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Exploring the contribution 
of lifestyle to the impact 
of education on the risk of cancer 
through Mendelian randomization 
analysis
Loukas Zagkos 1,2*, Alexander Schwinges 3, Hasnat A. Amin 1, Terry Dovey 1 & 
Fotios Drenos 1*

Educational attainment (EA) has been linked to the risk of several types of cancer, despite having 
no expected direct biological connection. In this paper, we investigate the mediating role of alcohol 
consumption, smoking, vegetable consumption, fruit consumption and body mass index (BMI) in 
explaining the effect of EA on 7 cancer groupings. Large-scale genome wide association study (GWAS) 
results were used to construct the genetic instrument for EA and the lifestyle factors. We conducted 
GWAS in the UK Biobank sample in up to 335,024 individuals to obtain genetic association data for the 
cancer outcomes. Univariable and multivariable two-sample Mendelian randomization (MR) analyses 
and mediation analyses were then conducted to explore the causal effect and mediating proportions 
of these relations. MR mediation analysis revealed that reduced lifetime smoking index accounted for 
81.7% (49.1% to 100%) of the protective effect of higher EA on lower respiratory cancer. Moreover, 
the effect of higher EA on lower respiratory cancer was mediated through vegetable consumption 
by 10.2% (4.4% to 15.9%). We found genetic evidence that the effect of EA on groups of cancer is 
due to behavioural changes in avoiding well established risk factors such as smoking and vegetable 
consuming.

Cancer is a risk to health and the primary cause of death worldwide1,2. An estimated 19.3 million new cancer 
cases and almost 10.0 million cancer deaths occurred in 20203. A steady increase in mortality and incidence, 
particularly in developed countries4, calls for more effective cancer prevention5. While improvements in survival 
rates reflect progress in medical technology and healthcare, the rising incidence of cancer has been attributed to 
generational changes in obesity, lowered physical activity, a difference in diet and other lifestyle factors6,7. The 
fact that increasing cancer rates offset higher survival rates and lead to higher absolute mortality8 signifies the 
importance of tackling modifiable risk factors that lead to high incidence rates.

Educational attainment (EA) predicts cancer outcomes9–11 and is a central driver between socio-economic 
status (SES) and health12. For example, 22% of US cancer deaths could be prevented if all Americans had the 
cancer death rates of college-educated Americans5. Although there is no direct biological link between EA and 
cancer risk, it is believed that EA leads to more effective self-management and habits12. Various behaviourally 
related modifiable risk factors in low EA/SES have been studied. The most prominent factors identified 
include: alcohol consumption, physical inactivity, obesity, cigarette smoking, as well as low fruit and vegetable 
consumption13–17.

Studies specifically targeting the mediating effect of modifiable risk factors in EA and cancer risk are sparse. 
Some studies assess all-cause mortality18,19 while other studies address general cancer risk in the context of 
SES20–22. Quantitative assessments of the mediating effect of risk factors from such observational data are based 
on multivariable analysis, a method aiming to disentangle the effects of multiple variables on the outcome23. 
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While the results of such assessments provide direction for further experimental studies, their validity is 
limited. Observational studies are also at risk of systemic biases between groups24. Furthermore, clustering of 
risky behaviours is common25, whereby individuals readily engage with a variety of behaviours, both risky and 
mitigating, the negative outcome that the authors wish to investigate, potentially introducing further bias. This 
makes it difficult to measure and correct for all risky behaviours and unmeasured risk factors might constitute 
confounders26 using traditional experimental investigative techniques. Moreover, data is commonly collected 
at distinct times, which does not capture a lifetime exposure27.

Mendelian Randomization is an analytical method to assess whether a risk factor has a causal effect on an 
outcome of interest, using genetic variants as instrumental variables28. The approach treats genetic variants as 
proxy measures for clinical interventions on risk factors, and thus has been extensively shown to anticipate the 
results of a randomised control trial29. The aim of this study was to explore the mediating role of lifestyle factors 
in explaining the effect of EA on the risk of cancer, using individual level data from the UK Biobank (UKB) and 
summary statistics from reliable published genome wide association studies (GWAS). We considered five lifestyle 
factors individually and simultaneously: number of alcoholic drinks per week, lifetime smoking index, BMI, fruit 
consumption and vegetable consumption. These five lifestyle factors were used to interrogate the underlying 
mechanisms by which EA affects the risk of cancer.

Methods
Data sources
Outcome data source
Individual level data on cancer incidence were obtained from UK Biobank (UKB), a prospective population 
study with detailed information about approximately 500,000 participants30. The data was collected between 
2006 and 2011 and participants volunteered to provide biological samples for the measurement of biochemical 
markers and subsequent genotyping, anthropomorphic measures through a number of collection centres in the 
UK, and sociodemographic, lifestyle and health behaviours information through a series of in-person and online 
questionnaires. The processes for genotyping and data management have been described in depth31. Phenotype 
data were obtained from UKB data-fields 41,270 and 40,006 for 30 site-specific cancers. In this analysis, up 
to 335,024 UKB participants of European ancestry were considered, after excluding samples with relatedness 
of first or second degree and samples with discordant genetic and reported sex. Cancer cases were defined 
according to ICD-10 codes (international classification of diseases, 10th revision), obtained through linkage to 
national cancer registries. Genetic associations were estimated with 7 cancer groupings: digestive (7695 cases 
and 327,356 controls), female reproductive (3,612 cases and 177,190 controls), head and neck (1331 cases and 
334,378 controls), lower gastrointestinal (GI) tract (6545 cases and 328,601 controls), lower respiratory (2307 
cases and 332,457 controls), male reproductive (8988 cases and 149,131 controls) and upper gastrointestinal 
(GI) tract (1300 cases and 149,131 controls). Cancer groupings were generated to maximise statistical power 
and were determined based on their location in the body. Those with a cancer diagnosis were considered a case 
only for their chronologically first reported cancer type. This was done to distinguish between primary cancers 
originating in the specific tissue and secondary cancers metastasising from another location.

Exposure data source
To assess EA, we used publicly available summary statistics from a Social Science Genetic Association 
Consortium (SSGAC) meta-analysis of GWAS32. The primary meta-analysis combined 3 quality-controlled 
cohort-level results from studies in Europe and USA and was conducted on approximately 3 million individuals 
of European ancestry. Education years were measured for all samples over the age of 30. In this work, we used 
meta-analysis GWAS results from all discovery cohorts except 23andMe, conducted on approximately 800,000 
samples, 442,183 of which were UKB participants.

Lifestyle data sources
Alcohol consumption, body mass index (BMI), smoking, fruit and vegetable consumption were assessed as 
potentially mediating risk factors in this work. Publicly available summary level data were used for alcoholic 
drinks consumed per week from Saunders et al.33,34, who conducted a GWAS meta-analysis using data from 60 
cohorts on 2,965,643 individuals. To capture smoking behaviour, we used genetic summary statistics on lifetime 
smoking index, measured in 462,690 UKB participants of European ancestry who had phenotype data and passed 
genotype inclusion criteria35. Following a method previously reported36, smoking status, age at initiation in years, 
age at cessation in years and number of cigarettes smoked per day were combined into a lifetime smoking index. 
Genetic estimates for BMI were obtained from the Genetic Investigation of Anthropometric Traits consortium 
(GIANT) GWAS meta-analysis of 681,275 samples of European ancestry37, around 450,000 of which were UKB 
participants. To assess fruit and vegetable consumption, we used publicly available GWAS summary statistics 
from the MR-base38 for binary traits ‘fruit consumers’ and ‘vegetable consumers’, conducted on 64,949 UKB 
participants of European ancestry. These variables were generated as consumption over the last 24 h. A number 
of Yes/No questions relating to eating particular food groups or items were given to the participants following 
the pattern ‘Did you eat any < food-group > yesterday?’ providing examples of relevant foods and a picture. The 
participants completed the questionnaire in the assessment centre or online in four separate occasions within a 
year (http://​bioba​nk.​ctsu.​ox.​ac.​uk/​cryst​al/​docs/​DietW​ebQ.​pdf).

Genome wide association studies
Genome wide association studies were conducted to obtain associations between 9,420,314 genotyped and 
imputed single nucleotide polymorphisms (SNPs) and 7 cancer groupings: digestive, female reproductive, head 
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and neck, lower GI, lower respiratory, male reproductive and upper GI in up to 335,024 unrelated participants of 
white British ancestry. The SNPs tested were located in the autosomes. Only SNPs with a minor allele frequency 
greater than 0.01 and a Hardy–Weinberg equilibrium p-value greater than 10–6 were considered. The association 
of each SNP was tested using a linear regression model, adjusting for sex, age and the first 4 genetic principal 
components to control for population structure.

Statistical analysis
Genetic instruments
Genetic variants were considered as instrumental variables for EA and the lifestyle factors in the MR analysis if 
they were bi-allelic, had a minor allele frequency (MAF) greater than 0.01 and a Hardy–Weinberg equilibrium 
P-value greater than 10–6. For EA, lifetime smoking index, drinks per week and BMI, genetic variants below the 
genome-wide significance threshold (p < 5 × 10–8) were selected as instruments, whereas for fruit and vegetable 
consumption, we considered a less stringent p-value threshold (p < 10–5), as it was the lowest threshold that 
provided robust signals for the two dietary GWAS results. We identified independent SNPs after clumping 
summary estimates, using a linkage disequilibrium (LD) threshold of r2 < 0.001 and a clumping window of 
10 Mb. For the LD estimates between the genetic variants, we used the 1000 genomes phase 3 European reference 
panel39. To ensure that the first MR assumption holds, only genetic variants with an F-statistic greater than 
10 were included in the analysis40. To further test the validity of the MR assumptions, we identified traits that 
associate with the genetic instruments used in this work, using the SNP nexus platform (https://​www.​snp-​nexus.​
org/​v4/). In the two-sample MR setting, genetic variants were excluded from the analysis when the direction 
of effects between exposure and outcome associations could not be inferred (in the case of palindromic SNPs 
with MAF greater than 0.42). Genetic instruments comprised 413 independent SNPs for EA, 507 independent 
variants for BMI, 126 for lifetime smoking index, 10 for drinks per week, 32 for fruit consuming and 21 for 
vegetable consuming.

Two‑sample univariable Mendelian randomization
The current study used two-sample univariable and multivariable MR analysis in a multistep process to assess 
the relationships between EA, each of the 5 lifestyle factors and 7 cancer outcomes of interest. First, we tested the 
associations between EA and 7 cancer categories. We used categories over site-specific cancer types to maximise 
statistical power. Following this, we assessed the associations of EA with the 5 possible mediating lifestyle factors. 
Lifestyle factors were then tested against the 7 cancer categories simultaneously through MVMR. The random-
effects inverse variance weighted (IVW) method was used as the main method for univariable MR analysis, 
which provides precise causal estimates, under the assumption that all genetic variants are valid instrumental 
variables41. The three instrumental variable assumptions dictate that the genetic instrument is associated with the 
exposure, is independent of any confounders of the exposure and outcome association and is associated with the 
outcome only via the exposure. In sensitivity analysis, we conducted the MR-Egger method42 to detect possible 
violations due to pleiotropic effects within genetic variants in the analysis and MR-weighted median method, 
which reports an accurate effect estimate, given that at least 50% of the weight in the analysis comes from valid 
instruments43. In addition, we performed MR-PRESSO, a method which detects and removes outlier SNPs based 
on their contribution to heterogeneity44. The I2 statistic was calculated to detect heterogeneity among the MR 
estimates obtained from multiple genetic variants. MR-IVW effect estimates were deemed statistically significant 
if association p-values were smaller than the Bonferroni corrected threshold 0.05/n, where n represents the total 
number of independent tests in each part of the analysis (EA with 7 cancer groups: p < 0.05/7 = 7.14 × 10–3, EA 
with 5 lifestyle factors: p < 0.01 and 5 lifestyle factors and EA with 7 cancer groups: p < 1.19 × 10–3). To quantify the 
amount of bias due to sample overlap in the MR effect estimates, we used the MRlap method45, which estimates 
corrected MR estimates, accounting for potential bias. We reported the p-value corresponding to the test statistic 
used to test for differences between the observed and corrected MR estimates.

Two‑sample multivariable Mendelian randomization
To estimate the direct effect of each of the lifestyle factors on the risk of cancer, we performed multivariable 
Mendelian randomization (MVMR) analysis46. This method allows the use of multiple genetic variants associated 
with more than one risk factor as instruments to identify the causal effect of each risk factor on the outcome, 
independent of the rest of the risk factors. To obtain the list of genetic instruments for MVMR, we first merged, 
before clumping, the SNPs associated with each lifestyle factor or the exposure below their respective p-value 
thresholds as determined in the univariable MR analysis, and then clumped these genetic variants using for each 
variant the smallest p-value of their association with each lifestyle factor. Following this process, we generated a 
list of independent genetic variants that are associated with at least one lifestyle factor, as the MVMR paradigm 
dictates. All estimates were reported as odds ratio (OR) per unit increase in exposure, together with their 95% 
confidence interval (95% CI).

Proportion of lifestyle factor mediation
Network Mendelian randomization (network-MR) was conducted47 using the MR effect estimates and standard 
errors obtained previously to calculate the direct and indirect effect of EA on cancer risk. This was done per 
cancer outcome and per possible mediator, using their MVMR estimates, to obtain fractions of mediated and 
non-mediated effects. The indirect effect of EA on cancer through a lifestyle factor was estimated by multiplying 
the effect of EA on that factor times the effect of the lifestyle factor on the cancer outcome. The total effect 
was the estimated MR effect of EA on cancer. The direct effect was estimated by subtracting the indirect effect 
from the total effect, estimated from the first step MR. Last, the mediation proportion for each lifestyle factor 
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was calculated by dividing the indirect effect over the total effect. To derive standard errors of the mediation 
proportion estimates, we used the delta method48.

Statistical software
Analysis was conducted in R version 4.0.249, two-sample analyses and sensitivity analyses were performed 
using the “TwoSampleMR” v.0.5.650 and “MRPRESSO” v1.044 R packages. Figures were produced using the R 
package “forestplot” v3.1.151. GWAS was conducted using PLINK 1.90 command line tool (www.​cog-​genom​ics.​
org/​plink/1.​9/). This study is reported based on the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) guidelines Supplementary Table 1.

Ethics approval
This study is based on publicly available data and the informed consent and ethical review were acquired in all 
the original studies. The study is reported following the STROBE-MR statement.

Results
Individual SNP estimates of the per-allele effects on EA, BMI, lifetime smoking index, drinks per week, fruit 
consumption and vegetable consumption are reported in Supplementary Table 2. Sample size, number of cases 
and included ICD-10 codes per cancer group are shown in Supplementary Table 3. Graphical representation 
of the model can be found in the directed acyclic graph (DAG) in Fig. 1. Univariable and multivariable MR 
estimates, sensitivity analysis results, MR-Egger intercepts and genetic heterogeneity statistics are provided in 
Supplementary Tables 4–6. Associations were considered statistically significant in this work if MR-IVW and 
MR-PRESSO estimates were significant after multiple testing correction, MR-Egger and MR-weighted median 
estimates had the same direction of effect and MR-Egger intercept was not significant (p > 0.05).

The associations of EA with the lifestyle factors and the various groups of cancer were obtained per one 
standard deviation (sd) increase, which corresponds to 3.6 years of additional education in the UKB. MR-IVW 
results revealed two associations between EA and the odds of cancer, which were below the Bonferroni adjusted 
p-value threshold of p = 0.05/7 = 7.14 × 10–3. One sd increase in EA was associated with lower odds of lower 
respiratory tract cancer (OR: 0.40, 95% CI: 0.30 to 0.54), lower odds of upper GI cancer (OR: 0.59, 0.43 to 0.82) 
and lower odds of digestive cancer (OR: 0.81, 0.69 to 0.94) (Fig. 2). At a p = 0.05/5 = 0.01 Bonferroni threshold, 
MR-IVW results indicated that increasing EA was associated with lower BMI (beta: -0.24, -0.28 to -0.20) and 
lower lifetime smoking index (beta: -0.22, -0.24 to -0.20). One sd increase in EA was also associated with 
increased odds of fruit (OR: 1.12, 1.10 to 1.14) and vegetable consumption (OR: 1.08, 1.07 to 1.11). Weighted 
median and MR-Egger effects had similar effect estimates to the IVW method. The effect of EA on BMI was quite 
heterogeneous with an I2 statistic of 89% but a consistent effect between the MR-IVW, MR-Weighted median 
and MR-PRESSO methods. MR results of the effect of higher genetically predicted EA on lifestyle factors are 
summarised in Fig. 3. Moreover, using SNP nexus, the identified traits are unlikely to be potential confounders 
of the associations tested (Supplementary Table 7). MRlap method results suggested that there was no significant 
effect of sample overlap in the calculated MR estimates (Supplementary Table 8).

MVMR analysis revealed seven significant effects of the lifestyle factors on the risk of cancer groups, below 
p = 0.05/42 = 1.19 × 10–3. Increasing lifetime smoking index was associated with increasing odds of lower 
respiratory cancer (OR: 31.4, 17.8 to 55.6), head and neck cancer (OR: 5.96, 2.95 to 12.03), upper gastrointestinal 
cancer (OR: 4.12, 2.20 to 7.70) and digestive cancer (OR: 1.67, 1.25 to 2.24). Higher genetically predicted BMI was 
associated with increased odds of upper GI cancer (OR: 1.64, 1.30 to 2.07) and lower respiratory cancer (OR:1.65, 

Figure 1.   Study design. Network Mendelian randomization (MR) was conducted to identify the mediation 
proportion through lifestyle factors of the effect of education on the risk of cancer. Genetic instrumental 
variables were selected for each exposure based on their association below the genome-wide significance 
threshold, p < 5 × 10–8. To obtain robust signals, we used a less stringent threshold for fruit and vegetable 
consuming in the UKB (p < 10–5). Potentially causal estimates were produced using Mendelian randomization 
inverse variance weighted (MR-IVW) method as our main approach. MR sensitivity analyses were also 
conducted (MR-Egger, MR-weighted median, MR-PRESSO) to assess the robustness of the results. The 
simultaneous effects of each lifestyle factor on cancer were estimated using multivariable Mendelian 
randomization (MVMR-IVW). Mediation percentage through a lifestyle factor was obtained by dividing the 
indirect effect over the total effect.
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1.31 to 2.07). Last, vegetable consuming was associated with lower odds of lower respiratory cancer (OR: 0.32, 
0.21 to 0.52) (Fig. 4).

MR mediation analysis revealed two significant mediation ratios, after correcting for multiple testing 
(Supplementary Table 9). The largest part of the protective effect of increased EA on lower odds of lower 
respiratory cancer was mediated through smoking by 81.7% (50.5 to 100%). Interestingly, vegetable consumption 
was also mediating factor for the link between EA and lower respiratory cancer with 10.2% (4.4 to 15.9%).

Discussion
The objective of this work was to identify the mediating lifestyle factors linking educational attainment to risk of 
cancer. We investigated 5 well supported lifestyle factors, including alcohol consumption, body mass index, fruit 
consumption, lifestyle smoking and vegetable consumption, using summary statistics from large cohorts. In our 
genetic analysis we found evidence of associations between EA and lower respiratory, upper GI and digestive 
cancers. MR mediation analysis results revealed that on average, 81.7% of the protective effect of EA on lower 
respiratory cancer was mediated by lifetime smoking and 10.2% by vegetable consumption.

The findings for the effect of EA on cancer risk are largely in agreement with literature. All potential causal 
associations found agree with estimates based on observational data found in literature5,52–54. MR methods 
therefore provide high-level evidence for a causal relationship between EA and cancer. Regarding the effect 
of EA on the lifestyle factors, the current study also supports existing findings. Previous comparisons of high-
school and college EA estimated a 56%55 and 64%56 lower smoking status. Observational studies indicate that 
there is a negative association between EA and BMI in higher-income countries57. Existing literature provides no 
association estimates of EA with fruit and vegetable consumption but suggests an effect of socio-economic status 
on fruit and slightly lower on vegetable consumption58,59. Moreover, increasing EA is associated with increased 
alcohol intake frequency in MR studies60. The MR estimates of smoking on lower respiratory cancer are in 
agreement with observational studies61,62,63 for current smokers, but also with existing MR studies64. Moreover, 
genetically predicted BMI has been found to be positively associated with the risk of oesophageal cancer65,66. 
Previous observational study on mediation analysis for EA on lung cancer found that, adjustment for smoking 

Figure 2.   Two-sample Mendelian randomization (MR) estimates per 1 standard deviation increase in 
educational attainment for 7 cancer groups: digestive, female reproductive, head and neck, lower respiratory, 
lower gastrointestinal (GI) tract, male reproductive and upper GI tract. Associations were considered 
statistically significant if MR-IVW and MR-PRESSO p-values were smaller than 0.05/7 = 7.14 × 10–3, MR-Egger 
and MR-weighted median effect estimates were in the same direction and the MR-Egger intercept was not 
significant (p > 0.05).
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decreased relative educational differences of lung cancer incidence by 50 to 70%67. Our MR network study gives 
a comparable mediation proportion of the protective effect of EA on lower respiratory cancer through lifetime 
exposure to smoking, around 80% of the total effect, since MR corrects for unknown confounding factors. Last, 
we identified a significant mediation proportion of the protective effect of EA on lung cancer through vegetable 
consumption, which is consistent with numerous observational studies suggesting a protective role of fruit and 
vegetables in lung cancer aetiology68–70.

Prior to making a number of key conclusions based on the data presented in this study, it is prudent to 
consider some of the limitations. The UKB sample has been shown to not be fully representative of the UK 
population. Individuals in the UKB have a higher likelihood, compared to the UK population, of being lean, non-
smokers, non-drinkers and being older and female. This “healthy volunteer” bias is also affecting the total cancer 
incidence which may have introduced bias in our results. However, the assessment of effects of exposures on 
health outcomes in non-representative samples is still generalisable71. Fruit and vegetable consumption GWAS did 
not yield many strong genetic instruments compared to other factors possibly due to self-reported information 
and the limited time this accounts for. In addition, we excluded UKB participants from the lifestyle factors, where 
possible. However, partial sample overlap of EA, BMI, fruit and vegetable consumption with cancer incidence 
may have biased some of the MR effect estimates away from the null. Moreover, MR makes the assumption that all 
associations are linear, however, existing studies have shown a J-shape association between alcohol consumption 
and cancer risks72,73. In addition, the diagnosis of one cancer type may affect the surveillance, screening, or 
diagnostic practices for other cancer types. This could introduce bias if the ascertainment of the second cancer 
is influenced by the awareness or diagnosis of the first cancer. Last, due to the lack of availability of individual 
level data, we couldn’t test if there were any interactions between the exposure and the mediators.

The statistical power of a MR study depends on how much variation in the exposure is explained by the 
chosen genetic instrumental variables, the sample size and the true causal association between exposure and 
outcome74. Low cancer prevalence limits statistical power in this study, which may in turn explain the lack of 
statistically significant mediators identified beyond smoking and BMI. In addition, low vegetable and fruit 
consumption heritability could be limiting the usefulness of their genetic instruments. MVMR corrects for 
overlap in pathways, however, it is not able to deal with unmeasured confounders possibly interacting with 
associations46. Furthermore, MVMR could be subject to weak instrument bias75. A violation of the assumed 
linearity of causal effects could further bias the estimate76.

Figure 3.   Two-sample Mendelian randomization (MR) estimates per 1 standard deviation increase in 
educational attainment for 5 lifestyle factors: body mass index (BMI), lifetime smoking index, drinks consumed 
per week, fruit consumed and vegetable consumed in the past 24 h. Associations were considered statistically 
significant if MR-IVW and MR-PRESSO p-values were smaller than 0.05/5 = 0.01, MR-Egger and MR-weighted 
median effect estimates were in the same direction and the MR-Egger intercept was not significant (p > 0.05).
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The results presented in this work provide several avenues of future research. The central limitation of 
statistical power has to be overcome with larger sample sizes or more accurate measurements. Further research 
on risk factors mediating cancer risk and EA as exposure also hinges on that requirement. Another potential, 
more methodological avenue of research is concerned with the addition of functional genetic variants to the 
developed pipeline. This would equip us with more tools to produce accurate estimates and validation thereof.

Medical science has rightly focused on how to treat people with cancer, however, any attempts to prevent 
the development of cancers are of utmost importance. Our finding, as well as work from others, indicate that 
the number of years in education has a proportional impact on cancer. Although it is not possible for everyone 
to reach the same level of EA, this work identifies our priorities in achieving similar benefits through targeted 
interventions. Currently, the detrimental effects of smoking and obesity are part of primary and secondary school 
curriculum in several countries. Given their relatively recent inclusion though, it is still early to quantify their 
effectiveness, as cancer is more common in older individuals that left education before the focus in healthier 
lifestyles. Nevertheless, our results suggest that we may see the gains of this strategy in the future and that a 
focus to educate children in primary and secondary education on the dangers of smoking and how to better 
maintain a healthy weight should be adopted more widely. In addition, investigations should tailor interventions 
to accommodate people that have already left education at secondary school level. Focusing our efforts of “good-
health” education on the identified factors is likely to have the biggest impact on cancer rates.

Data availability
UK Biobank individual level data used in this work can be accessed after applying for access at https://​www.​
ukbio​bank.​ac.​uk/​enable-​your-​resea​rch/​apply-​for-​access. Genetic association data are publicly available in the 
original studies.
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Figure 4.   Two-sample multivariable Mendelian randomization (MVMR) estimates per 1 unit increase in 
5 lifestyle factors for 7 cancer groups. Associations were considered statistically significant if MVMR-IVW 
p-values were smaller than 0.05/42 = 1.19 × 10–3.
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