩ ε 6= 1),Z

}
=
dF1(t|Z)/dt

1− F1(t|Z)
.

Under the proportional hazards specification, assume
λ1(t|Z) = λ10(t) exp(Z>β0), where λ10(·) is an unspecified
nonnegative function and Λ10(t) is the cumulative baseline

hazard function
∫ t

0
λ10(u)du. Let β0, λ0

10 and Λ0
10 be the

true values of β, λ10, and Λ10, respectively.
With inverse probability of censoring weighting (IPCW

[26]) for right censored data, the log partial likelihood for
PSH model is given by

`(β) =

n∑
i=1

∫ ∞
0

Z>i β − log

∑
j

wj(u)Yj(u) exp{Z>j β}




× wi(u)dNi(u),

where Ni(t) = I(Ti ≤ t, εi = 1), Yi(t) = 1−Ni(t−) [28], and
wi(t) = I(Ci ≥ Ti ∧ t)Ĝ(t)/Ĝ(Xi ∧ t) is the time-dependent
weight with G(t) = P (C ≥ t) being the survival function
of censoring variable C and Ĝ(t) being the Kaplan-Meier
estimator of G(t) [27]. For given t, if individual i failed due
to right censoring or event of interest, wi(t)Yi(t) = 0; if
individual i failed because of competing risks, wi(t)Yi(t)
lies between 0 and 1 and decreases with time; otherwise,
wi(t)Yi(t) = 1.

Remark 2.1. By using IPCW, we assume censoring vari-
able C is independent of covariate Z for simplicity. As dis-
cussed in Section 4 of [4], IPCW can also be generalized for
the case when C and Z are dependent.

In what follows, we adopt some conventional notations to
simplify our presentation for survival analysis. Let

Ŝ
(k)
2 (β, t) =

1

n

n∑
i

wi(t)Yi(t)Z
⊗k
i exp{Z>i β},(1)

where Z⊗0
i = 1,Z⊗1

i = Zi,Z
⊗2
i = ZiZ

>
i . It is noted

that
∫∞

0
wi(t)dNi(t) = wi(Xi)Ni(Xi) = I(Ti ≤ Xi, ε =

1) I(Ci≥Xi)Ĝ(Xi)

Ĝ(Xi)
= I(δiεi = 1), which leads to another useful

expression of the log partial likelihood

`(β) =

n∑
i=1

I(δiεi = 1)

Z>i β − log

∑
j∈Ri

wj(Xi) exp{Z>j β}


 ,

where Ri = {j : (Xj ≥ Xi) ∪ ((Xj ≤ Xi) ∩ (δj = 1) ∩ (εj 6=
1))}. The score function is then given as

U(β) =
∂`(β)

∂β
=

n∑
i=1

I(δiεi = 1)

[
Z>i −

Ŝ
(1)
2 (β, Xi)

Ŝ
(0)
2 (β, Xi)

]
.

Let β̂full denote the estimator based on full sample and τ be
the maximal follow-up time.

To conduct subsampling, denote p = (p1, · · · , pnc)> as
the vector of sampling probabilities for the censored obser-
vations, where

∑nc

i=1 pi = 1, and set

πi =


1
piq
, if δi = 0, pi > 0

0, if δi = 0, pi = 0
1, if δi = 1

For the subsample, let

Ŝ
(k)
π2 (β, t) =

1

n

∑
i∈Q

πiwi(t)Yi(t)Z
⊗k
i exp{Z>i β},

and β̃ be the estimator based on Q, which is the set con-
taining all observed failures and a subsample of size q drawn
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from censored observations. Thus, β̃ solves the following es-
timating equation:

0 =U∗(β) =
∂`∗(β)

∂β
=
∑
i∈Q

I(δiεi = 1)

[
Z>i −

Ŝ
(1)
π2 (β, Xi)

Ŝ
(0)
π2 (β, Xi)

]

where

`∗(β) =
∑
i∈Q

I(δiεi = 1)
[
Z>i β − log{nŜ(0)

π2 (β, Xi)}
]
.

Finally, let hi be the random variable which counts the
number of times observation i drawn into the subsample
Q, h = (h1, · · · , hn)>. Conditional on the σ−algebra Dn =
F{Xi, δi, δiεi,Zi; i = 1, · · · , n}, we have

hi = 1, if δi = 1,

hc|Dn ∼ Multinomial(q,p),

where hc is the nc × 1 subvector of h, corre-
sponding to the censored observations. Hence,
we have

∑
i∈Q πiwi(t)Yi(t)Z

⊗k
i exp{Z>i β} =∑n

i=1 hiπiwi(t)Yi(t)Z
⊗k
i exp{Z>i β}, and

Λ̂10(t) =
1

n

n∑
i=1

∫ t

0

1

Ŝ
(0)
2 (β̃, u)

wi(u)dNi(u)

is a modified version of Breslow’s estimator [4], which con-
verges uniformly in probability to the true baseline hazard of
the subdistribution on the interval [0,τ) with τ being chosen
chosen such that P (X ≥ τ) > 0.

3. ASYMPTOTIC PROPERTIES

In this section, we derive the consistency and asymptotic
normality of the estimator from the subsampling algorithm
to the full-data partial-likelihood estimator. The establish-
ment of the asymptotic properties follows from [1].

We assume that ne = o(n) as n → ∞, the number of
sampled subsets from censored observations is q with q/n→
0 as n→∞. Let C be the set of all censored observations in
the full data, E the set of all observed failure observations,
and Q the set consisting of E and all censored observations
in the subsample. Hence, we have |C| = nc, |E| = ne, |Q| =
ne + q.

Let

S
(k)
1 (β, t) =

1

n

n∑
i=1

Yi(t)Z
⊗k
i exp{Z>i β},

α(k)(β, t) = E[S
(k)
1 (β, t)].

To characterize asymptotic properties of subsample estima-
tors, we require the following regularity assumptions from
[1].

A.1 Λ10(τ) =
∫ τ

0
λ10(t)dt <∞.

A.2 There exist the compact neighbourhood B of β0 and
α(k) defined above over B × [0, τ ], satisfying that for
k = 0, 1, 2

sup
t∈[0,τ ],β∈B

‖S(k)
1 (β, t)− α(k)(β, t)‖2

P→ 0.

A.3 There exist C1, C2 > 0, such that maxij |zij | < C1 and
maxi |Z>i β0| < C2.

A.4 For B, α(0), α(1), α(2) defined in (A.2) , let e = α(1)/α(0)

and v = α(2)/α(0) − e⊗2. thus, for all β ∈ B, t ∈ [0, τ ]

a(1)(β, t) =
∂α(0)(β, t)

∂β
, α(2)(β, t) =

∂2α(0)(β, t)

∂β∂β>
,

α(0)(·, t), α(1)(·, t) and α(2)(·, t) , β ∈ B are uniformly
continuous function on t ∈ [0, τ ], α(0), α(1)andα(2) are
bounded over B× [0, τ ]; and α(0) is bounded away from
zero on B × [0, τ ].

A.5 The matrix

A =

∫ τ

0

v(β0, t)α(0)(β0, t)λ10(t)dt

is positive definite.
A.6 (T, ε) is independent of C given Z.
A.7 E{wi(τ)Yi(τ)} > 0, for all i = 1, · · · , n.
A.8 As n→∞, pin is bounded away from 0 for all i ∈ C .
A.9 The Hessian matrix ∂2`(β)/(∂β∂β>) and

∂2`∗(β)/(∂β∂β>) are non-singular with probabil-
ity going to 1, as n→∞ and q →∞.

A.10 ne = o(n) as n → ∞, and the number of sampled cen-
sored observations is substantially smaller than the full
sample, i.e., q = o(n).

A.1-A.7 are the standard assumptions for the consistency
and asymptotic normality of competing risks regression in
the unconditional space. A.8-A.10 are regularity conditions
for subsampling procedure. A.8 guarantees that the sam-
pling probabilities do not approach 0 too fast as the sample
size increases. A.9 ensures that the subsample-based and
full-sample-based information matrices are invertible with
increasing sample size. A.10 assures that on the basis of rare
events, the number of censored observations is downsampled
to be substantially smaller than nc.

Remark 3.1. We assume A.10 to assure q � nc and the ef-
ficiency of subsampling methods. However, this assumption
can be relaxed to ne = O(n). The convergence rate O(q−1)
and O(q−1/2) in the asymptotic results will then be replaced
by O(n−1) and O(n−1/2), respectively.

Theorem 3.1. Assume that A.1,A.3 and A.7-A.9 hold.
Condition on Dn, we have

‖β̃ − β̂full‖2 = OP |Dn
(q−1/2)(2)

and for each t ∈ [0, τ ],

Λ̂10(t, β̃)− Λ̂10(t, β̂full) = OP |Dn
(q−1/2)(3)
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where OP |Dn
stands for “in probability” big-O notation in

the conditional probability measure given Dn, with n → ∞
and q →∞.

The proof of Theorem 3.1 requires the following three
lemmas.

Lemma 3.1. Based on A.1,A.3 and A.8, and for a fixed
vector of coefficients β, it holds that

sup
t∈[0,τ ]

|Ŝ(k)
π2 (β, t)− Ŝ

(k)
2 (β, t)|(4)

= OP |Dn
(q−1/2)

for k = 0, 1, 2, where τ is the maximal follow-up time.

Proof of Lemma 3.1 Without loss of generality, it suffices
to prove for the case when k = 1 since the proof is similar
for k = 0 and 2. When k = 2, it can be done by treating a
general element in the matrix. We can firstly rewrite Eq.(4)
as follows

Ŝ
(1)
π2 (β, t)− Ŝ(1)

2 (β, t)(5)

=
1

n

n∑
i=1

wi(t)Yi(t) exp{Z>i β}Zi(πihi − 1)

The conditional expectation of the above expression is 0
since E(hi|Dn) = π−1

i for all observations with a non-zero
sampling probability, and Yi(t) = 0 for all observations with
a zero sampling probability [1]. Examining the conditional
variance, with the characteristics of Multinomial distribu-
tion, we have

Var
{
Ŝ

(1)
π2 (β, t)− Ŝ(1)

2 (β, t)
∣∣Dn}

=
1

n2

{∑
i∈C

exp{2Z>i β}wi(t)Yi(t)Z⊗2
i Var(πihi|Dn)

+
∑

i,j∈C,i6=j

exp{(Zi + Zj)
>β}wi(t)wj(t)Yi(t)Yj(t)

×Z>i ZjCov(πihi, πjhj |Dn)
}

=
1

n2

{∑
i∈C

exp{2Z>i β}wi(t)Yi(t)Z⊗2
i

qpi(1− pi)
p2
i q

2
i

+
∑

i,j∈C,i6=j

exp{(Zi + Zj)
>β}wi(t)wj(t)Yi(t)Yj(t)

×Z>i Zj
−qpipj
q2pipj

}
=

1

n2

{∑
i∈C

1

piq
exp{2Z>i β}wi(t)Yi(t)Z⊗2

i

−
∑
i,j∈C

1

q
exp{(Zi + Zj)

>β}wi(t)wj(t)Yi(t)Yj(t)Z>i Zj


= O|Dn

(q−1),

where O|Dn
(q−1) denotes the standard big-O notation in the

conditional space. The last equality can be derived from A.3
and A.8.

Since Var
{
q

1
2

(
Ŝ

(1)
π2 (β, t)− Ŝ(1)

2 (β, t)
)
|Dn

}
= O|Dn

(1),

by the definition of the order relation, there exist M, q0 > 0
such that

Var
{
q

1
2

(
Ŝ

(1)
π2 (β, t)− Ŝ(1)

2 (β, t)
)
|Dn

}
≤M, for all q ≥ q0.

For any ε > 0, there exist Mε = (Mε )1/2 and q0, by Cheby-
shev’s inequality, such that for all q > q0

P
(∣∣∣q 1

2

(
Ŝ

(1)
π2 (β, t)− Ŝ(1)

2 (β, t)
)∣∣∣ ≥Mε|Dn

)
≤

Var
{
q

1
2

(
Ŝ

(1)
π2 (β, t)− Ŝ(1)

2 (β, t)
)
|Dn

}
M
ε

≤ ε.

Thus, Ŝ
(1)
π2 (β, t) − Ŝ

(1)
2 (β, t) = OP |Dn

(q−
1
2 ). Finally, note

that time t affects only the deterministic part in Eq.(5) and
it is bounded, the result holds also for the supremum over
t. Therefore, the proof of Lemma 3.1 is complete.

Lemma 3.2. If A.1,A.3 and A.7-A.8 are satisfied, then
conditioning on Dn we have

1

n

∂`∗(β̂full)

∂β
= OP |Dn

(q−1/2),

in an element-wise sense.

Lemma 3.2 shows that as q and n go to infinity, the
subsample-based pseudo-score function approaches to 0 at
the value β̂full.
Proof of Lemma 3.2. Firstly, we have
(6)

1

n

∂`∗(β̂full)

∂β
=

1

n

n∑
i=1

∫ τ

0

{
Zi −

Ŝ
(1)
π2 (β̂full, t)

Ŝ
(0)
π2 (β̂full, t)

}
wi(t)dNi(t).

In the conditional space, wi(t)Ni(t) is deterministic for all t,
and so is β̂full. For the integrand of Eq.(6), it is a function of

x0 + η =
(
Ŝ

(0)
π2 (β̂full, t), Ŝ

(1)
π2 (β̂full, t)

)>
[29]. The first order

Taylor expansion about x0 =
(
Ŝ

(0)
2 (β̂full, t), Ŝ

(1)
2 (β̂full, t)

)>
yields

1

n

n∑
i=1

∫ τ

0

[
Zi −

Ŝ
(1)
2 (β̂full, t)

Ŝ
(0)
2 (β̂full, t)

+
1

Ŝ
(0)
2 (β̂full, t)

(
Ŝ

(1)
π2 (β̂full, t)− Ŝ

(1)
2 (β̂full, t)

)
− Ŝ

(1)
2 (β̂full, t)

Ŝ
(0)
2 (β̂full, t)

2

(
Ŝ

(0)
π2 (β̂full, t)− Ŝ

(0)
2 (β̂full, t)

)
+ξt]wi(t)dNi(t)
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=
1

n

∂`(β̂full)

∂β

+
1

n

∫ τ

0

[
1

Ŝ
(0)
2 (β̂full, t)

(
Ŝ

(1)
π2 (β̂full, t)− Ŝ

(1)
2 (β̂full, t)

)
− Ŝ

(1)
2 (β̂full, t)

Ŝ
(0)
2 (β̂full, t)

2

(
Ŝ

(0)
π2 (β̂full, t)− Ŝ

(0)
2 (β̂full, t)

)
+ξt]wi(t)dNi(t)

where

ξt = η>
∫ 1

0

∫ 1

0

vL̈dudvη,

L̈ is the second order derivative of the integrand of Eq.(6)
with respect to x0 +η taking value at x0 +uvη. By Lemma

3.1, Ŝ
(0)
2 (β̂full, t) and Ŝ

(1)
2 (β̂full, t) are conditionally bounded

in probability due to the continuous mapping theorem, A.3,
A.7 and ξt = OP |Dn

(q−1) . Therefore, based on Lemma 3.1,
for k = 0, 1, we have

1

n

∂`∗(β̂full)

∂β
= O|Dn

(
Ŝ

(k)
π2 (β̂full, t)− Ŝ

(k)
2 (β̂full, t)

)
= OP |Dn

(q−1/2),

Hence, Lemma 3.2 is proved.
For Lemma 3.3, we denote

I(β) =
1

n

∂2`(β)

∂β∂β>

= − 1

n

n∑
i=1

∫ τ

0

 Ŝ(2)
2 (β, t)

Ŝ
(0)
2 (β, t)

−

(
Ŝ

(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

)⊗2
wi(t)dNi(t),

Ĩ(β) =
1

n

∂2`∗(β)

∂β∂β>

= − 1

n

n∑
i=1

∫ τ

0

 Ŝ(2)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

−

(
Ŝ

(1)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

)⊗2
wi(t)dNi(t),

and

Ŝ
(1)
2,k(β, t) =

1

n

n∑
i=1

exp(Z>i β)wi(t)Yi(t)Zik,

Ŝ
(1)
π2,k(β, t) =

1

n

n∑
i=1

exp(Z>i β)wi(t)Yi(t)Zikπihi,

where Zik stands for the k−th element of the vector Zi.

Lemma 3.3. If A.1,A.3 and A.7-A.8 are satisfied, then
condition on Dn, for a vector of fixed coefficients β, we have

(7) Ĩ(β)− I(β) = OP |Dn
(q−1/2),

in the sense that it holds for each element in the matrix.

Lemma 3.3 shows that the subsample-based observed in-
formation matrix for β converges to the corresponding ob-
served information matrix based on the full sample.
Proof of Lemma 3.3.

Ĩ(β)− I(β)

=
1

n

n∑
i=1

∫ τ

0

{
Ŝ

(2)
2 (β, t)

Ŝ
(0)
2 (β, t)

− Ŝ
(2)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

}
wi(t)dNi(t)

− 1

n

n∑
i=1

∫ τ

0

{ Ŝ(2)
2 (β, t)

Ŝ
(0)
2 (β, t)

}⊗2

−

{
Ŝ

(2)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

}⊗2


× wi(t)dNi(t).

According to to Lemma 3.1, A.3 and A.7, the first addend
can be shown to be OP |Dn

(q−1/2) by rewriting it as

1

n

n∑
i=1

∫ τ

0

{
Ŝ

(2)
2 (β, t)

Ŝ
(0)
2 (β, t)

− Ŝ
(2)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

}
wi(t)dNi(t)

=
1

n

n∑
i=1

∫ τ

0

{
Ŝ

(2)
2 (β, t)

Ŝ
(0)
2 (β, t)

− Ŝ
(2)
π2 (β, t)

Ŝ
(0)
2 (β, t)

+
Ŝ

(2)
π2 (β, t)

Ŝ
(0)
2 (β, t)

− Ŝ
(2)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

}
wi(t)dNi(t)

=
1

n

n∑
i=1

∫ τ

0

{
Ŝ

(2)
2 (β, t)− Ŝ(2)

π2 (β, t)

Ŝ
(0)
2 (β, t)

}
wi(t)dNi(t)

+
1

n

n∑
i=1

∫ τ

0

Ŝ
(2)
π2 (β, t)

{
Ŝ

(0)
2 (β, t)− Ŝ(0)

π2 (β, t)
}

Ŝ
(0)
2 (β, t)Ŝ

(0)
π2 (β, t)

× wi(t)dNi(t)
= OP |Dn

(q−1/2).

For the second addend, we can use similar arguments
given in the proof of Lemma 3.2 for the general element of
the matrix in the m−th row and l-th column with the Tay-

lor expansion for Ŝ
(1)
π2,m(β, t)Ŝ

(1)
π2,l(β, t)/{Ŝ

(0)
π2 (β, t)}2 with re-

spect to x0 + η =
(
Ŝ

(1)
π2,m(β, t), Ŝ

(1)
π2,l(β, t), Ŝ

(0)
π2 (β, t)

)>
at

x0 =
(
Ŝ

(1)
2,m(β, t), Ŝ

(1)
2,l (β, t), Ŝ

(0)
2 (β, t)

)>
. As a result,

1

n

n∑
i=1

∫ τ

0

{ Ŝ(2)
2 (β, t)

Ŝ
(0)
2 (β, t)

}⊗2

ml

−

{
Ŝ

(2)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

}⊗2

ml

wi(t)dNi(t)
=

1

n

n∑
i=1

∫ τ

0

{ Ŝ(2)
2 (β, t)

Ŝ
(0)
2 (β, t)

}⊗2

ml

−

{
Ŝ

(2)
2 (β, t)

Ŝ
(0)
2 (β, t)

}⊗2

ml

+
Ŝ

(1)
2,l (β, t)

Ŝ
(0)
2 (β, t)2

(
Ŝ

(1)
π2,m(β, t)− Ŝ(1)

2,m(β)
)

+
Ŝ

(1)
2,m(β, t)

Ŝ
(0)
2 (β, t)2

(
Ŝ

(1)
π2,l(β, t)− Ŝ

(1)
2,l (β, t)

)
Optimal subsampling proportional subdistribution hazards regression with rare events in big data 5



−
2Ŝ

(1)
2,l (β, t)Ŝ

(1)
2,m(β, t)

Ŝ
(0)
2 (β, t)3

(
Ŝ

(0)
π2 (β, t)− Ŝ(0)

2 (β, t)
)

+ ξt

]
× wi(t)dNi(t),

where

ξt = η>
∫ 1

0

∫ 1

0

vS̈dudvη,

S̈ is the second order derivative of
Ŝ

(1)
π2,m(β, t)Ŝ

(1)
π2,l(β, t)/{Ŝ

(0)
π2 (β, t)}2 with respect to x0 + η

taking value at x0 + uvη. Based on the continuous
mapping theorem, A.3, A.7 and Lemma 3.1, we have
ξt = OP |Dn

(q−1), and Eq.(7) follows.
Proof of Theorem 3.1, Eq.(2). Firstly, we introduce the fol-
lowing notations

S
(1)
π2,kl(β, t) =

1

n

n∑
i=1

πi exp(Z>i β)wi(t)Yi(t)hiZikZil,

S
(1)
π2,klm(β, t) =

1

n

n∑
i=1

πi exp(Z>i β)wi(t)Yi(t)hiZikZilZim.

Let `∗
′

k (β) be the derivative of `∗(β) with respect to βk and

Ĩk be the k−th row of the matrix Ĩ. The first order Taylor
expansion for n−1`∗

′

k (β̃) about β̂full is given as
(8)

0 =
1

n
`∗

′

k (β̃) =
1

n
`∗

′

k (β̂full) + Ĩ>k (β̂full)(β̃ − β̂full) +
1

n
Resk,

where

1

n
Resk = (β̃ − β̂full)

>
∫ 1

0

∫ 1

0

v
∂Ĩk
∂β

∣∣∣∣
β̂full+uv(β̃−β̂full)

dudv

· (β̃ − β̂full).

For any general element, say (l,m), of ∂Ĩk(β)/∂β, we get

1

n

∂2`∗
′

k (β)

∂βl∂βm

=
1

n

n∑
i=1

∫ τ

0

1

S
(0)3
π2 (β, t)

[
−S(1)

π2,klm(β, t)S
(0)2
π2 (β, t)

+
(
S

(1)
π2,kl(β, t)S

(1)
π2,m(β, t) + S

(1)
π2,km(β, t)S

(1)
π2,l(β, t)

+S
(1)
π2,lm(β, t)S

(1)
π2,k(β, t)

)
S

(0)
π2 (β, t)

−2S
(1)
π2,k(β, t)S

(1)
π2,l(β, t)S

(1)
π2,m(β, t)

]
wi(t)dNi(t).

According to Lemma 3.1, the continuous mapping the-
orem and A.7, the subsample-based pseudo-score function
n−1`∗(β)/β converges in conditional probability uniformly
to the full sample score function n−1∂`(β)/∂β. Since B is
compact, by the Appendix A of [4],

β̂full − β0 = op(1),

and the function ∂`∗(β)/∂β converges in probability to
a continuous and deterministic function of β, denoted as
U0(β), which has a unique 0 at β0 uniformly for β ∈ B.
By the uniform convergence in conditional probability of
n−1`∗(β)/β to U0(β), and Theorem 5.9 of [30], we have

β̃ − β0 = oP |Dn
(1).

Consequently,

β̃ − β̂full = oP |Dn
(1).(9)

Therefore, β̃ converges consistently to β̂full in the condi-
tional space.

For the rate of convergence, due to continuity, and η =
β̂full+uv(β̃−β̂full) is on the line segment between β̃ and β̂full

for u, v ∈ [0, 1], it follows that η − β̂full = oP |Dn
(1). Hence,

η = OP |Dn
(1). Combining A.3 and A.8, we can verify that

Ŝ
(k)
π2 (η, t), k = 0, 1, 2, t ∈ [0, τ ] are all bounded in conditional

probability. In particular, we can write

Ŝ
(0)
π2 (η, t) =

1

q

q∑
i=1

exp{Z∗>i η}w∗i (t)Y ∗i (t)

np∗i

+
1

n

∑
i∈E

exp{Z>i η}wi(t)Yi(t),

which is conditionally bounded away from 0, where “*” de-
notes sampling with replacement. Similar results hold for

Ŝ
(k)
π2 (η, t), k = 1, 2, Ŝ

(1)
π2,kl(η, t) and Ŝ

(1)
π2,klm(η, t), for all t ∈

[0, τ ]. Therefore, based on A.7, we know that ∂Ĩk(η)/∂β =
OP |Dn

(1) for all k,

(10)
1

n
Resk = OP |Dn

(
‖β̃ − β̂full‖22

)
.

From Eq.(8)-(10) and A.9, we have
(11)

β̃−β̂full = −Ĩ−1(β̂full)

{
1

n

∂`∗(β̂full)

∂β
+OP |Dn

(
‖β̃ − β̂full‖22

)}
.

Since matrix inversion is a continuous operation, accord-
ing to Lemma 3.3 and the continuous mapping theorem,
Ĩ−1(β̂full) − I−1(β̂full) = oP |Dn

(1), yielding Ĩ−1(β̂full) =
OP |Dn

(1). Therefore, combining Lemma 3.1-3.2 with Eq.(9)-
(11), we have

β̃ − β̂full = OP |Dn
(q−1/2) + oP |Dn

(
‖β̃ − β̂full‖2

)
.

Hence,

(12) β̃ − β̂full = OP |Dn
(q−1/2).

The proof of Eq.(2) in Theorem 3.1 is completed.
Proof of Theorem 3.1 Eq.(3). Write

Λ̂10(t, β̃)− Λ̂10(t, β̂full)
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=
1

n

n∑
i=1

∫ t

0

{
1

Ŝ
(0)
2 (β̃, u)

− 1

Ŝ
(0)
2 (β̂full, u)

}
wi(u)dNi(u).

A Taylor expansion about β̂full yields

Λ̂10(t, β̃)− Λ̂10(t, β̂full)(13)

= (β̃ − β̂full)
1

n

n∑
i=1

∫ t

0

Ŝ
(1)
2 (ξ, u)

Ŝ
(0)2
2 (ξ, u)

widNi(u),

where ξ is on the line segment between β̃ and β̂full. Based
on A.3, A.7 and Eq.(12), Eq.(13) is a product of a term of
OP |Dn

(q−1/2) and a term bounded in conditional probabil-
ity, thus proving Eq.(3) and completing Theorem 3.1.

Theorem 3.2 below is about the asymptotic properties of
the subsample-based estimators in the unconditional space.

Theorem 3.2. Given that A.1-A.10 hold, as q → ∞ and
n→∞,

(14)
√
qV−1/2

β̃
(p,β0)(β̃ − β0)

D→ N(0, I),

and for all t ∈ [0, τ ],

(15)
√
qV−1/2

Λ̂10(t,β̃)
(p,β0, t)(Λ̂10(t, β̃)− Λ0

10(t))
D→ N(0, 1),

where

Vβ̃(p,β) = qn−1I−1(β)ΣI−1(β) + I−1(β)φ(p,β)I−1(β),

φ(p,β) =
1

n2

∑
i∈C

ai(β)ai(β)>

pi
−
∑
i,j∈C

ai(β)aj(β)>

 ,

ai(β) =

n∑
j=1

∫ τ

0

{
Zi −

Ŝ
(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

}
wi(t)Yi(t) exp(Z>i β)

Ŝ
(0)
2 (β, t)

× wj(t)dNj(t)

V
Λ̂10(t,β̃)

(p,β, t) =
q

n

n∑
i=1

∫ t

0

wi(u)dNi(u)

n−1Ŝ
(0)2
2 (β, u)

+ H>(β, t)Vβ̃(p,β)H(β, t)

H(β, t) =

n∑
i=1

∫ t

0

Ŝ
(1)
2 (β, u)

Ŝ
(0)2
2 (β, u)

wi(u)dNi(u).

Here, I is the ν × ν identity matrix and Σ is the variance-
covariance matrix of n−1/2U(β0) defined as in [4].

Remark 3.2. The rate of convergence of subsampling-based
estimator is theoretically slightly slower than that of the
full-data parametric version. However, in our simulation
studies with large sample sizes, we find that the RMSEs
of subsampling-based estimators are very close to those of
the full-data estimator. Besides, if we relax the assumption
ne = o(n),

√
q would become

√
n.

Lemma 3.4 establishes the consistency of β̃.

Lemma 3.4. If A.3-A.9 hold, then as q →∞ and n→∞,
∀ε > 0, we have

(16) lim
n,q→∞

Pr(‖β̃ − β0‖2 > ε) = 0.

Proof of Lemma 3.4. In Theorem 3.1, it is established that
for all ε > 0,

lim
n,q→∞

Pr
(
‖β̃ − β̂full‖ ≥ ε|Dn

)
= 0.

In the unconditional probability space,
Pr
(
‖β̃ − β̂full‖ ≥ ε|Dn

)
is itself a random variable, de-

noted as πn,q. It then follows that

Pr

(
lim

n,q→∞
πn,q = 0

)
= 1,

meaning that πn,q
a.s.−→

n,q→∞
0. For all ε > 0,

lim
n,q→∞

Pr
(
‖β̃ − β̂full‖2 > ε

)
(17)

= lim
n,q→∞

E(πn,q) = E( lim
n,q→∞

πn,q) = 0,

where the interchange of expectation and limit is allowed
due to the dominated convergence theorem (as πn,q is triv-
ially bounded by 1). Hence,

Pr
(
‖β̃ − β0‖2 ≥ ε

)
= Pr

(
‖β̃ − β̂full + β̂full − β0‖2 ≥ ε

)
≤ Pr

(
‖β̃ − β̂full‖2 + ‖β̂full − β0‖2 ≥ ε

)
≤ Pr

(
{‖β̃ − β̂full‖2 ≥ ε/2} ∪ {‖β̂full − β0‖2 ≥ ε/2}

)
≤ Pr

(
‖β̃ − β̂full‖2 ≥ ε/2

)
+ Pr

(
‖β̂full − β0‖2 ≥ ε/2

)
.

Taking limits on both sides, we have

lim
n,q→∞

Pr
(
‖β̃ − β0‖2 ≥ ε

)
≤ lim
n,q→∞

Pr
(
‖β̃ − β̂full‖2 ≥ ε/2

)
+ lim
n,q→∞

Pr
(
‖β̂full − β0‖2 ≥ ε/2

)
= 0.

Here, the first addend on the right hand side tends to 0 due
to Eq.(17) while the second addend becomes 0 based on the
results for competing risks in [4] and A.3-A.7. As a result,
Eq.(16) is proved.
Proof of Theorem 3.2. Similar to Eq.(11), and based on
Lemma 3.4, a Taylor expansion for the subsample-based
pseudo-score function evaluated at β̃ about β0 yields

(18) β̃ − β0 = −Ĩ−1(β0)

{
1

n

∂`∗(β0)

∂β
+ oP

(
‖β̃ − β0‖2

)}
.

Similar to [31], the subsample-based pseudo-score function
can be decomposed into two separate components, i.e.,

(19)
1

n

∂`∗(β)

∂β
=

1

n

∂`(β)

∂β
+

1

n

∑
i∈C

(1− πihi)ãi(β),
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where

ãi(β) =

n∑
j=1

∫ τ

0

{
Zi −

Ŝ
(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

}

× exp(Z>i β)Yi(t)wi(t)

Ŝ
(0)
π2 (β, t)

wj(t)dNj(t).

To verify Eq. (19), we notice that

∑
i∈C

(1− πihi)ãi(β) =

n∑
i=1

(1− πihi)ãi(β)

=

n∑
i=1

(1− πihi)
n∑
j=1

∫ τ

0

{
Zi −

Ŝ
(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

}

× exp(Z>i β)Yi(t)wi(t)

Ŝ
(0)
π2 (β, t)

wj(t)dNj(t).

=

n∑
i=1

n∑
j=1

∫ τ

0

{
Zi −

Ŝ
(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

}

× exp(Z>i β)Yi(t)wi(t)

Ŝ
(0)
π2 (β, t)

wj(t)dNj(t)

−
n∑
i=1

n∑
j=1

∫ τ

0

{
Zi −

Ŝ
(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

}

× exp(Z>i β)Yi(t)wi(t)πihi

Ŝ
(0)
π2 (β, t)

wj(t)dNj(t)

=

n∑
j=1

∫ τ

0

{
Ŝ

(1)
2 (β, t)

Ŝ
(0)
π2 (β, t)

− Ŝ
(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

Ŝ
(0)
2 (β, t)

Ŝ
(0)
π2 (β, t)

}
wj(t)dNj(t)

−
n∑
j=1

∫ τ

0

{
Ŝ

(1)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

− Ŝ
(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

Ŝ
(0)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

}
wj(t)dNj(t)

=

n∑
j=1

∫ τ

0

{
Ŝ

(1)
2 (β, t)

Ŝ
(0)
2 (β, t)

− Ŝ
(1)
π2 (β, t)

Ŝ
(0)
π2 (β, t)

}
wj(t)dNj(t)

=
∂`∗(β)

∂β
− ∂`(β)

∂β
.

Based on Eqs.(18)-(19), we can write

√
q(β̃ − β0)(20)

= −Ĩ−1(β0)

{√
q

n

∂`(β0)

∂β
+

√
q

n

∑
i∈C

(1− πihi)ãi(β0)

+oP (
√
q‖β̃ − β0‖2)

}
.

Based on the asymptotic results in [4] and A.3-A.7, we have

n−1/2 ∂`(β
0)

∂β

D→ N(0,Σ).

where Σ is defined as in [4]. By continuous mapping theorem

and multivariate Slutsky theorem [32], I(β0)−1 → Ω−1, and

{
−I(β0)

}−1/2
n−1/2 ∂`(β

0)

∂β

D→ N(0, I−1/2(β0)ΣI−1/2(β0)).

Based on Lemma 3.3 and the dominated convergence theo-
rem, we can show that Ĩ(β0) is consistent to I(β0). Based
on A.9 and similar to the proof of Lemma 3.4, we have
(21){
−Ĩ(β0)

}−1/2 1√
n

∂`(β0)

∂β

D→ N(0, I−1/2(β0)ΣI−1/2(β0)).

If this term is multiplied by a factor of
q1/2n−1/2{−Ĩ(β0)}−1/2, as in Eq. (20), then accord-
ing to Slutsky’s theorem and theorem 5.13 of [32], the
first addend has asymptotic variance q/nI−1(β0)ΣI−1(β0)
which will vanish to 0.

Next, we will show that the second addend is asymptot-
ically normally distributed. Firstly, we have

√
q

n

∑
i∈C

(1− πihi)ãi(β)

(22)

=

√
q

n

n∑
i=1

∫ τ

0

Ŝ
(1)
2 (β, t)Ŝ

(0)
π2 (β, t)− Ŝ(1)

π2 (β, t)Ŝ
(0)
2 (β, t)

Ŝ
(0)
2 (β, t)Ŝ

(0)
π2 (β, t)

× wi(t)dNi(t),

and

√
q

n

∑
i∈C

(1− πihi)ai(β)

(23)

=

√
q

n

n∑
i=1

∫ τ

0

Ŝ
(1)
2 (β, t)Ŝ

(0)
π2 (β, t)− Ŝ(1)

π2 (β, t)Ŝ
(0)
2 (β, t)

Ŝ
(0)2
2 (β, t)

× wi(t)dNi(t),

By Lemma 3.1 and continuous mapping theorem, Eq.(22)
and Eq.(23) share the same asymptotic distribution since
we have

√
q

n

∑
i∈C

(1− πihi)ãi(β)−
√
q

n

∑
i∈C

(1− πihi)ai(β)

=
1

n

n∑
i=1

∫ τ

0

√
q(Ŝ

(0)
2 (β, t)− Ŝ(0)

π2 (β, t))

Ŝ
(0)2
2 (β, t)Ŝ

(0)
π2 (β, t)

×
{
Ŝ

(1)
2 (β, t)

[
Ŝ

(0)
π2 (β, t)− Ŝ(0)

2 (β, t)
]

+ Ŝ
(0)
2 (β, t)

[
Ŝ

(1)
2 (β, t)− Ŝ(1)

π2 (β, t)
]}

wi(t)dNi(t)

= OP |Dn
(q−1/2),

by assumption A.3 and A.7 and Lemma 3.1.
We then establish the asymptotic normality of Eq.(23)

and identify its covariance matrix since Eq.(22) and Eq.(23)
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are asymptotically equivalent. It should be noticed ai(β
0)

is constant conditioning on Dn. Hence,
√
q

n

∑
i∈C πihiai(β

0)
can be alternatively expressed as a sum of q iid observations
in the conditional space as follows

√
q

n

q∑
i=1

π∗i a
∗
i (β

0) =
1
√
q

q∑
i=1

a∗i (β
0)

np∗i
≡ 1
√
q

q∑
i=1

γi(p,β
0).

Since the distribution of γi(p,β
0) changes as n and q in-

crease, the Lindeberg-Feller condition is established ([30],
proposition 2.27) as it covers the settings of triangular ar-
rays. Denote φ(p,β) ≡ Var(γ(p,β)|Dn). We have

φ(p,β0) = E
(
γ(p,β0)γ>(p,β0)|Dn

)
− E

(
γ(p,β0)|Dn

)
E (γ(p,β)|Dn)

>

=
1

n2

{∑
i∈C

ai(β
0)ai(β

0)>

pi

−
∑
i,j∈C

ai(β
0)aj(β

0)>

 = O|Dn
(1).

For every ε > 0 and for some δ > 0, by Markov inequality
[32], we have

q∑
i=1

E{‖q−1/2γi(p,β
0)‖22I(‖q−1/2γi(p,β

0)‖2 > ε)|Dn}

≤ 1

q1+δ/2εδ

q∑
i=1

E

{∥∥∥∥a∗i (β0)

np∗i

∥∥∥∥2+δ

2

|Dn

}

=
1

qδ/2εδn2+δ

∑
i∈C

‖ai(β0)‖2+δ
2

p1+δ
i

= O|Dn
(q−δ/2) = o|Dn

(1).

Hence,
∑n
i=1(q−1/2γi(p,β

0) − E[q−1/2γi(p,β
0)|Dn]) con-

verges in distribution to N(0,φ(p,β0)). By the recon-
struction of γi and E(1 − πihi|Dn) = 0 for any ob-
servation i, i = 1, · · · , n with ai(β

0) 6= 0, we have
n−1√qφ(p,β0)−1/2

∑
i∈C(1 − πihi)ai(β

0) converges condi-
tionally on Dn to a standard multivariate normal distribu-
tion. Replacing ai(β

0) by ãi(β
0), for all u ∈ Rν , where ν is

the dimension of covariates, we have

Pr

{
n−1√qφ(p,β0)−1/2

∑
i∈C

(1− πihi)ãi(β0) ≤ u |Dn

}(24)

P→ Φ(u),

where Φ is the standard multivariate normal cumulative
distribution function. Since the conditional probability is a
bounded random variable in the unconditional space (which

converges to a constant), by Eq.(24) and the dominated con-
vergence theorem, we have
(25)

Pr

{
n−1√qφ(p,β0)−1/2

∑
i∈C

(1− πihi)ãi(β0) ≤ u

}
P→ Φ(u).

It should also be observed that since the first addend in
Eq. (20) goes to 0 as q → ∞ and n → ∞, based on A.10,
the two addends are asymptotically independent. Combin-
ing Eq. (20)- (21), with Eq.(25), we arrive at Eq.(14). Here,
we replace Ĩ with I by Lemma 3.3 and Theorem 5.14 of [32].
It should be noted that the first expression within V

β̃
(p,β0),

qn−1I−1(β0)ΣI−1(β0) goes to 0 as q → ∞ and n → ∞.
Here, we prefer to retain it in order to obtain a more accu-
rate representation for finite samples.

3.1 Optimal Sampling Probabilities

Here, we use the Average-optimal design criterion pro-
posed by [33] due to its analytical convenience. We aim
to derive the sampling probability vector which minimizes
Tr(Vβ̃(p,β0)), where Tr is the trace operator.

Theorem 3.3. The Average-optimal sampling probabilities
vector pA is of the form

(26) pAm =
‖I−1(β0)am(β0)‖2∑
i∈C ‖I−1(β0)ai(β

0)‖2
for all m ∈ C.

Proof of Theorem 3.3.

Tr(Vβ̃(p,β0))

= Tr{I−1(β0)φ(p,β0)I−1(β0)}+ d

= Tr

[
1

n2
I−1(β0)

{∑
i∈C

1

pi
ai(β

0)a>i (β0)

−
∑
i,j∈C

ai(β
0)a>j (β0)

 I−1(β0)

+ d,

where d is a constant. Omitting the part involving p yields

Tr

{
1

n2

∑
i∈C
I−1(β0)

1

pi
ai(β

0)a>i (β0)I−1(β0)

}

=
1

n2

∑
i∈C

1

pi
Tr{a>i (β0)I−2(β0)ai(β

0)}

=
1

n2

∑
i∈C

1

pi
‖I−1(β0)ai(β

0)‖22.

Removing the factor of n−2 does not alter the optimization
solution. Next, we define the Lagrangian function with mul-
tiplier γ as

g(p) =
∑
i∈C

1

pi
‖I−1(β0)ai(β

0)‖22 + γ(1−
∑
i∈C

pi).
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Differentiating it with respect to pm with m ∈ C and setting
the derivative equal to 0, we get

∂g(p)

∂pm
= −‖I

−1(β0)am(β0)‖22
p2
m

− γ ≡ 0,

yielding

pm =
‖I−1(β0)am(β0)‖2√

−γ
.

Since all probabilities sum up to 1, we have

√
−γ =

∑
i∈C
‖I−1(β0)ai(β

0)‖2,

which yields Eq. (26). Since β0 is unknown, we use a two-
step estimator of [15].

Another strategy is the L-optimal (‘Linear’-optimal) cri-
terion which requires to minimize the trace of covariance
matrix of I(β0)β̃.

Theorem 3.4. The Linear-optimal sampling probabilities
vector pL is of the form

(27) pLm =
‖am(β0)‖2∑
i∈C ‖ai(β0)‖2

for all m ∈ C.

The proof of Theorem 3.4 is straightforward and its argu-
ments are similar to those presented in the proof of Theorem
3.3, and is thus omitted.

3.2 Two-Step Procedure

Since the results obtained in Eq. (26) and Eq.(27) con-
tain the unknown β0, we propose the following two-step al-
gorithm:

Step 1 Sample q observations uniformly from C and combine
them with E to form Qpilot. Obtain a crude estimator
β̃U by a weighted PSH regression on Qpilot and use it
to derive approximated optimal sampling probabilities
using Eq. (26) or Eq.(27).

Step 2 Sample another q observations from C using the proba-
bilities computed at Step 1. Combine these observations
with E to form Q and conduct weighted PSH regression
on Q to obtain the two step estimators β̃TS of β0.

Similar to Theorem 3.2, Theorem 3.5 establishes the
asymptotic properties of β̃TS and Λ̂10(0, β̃TS).

Theorem 3.5. Under Assumptions A1-A10, the following
asymptotic properties hold

√
qV−1/2

β̃
(popt,β0)(β̃TS − β0)

D→ N(0, I),

(28)

√
qV−1/2

Λ̂10,β̃
(popt,β0, t){Λ̂10(t, β̃TS)− Λ10(t)} D→ N(0, 1),

(29)

where popt is either pL or pA, depending on the chosen op-
timality criterion.

Proof of Theorem 3.5.

If β̃U is also conditioned upon the conditional space, then
the sampling probabilities become deterministic, and we re-
turn to the settings of Theorem 3.2. The consistency and
normality results derived for β̃ can be applied to any vec-
tor of deterministic sampling probabilities that satisfy A.8.
For example, with each component of p equal to each other,
we can get the asymptotic consistency and normality of β̃U
based on Theorem 3.2.

Thus, for all u ∈ Rν ,

Pr

{
V−1/2

β̃
(popt,β0)

(√
q(β̃TS − β0)

)
≤ u

}
= E

[
P

{
V−1/2

β̃
(popt,β0)

(√
q(β̃TS − β0)

)
≤ u|Dn, β̃U

}]
.

By Theorem 3.2 and asymptotic properties for β̃U , we
have

Pr

{
V−1/2

β̃
(popt,β0)

(√
q(β̃TS − β0)

)
≤ u|Dn, β̃U

}
→ Φ(u).

Since the conditional probability is a bounded random vari-
able in the unconditional space, which converges to a con-
stant, Eq.(28) is implied by the dominated convergence the-
orem with the consistency and normality results derived for
β̃. The same arguments hold for proving Eq.(29). Thus, the
proof is omitted.

Remark 3.3. We can compute the two-step optimal sub-
sampling probabilities directly by replacing the β0 with β̃U
in the expression of optimal sampling probability and the
computation covariance matrix is similar. Thus, we omit
the cumbersome and replicated expressions and notations in
Theorem 3.2 here for simplicity.

3.3 Variance Estimation

Based on Eq.(28), a natural estimator for the covariance
matrix of β̃TS is

q−1Vβ̃(popt, β̃TS)

= n−1I−1(β̃TS)ΣI−1(β̃TS)

+ q−1I−1(β̃TS)φ(popt, β̃TS)I−1(β̃TS).

However, calculation of I−1(β̃TS), Σ or φ(popt, β̃TS) in-
volves the full data, and may be avoided by replacing these
matrices with their subsampling-based counterparts, i.e.,
Ĩ−1(β̃TS), Σ̃ and φ̃(popt, β̃TS) where

φ̃(popt, β̃TS) =
1

n2q

{
q∑
i=1

a∗i (β̃TS)a∗i (β̃TS)>

p∗2i
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− 1

q2

q∑
i=1

a∗i (β̃TS)

p∗i

(
q∑
i=1

a∗i (β̃TS)

p∗i

)> .

The variance estimator for Λ̂10(t, β̃TS) is simply
q−1V

Λ̂10(t,β̃)
(popt, β̃TS , t).

4. NUMERICAL RESUTLS

4.1 Simulation Study

In this section, we compare the performance of our pro-
posed methods with the full-data partial-likelihood estima-
tor. The data are generated based on [4], where

P (Ti ≤ t, εi = 1|Zi) = 1− [1− θ{1− exp(−t)}]exp(Z>β0
)

and the sub-distribution for type 2 failure is obtained by
taking P (εi = 2|Zi) = 1 − P (εi = 1|Zi) and using an ex-
ponential distribution with rate exp(−Z>β0) for P (Ti ≤
t|εi = 2,Zi). We set θ = 0.3 and the true vector of coeffi-
cient β0 = (0.3,−0.5, 0.1,−0.1, 0.1,−0.3)>.

The covariates Zi, i = 1, 2, · · · , 6 are generated from
N(0,Σ0), with different covariance matrics Σ0 = (ρij) as
follows

A ρii = 1 and ρij = 0 for i 6= j, i, j = 1, 2, · · · , 6. In this
case, Zis are independently distributed with the same
variance.

B (ρi)i=1,2,··· ,6 = (1, 1.5, 2, 2, 1.5, 1) respectively. In this
case, Zis are independently distributed with different
variance.

C ρii = 1 and ρij = 0.5 for i 6= j, i, j = 1, 2, · · · , 6. In this
case, Zis are mildly correlated.

We also simulate two other cases as follows

D Zi ∼ Uniform(−2, 2.5), i = 1, 2, · · · , 6.
E Zi ∼ Exp(0.5), i = 1, 2, · · · , 6.

We use Full, Unif, L-opt and A-opt to represent the full-
data partial likelihood estimator while Uniform, L-optimal
and A-optimal to represent the subsampling estimators, re-
spectively. Our simulation studies compare the root mean
squared errors (RMSEs) of different methods, based on the
average of the 100 samples, with respect to the real vector
of coefficient β0 and with respect to β̂full, serving as the
“golden standard” .

Table 1 reports the simulation results for 100 replica-
tions with n = 15000, and the censoring time is generated
from Exp(0.02) and the resulting averaged censoring rate is
about 97%. q is set equal to the number of failures. We also
conduct the classical full-data partial-likelihood estimation
based on R package cmprsk for comparison. Simulation re-
sults show that our subsampling programs cost much less
time than R package. The L-opt and A-opt methods require
much less time than the Full estimator with similar RMSEs.
Unif method uses the least computing time but yields the
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Figure 1. RMSE(β0) and running time variations via
censoring rates.n=1500000.

largest RMSEs. Besides, our subsampling methods still well
behave even when Z follows from uniform distribution or
exponential distribution.

Table 2 displays the simulation results from much big-
ger sample size n = 1500000, with a censoring rate being
99.9%. Regarding RMSEs, our L-opt and A-opt methods
perform similarly to the Full estimator, especially under set-
tings “C”,“D” and“E”, and have much smaller RMSEs than
Unif method. Unif requires the least running time, followed
by L-opt and A-opt. Full estimator takes roughly 20 times
longer than L-opt and 120 times longer than Unif when q
equals to the number of the failures.

Figure 1 illustrates the performance of our subsampling
methods varying with censoring rates based on case “A”.
The censoring rate ranges from 95.5% to 99.9% and q
equals to the number of failures. As censoring rate increases,
RMSE(β0) of each estimator increases and the L-opt and A-
opt estimators yield similar RMSEs to those of the full-data
estimator, but cost much less computing time. The comput-
ing time of the L-opt estimator approaches to that of the
Unif estimator for large censoring rates.

Remark 4.1. Since ne/n approaches to 0 while the censor-
ing rate approaches to 1, Figure 1 represents the variations
of RMSE and running time via censoring rates and thus also
portrays the performance under assumption A.10.

Figure 2 displays the simulation results for case “A”
at censoring rate 99.9% with q/n ranging from 0.0040 to
0.0145 (q/ne ranging from 1 to 11). When q/n increases,
the RMSE(β0) of Unif decreases and converges to the
RMSE(β0) of the Full estimator. The convergence occurs
after q/n exceeds 0.0145(q = 11ne). The RMSE(β0)s of
the optimal sampling methods show a slight decrease and
converge to the RMSE(β0) of the Full estimator for very
small q/n. The computing time of each subsampling esti-
mator displays small increase as q/n increases and their ef-
ficiencies are comparable to that of the Full estimator. In
conclusion, the approximation of Unif estimator to full-data
estimator is predictable when q/n approaches to 1. The Unif
estimator demonstrates very limited improvement of RMSE
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Table 1. Simulation result of right-censored data: q was set equal to the number of failures. The mean q̄, and standard
deviation of q, SD(q), are reported for n = 15000

Setting q̄ SD(q) Method RMSEβ0 RMSEβ̂full Run Time (sec.)

A(97.4%) 393.0 21.0 Full 0.224 0.0 0.189
cmprsk 0.229 - 10.916
L-opt 0.253 0.122 0.048
A-opt 0.261 0.119 0.061
Unif 0.354 0.307 0.019

B(97.2%) 424.0 20.0 Full 0.185 0.0 0.177
cmprsk 0.181 - 11.707
L-opt 0.21 0.1 0.048
A-opt 0.216 0.099 0.063
Unif 0.254 0.215 0.019

C(97.6%) 356.0 18.0 Full 0.295 0.0 0.165
cmprsk 0.295 - 9.806
L-opt 0.351 0.182 0.045
A-opt 0.337 0.167 0.058
Unif 0.451 0.342 0.016

D(96.8%) 485.0 22.0 Full 0.173 0.0 0.174
cmprsk 0.181 - 12.698
L-opt 0.194 0.083 0.051
A-opt 0.193 0.087 0.066
Unif 0.263 0.219 0.02

E(97.6%) 365.0 22.0 Full 0.552 0.0 0.156
cmprsk 0.604 - 7.796
L-opt 0.601 0.249 0.042
A-opt 0.62 0.244 0.057
Unif 0.74 0.53 0.015

Table 2. Simulation results of right-censored data: q was set equal to the number of failures. the mean q̄, and standard
deviation of q, SD(q), are reported for n = 1500000

Setting q̄ SD(q) Method RMSE β0 RMSE β̂full Run Time (sec.)

A(99.9%) 2004.0 44.031 Full 0.104 0.0 90.59
L-opt 0.113 0.057 4.585
A-opt 0.113 0.055 11.514
Unif 0.182 0.174 0.643

B(99.9%) 2203.4 43.916 Full 0.08 0.0 72.547
L-opt 0.09 0.042 4.622
A-opt 0.09 0.042 11.422
Unif 0.129 0.12 0.668

C(99.9%) 1827.2 41.497 Full 0.131 0.0 83.502
L-opt 0.15 0.075 4.567
A-opt 0.158 0.077 11.503
Unif 0.256 0.243 0.568

D(99.8%) 2563.5 43.893 Full 0.076 0.0 86.892
L-opt 0.086 0.039 4.758
A-opt 0.086 0.038 11.702
Unif 0.152 0.143 0.72

E(99.9%) 1877.4 44.561 Full 0.237 0.0 65.288
L-opt 0.273 0.116 4.011
A-opt 0.262 0.106 10.029
Unif 0.47 0.424 0.547
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Table 3. Empirical Bias (Bias),Empirical Variance Estimates (Var) , 95% Confidence Interval (CI), Empirical Coverage
Probability(CP) for case “D”, n = 150000, with q equal to the number of failures

Methods β0
1 = 0.2 β0

2 = −0.5 β0
3 = 0.1 β0

4 = −0.1 β0
5 = 0.1 β0

6 = −0.3

Full Bias(Var) 0.0(0.002) -0.004(0.003) 0.002(0.002) 0.007(0.011) -0.003(0.002) -0.0(0.002)
CI [0.205,0.396] [-0.604,-0.404] [0.012,0.192] [-0.298,0.112] [0.007,0.188] [-0.398,-0.203]
CP 0.946 0.94 0.946 0.998 0.95 0.952

L-opt Bias(Var) -0.001(0.003) -0.003(0.003) 0.0(0.003) 0.002(0.003) -0.002(0.003) 0.0(0.003)
CI [0.194,0.403] [-0.615,-0.391] [0.002,0.199] [-0.201,0.004] [-0.002,0.198] [-0.407,-0.193]
CP 0.956 0.942 0.95 0.944 0.95 0.952

A-opt Bias(Var) 0.001(0.003) -0.004(0.003) 0.003(0.003) 0.001(0.003) -0.003(0.003) 0.001(0.003)
CI [0.195,0.407] [-0.615,-0.393] [0.001,0.204] [-0.198,0.001] [-0.004,0.197] [-0.405,-0.193]
CP 0.954 0.952 0.94 0.954 0.95 0.954

Uniform Bias(Var) 0.04(0.003) -0.106(0.003) 0.009(0.003) -0.008(0.003) 0.009(0.003) -0.04(0.003)
CI [0.229,0.452] [-0.711,-0.5] [0.003,0.214] [-0.213,-0.002] [-0.002,0.22] [-0.452,-0.228]
CP 0.892 0.491 0.942 0.946 0.946 0.892
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Figure 2. RMSE(β0) and running time variation via
q/n.n=1500000.

at moderate q/n. On the other hand, the optimal subsam-
pling methods perform well with respect to RMSE at very
small q/n.

Finally, Tables 3-5 show the results for empirical bias
(EmpBias), empirical variance (EmpVar), Empirical 95%
confidence interval and coverage probability for each esti-
mated coefficient under case “D”. The observations are sim-
ilar to those presented in previous simulations. Generally,
regardless of computing time, Full estimator behaves better
than L-opt and A-opt in terms of smaller bias and narrower
95% confidence interval. Again, Uniform estimator performs
the worst. It is because the estimator formula and variance
formula are actually both unreliable when using the uniform
method and the confidence interval is then unreliable. Thus,
we recommend the proposed optimal subsampling methods.

4.2 Real Data Example

Breast cancer is the most common malignant disease
especially for women. Improvement of medical care im-
proves the life expectancy of breast cancer patients who
are then likely at risk of developing a second malignancy
[34]. Thus, investigating the non-breast-cancer death among
breast cancer patients is also important [35]. We choose the

event of interest to be death of pneumonia and influenza
among breast cancer patients since pneumonia and influenza
could also cause high risk of death for cancer patients [36].
The competing risk is lung cancer [37, 38, 39]. The data
come from the publicly available database, the Surveil-
lance, Epidemiology, and End Results Program (SEER,
https://seer.cancer.gov/causespecific/). We use an
extracted cohort of breast cancer patients from 1992-2007.
Deaths caused by other diseases as well as patients living at
the end of the study are considered as censored cases. The
numbers of patients by event are summarized as follows:

• Total patients: 177162

—Event1: Deaths from pneumonia and influenza:
1727( 0.97%)

—Event2: Deaths from lung cancer: 3616 (2.04% )

—Censored: 177162 ( 97.00%)

16 features in the SEER dataset are included in our
analyses. They include demographic characteristics such as
age, race, gender, and morphology information such as tu-
mor size, tumor type, cancer stage, and hormone status of
breast cancers. Among the covariates, “Laterality” describes
the side of a paired organ or side of the body on which
the reportable tumor (breast) originated. “Sex:M” records
whether a patient is male or female. “Single” and “Married”
are dummy variables representing marital status at diagno-
sis, with “Separated” as the baseline category. “Laterality”
describes the side of a paired organ or side of the body on
which the reportable tumor originated, with “Bilateral” as
the baseline category. “Race:White” and “Race:Black” are
dummy variables representing the race of a patient, with
“Asian” as the baseline category. “ER(Estrogen receptor)
status” and “PR(Progesterone receptor) status” record the
hormone status of breast cancers. “Sequence Number” de-
scribes the number and sequence of all reportable malignant,
in situ, benign, and borderline primary tumors, which occur
over the lifetime of a patient. “First malignant primary”
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Table 4. Empirical Bias (EmpBias),Empirical Variance Estimates (EmpVar) , and 95% Confidence Interval (CI) for case “D”,
n = 150000, with q equal to the number of failures ×2

Methods β0
1 = 0.2 β0

2 = −0.5 β0
3 = 0.1 β0

4 = −0.1 β0
5 = 0.1 β0

6 = −0.3

Full Bias(Var) 0.01(0.015) 0.0(0.015) 0.009(0.013) -0.003(0.013) 0.005(0.014) 0.013(0.013)
CI [0.205,0.396] [-0.604,-0.404] [0.012,0.192] [-0.298,0.112] [0.007,0.188] [-0.398,-0.203]
CP 0.954 0.94 0.948 0.944 0.944 0.938

L-opt Bias(Var) 0.009(0.016) 0.001(0.016) 0.009(0.014) -0.002(0.014) 0.004(0.015) 0.013(0.014)
CI [0.194,0.403] [-0.615,-0.391] [0.002,0.199] [-0.201,0.004] [-0.002,0.198] [-0.407,-0.193]
CP 0.954 0.956 0.95 0.946 0.944 0.948

A-opt Bias(Var) 0.009(0.016) 0.0(0.016) 0.01(0.014) -0.003(0.014) 0.004(0.015) 0.012(0.013)
CI [0.195,0.407] [-0.615,-0.393] [0.001,0.204] [-0.198,0.001] [-0.004,0.197] [-0.405,-0.193]
CP 0.956 0.944 0.956 0.94 0.95 0.946

Uniform Bias(Var) 0.1(0.016) -0.153(0.015) 0.037(0.014) -0.031(0.013) 0.031(0.015) -0.08(0.013)
CI [0.229,0.452] [-0.711,-0.5] [0.003,0.214] [-0.213,-0.002] [-0.002,0.22] [-0.452,-0.228]
CP 0.888 0.768 0.946 0.946 0.946 0.912

Table 5. Empirical Bias (EmpBias),Empirical Variance Estimates (EmpVar) , and 95% Confidence Interval (CI) for case “D”,
n = 150000, with q equal to the number of failures ×3

Methods β0
1 = 0.2 β0

2 = −0.5 β0
3 = 0.1 β0

4 = −0.1 β0
5 = 0.1 β0

6 = −0.3

Full Bias(Var) -0.004(0.015) -0.007(0.014) -0.003(0.013) 0.01(0.014) -0.008(0.014) -0.0(0.013)
CI [0.205,0.396] [-0.604,-0.404] [0.012,0.192] [-0.298,0.112] [0.007,0.188] [-0.398,-0.203]
CP 0.954 0.958 0.944 0.954 0.96 0.946

L-opt Bias(Var) -0.004(0.015) -0.007(0.015) -0.003(0.014) 0.009(0.015) -0.009(0.014) 0.0(0.013)
CI [0.194,0.403] [-0.615,-0.391] [0.002,0.199] [-0.201,0.004] [-0.002,0.198] [-0.407,-0.193]
CP 0.958 0.958 0.942 0.958 0.95 0.95

A-opt Bias(Var) -0.005(0.015) -0.008(0.014) -0.002(0.014) 0.009(0.015) -0.008(0.015) -0.001(0.013)
CI [0.195,0.407] [-0.615,-0.393] [0.001,0.204] [-0.198,0.001] [-0.004,0.197] [-0.405,-0.193]
CP 0.954 0.954 0.948 0.956 0.952 0.946

Uniform Bias(Var) 0.06(0.014) -0.118(0.014) 0.019(0.015) -0.012(0.015) 0.013(0.015) -0.064(0.012)
CI [0.229,0.452] [-0.711,-0.5] [0.003,0.214] [-0.213,-0.002] [-0.002,0.22] [-0.452,-0.228]
CP 0.926 0.798 0.942 0.948 0.96 0.912

14 L. Erqian et al.
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Figure 3. SEER data analysis: comparison of level of
agreement for the estimated regression coefficients of each

method (L-opt, A-opt, uniform) against the full-data
estimator, computed as follows: the Y-axis is the ratio of
difference from the full-data estimator for each method,
divided by the full-data estimator, and the X-axis is the

regression coefficient ordinal number

is a binary variable, taking 1 for yes and 0 for no. “EOD

-size” records the largest dimension of the primary tumor

(breast) in millimeters. “EOD -extent” codes the farthest

documented extension of tumor away from the primary site

(breast), either by contiguous extension or distant metas-

tases. “EOD - nodes” records the highest specific lymph

node chain that is involved by the tumor (breast). “Breast -

Adjusted AJCC 6th Stage” records the stage of breast can-

cer. “Regional nodes positive” records the exact number of

regional lymph nodes examined by the pathologist that were

found to contain metastases.

q is set equal to the number of observed failure time.

To reduce the impact of local optimization, we conduct 100

replications of the data analysis and report the average and

standard deviation(SD) of each estimator. Figure 3 shows

the level of agreement between the estimated regression co-

efficients of each method and the full-data partial-likelihood

counterpart. The A-opt and L-opt method in most cases ex-

hibit the highest level of agreement, and the uniform method

the least. The estimated coefficients are displayed in Table

6.

Regarding the computing time, the full-data partial-

likelihood estimator requires an average of 73.0921 seconds,

and the L-opt and A-opt methods require 10.5840 and

11.6546 seconds respectively, and the uniform method re-

quires only 3.077 seconds. Table 7 presents the running time

per step. Obviously, optimal methods spend more time on

computing the optimal subsampling probabilities, but still

have great improvement over the full-data estimator. Uni-

form method requires shorter computing time but displays

less agreement with the full-data estimator.

5. DISCUSSION

In this article, we developed the L-optimal and A-optimal
subsampling method based on Fine-Gray model to address
competing risks data. Simulations and real data analysis
showed that our proposed methods produced efficient esti-
mates and accurate results. Nonetheless, there are still some
interesting problems to be investigated for future research.
Firstly, to relax the assumption of Fine-Gray model, the sub-
sampling methods for competing risks data under a model-
free framework is an interesting issue. Secondly, coping with
more complex and realistic situations like time-dependent
covariate is another practical issue. Thirdly, as noticed, the
larger the censoring rate (i.e., all competing risks are rare),
the more efficient our subsampling methods. In practice, not
all risks are rare. In this case, retaining all the failure obser-
vations would still cause computational inefficiency. A pos-
sible way is only retaining all the failure events of interest
in order to keep the most important information and then
sampling the censored observations and events of competing
risks together. However, information in the competing risks
may be lost. An alternative way is sampling the censored
observations and events of competing risks respectively to
balance the computational efficiency with loss of informa-
tion. We are now investigating these interesting problems.
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