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A Bayesian conformity and risk assessment adapted to a form error model  
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A B S T R A C T   

Form error is the departure of a manufactured part from its design or ideal shape, and is a key characteristic to be 
assessed in quality engineering in manufacturing. In practice, form errors are usually estimated from coordinate 
measurements involving only a finite number of measured points and the form error for the complete workpiece 
surface has to be inferred on the basis of these measurements. This paper is about determining whether a product 
meets its specifications based on its form error using a probabilistic model. Based on form error data and a 
product specification, the relationship between conformance testing and making decisions is established. In this 
paper, we define a form error model using a uniform distribution with unknown bounds, and then utilize a 
Bayesian approach to assign a distribution to the form error parameter and use this distribution in a conformity 
and risk assessment methodology to quantify the risk of incorrect decisions. The risk assessment is carried out 
using derived expressions of specific risks associated with product conformity. A slightly more extensive pos-
terior model, taking into consideration the probable random effects of form errors, is discussed for the reader’s 
interest. Numerical experiments illustrate the effectiveness of this approach by providing a decision framework 
to control the risks associated with making a wrong decision.   

1. Introduction 

Form error is the departure of a manufactured part from its design or 
ideal shape and is a key characteristic to be assessed in quality engi-
neering in manufacturing. In practice, form errors are usually estimated 
from coordinate measurements involving only a finite number of 
measured points and the form error for the complete workpiece surface 
must be inferred based on these measurements. This paper is concerned 
with determining whether a product meets its specifications based on its 
measured form error. Form is one of three major elements constituting 
surface measurement and topography; the other two being: roughness 
and waviness of the surface profile. Form errors are important for 
product functionalities, such as shaft vibration. A form measurement is 
performed to assess the general shape of an item under study, which may 
refer to its flatness, straightness, circularity, parallelism, roundness, or 
cylindricity. The assessment of form error involves two computational 
steps: calculating some measure of the distance fi(xi, a) of a point xi =

(xi, yi, zi) to the ideal geometry parametrized by parameters a =

(a1,…, am)
⊤ and then adjusting a so that some aggregate measure D(a)

of distance is minimised; see e.g., Refs. [1–3]. 
For example, a circle can be parametrized by circle centre coordi-

nated (x0, y0) and radius r0. The form error fi(xi, a), for i = 1,2,…,m, 
from a point xi = (xi, yi) to a circle specified by a = (x0, y0, r0) is given 
by: 

fi(xi, a)≡ fi =
[
(xi − x0)

2
+ (yi − y0)

2]1/2
− r0.

A vector of these estimates is given by f = (f1,…, fm)
⊤. An estimate F 

for the maximum form error is given by F = maxfi − minfi. For form error 
expressions for other standard geometric shapes, see Ref. [1]. 

All measurements are subject to uncertainty and the measurement 
result is complete only if it is supplemented by a declaration of the 
associated uncertainty, such as the standard deviation. A popular way to 
obtain form error data is by means a coordinate measuring machine 
(CMM) which are used extensively for this task. If a product is measured 
with a CMM at a specified number of points, we want to know whether 
the product meets the tolerances based on the measured results. The 
introduction of CMMs in manufacturing has made quality assurance 
more effective, precise, and adaptable. 

Two aggregate measures of distance D(a) are commonly used. The 
first is least squares (LS) method DLS(a) =

∑

i
f2
i (a), and the second is the 

Chebyshev measure (also known as the minimum zone (MZ)) DMZ(a) =

max
⃒
⃒fi(a)

⃒
⃒. A visual example for estimating the form error on a circular 

item with centre (x0, y0) and radius r0 from a CMM is provided in Fig. 1. 
Since the form error of a part is usually defined as the maximum 

departure (distance) from ideal geometry, the MZ criterion is often 
preferred as it represents the assessing the form error directly based on a 
discrete representation of the workpiece via the measured coordinated 
xi. These aggregate measures will depend nonlinearly on the parameters 
a so that iterative optimisation techniques are required to minimise 
them. In general, algorithms for nonlinear least squares optimisation are 
much more straight forward to implement that those for nonlinear 
Chebyshev optimisation. For problems that are linear in the parameters 
a, there are effective algorithms for the Chebyshev and related optimi-
sation problems; see for example, [4–6]. The nonlinear associated 
problem can sometimes be addressed through solving a sequence of 
linearised problems [7]. 

A statistical analysis methodology can be utilized to evaluate the 
conformance of the measurand with a given tolerance limit, and a 
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probability density function (PDF) characterizing the measurement 
dispersion must be developed. Forbes [8] employs a Bayesian approach 
to derive a posterior distribution for the form error boundary F from a 
finite sample drawn from a rectangular distribution with independent 
sampling or a Gaussian distribution with independent or correlated 
sampling, with the spatial correlation associated with the sampling 
modelled using Gaussian processes. This paper aims to extend the 
analysis to evaluate the associated risk and conformity assessment. 

The paper is organised as follows. In Section 2, we discuss the form 
error model, which uses a uniform distribution with unknown bound-
aries to generate a posterior distribution using Bayesian inference. Using 
the provided posterior distribution, we generate expressions for 
conformance probability and specific risks associated with conformity 
assessment. In Section 3, we use the methods given in the previous 
sections to present a practical example. Section 4 then builds on the 
previous sections by considering a slightly more extended posterior 
model that takes into account the likely random effects of form errors as 
well as real form error data. Section 5 provides a second practical 
example of the extended posterior model for conformance evaluation. 
Finally, our concluding remarks are given in Section 6. 

2. Model and methods 

In this section, the form error estimates fi for i = 1,2,…,m associated 
with points on the ideal surface are assumed to be drawn from a uniform 
distribution whose parameters are related to the form error boundary 
parameter F > 0 (more specifically, F is the boundary of the form error 
estimates as seen in Fig. 1). The aim is to use Bayesian inference to 
obtain a posterior distribution for F based on observed form error esti-
mates fi, and then to obtain explicit conformance and risk expressions. 

2.1. The form error model based on a uniform distribution 

Let the probability density function (PDF) of form error estimates fi 
of a test item observed from a uniform distribution in the interval [− F, F]
after measuring i = 1, 2,…,m points be given by: 

g(fi|F) ≡ U(fi| − F,F) = (2F)− m
,

otherwise U(fi
⃒
⃒ − F, F) is zero everywhere else. The symmetric nature of 

this distribution ensures that the mean, median and skewness are zero, 
and that the variance of this distribution is F2/3. In practice, the 
observed form errors are subject to measurement uncertainty. We first 
consider the case where the measurement uncertainty is in much less 
than the true form error. Random effects associated with measurements 
are discussed in Section 4. 

According to Bayesian inference, we can derive a posterior proba-
bility from two components: a prior probability and a likelihood func-
tion derived from a statistical model for the observed data. Since the 
form error data is given by U(fi

⃒
⃒ − F,F), then the likelihood function of 

associated with the model for the form error data is 

L

(

f |F) =
∏m

i=1
U(fi| − F,F

)

∝1
/

Fm, (1)  

if fi ∈ (− F, F) and is zero otherwise. By regarding F as scale parameter, a 
suitable a non-informative prior PDF for F is π0(F) = 1/F. Furthermore, 
if we let F0 = max(|f1|,…,

⃒
⃒fm

⃒
⃒) such that F ≥ F0, then by Bayes’ theorem, 

the combined posterior PDF results to a Pareto distribution: 

π(F|m,F0)=
L (f |F)π0(F)∫∞

F0
L (f |F)π0(F)dF

=
mFm

0

Fm+1. (2) 

The parameter F0 is the lower bound of the Pareto (which is the mode 
of the distribution). The Pareto is a skewed distribution with a decaying 
tail. As m increases, the tail decreases more quickly. Fig. 2 graphs (2) for 
various values of m for the case of F0 = 2 μm. Table 1 shows that the 
posterior mean and median approaches F0 as m increases. 

2.2. Conformity and specific risk calculations 

In conformity assessment, we wish to assign tolerance limits for a 
quantity to control the risks associated with making a wrong decision 
[9]. We shall use a Pareto posterior distribution in (2) to better under-
stand the conformity method. We assume a production line manufac-
tures circular parts that are measured, leading to form error estimates 
that are assumed to follow a Pareto distribution. To assess whether the 
form error complies with a specification, the measured value is 
compared to a tolerance interval. The conformance probability, denoted 
by pc, is given by the set of conforming values for a one-sided tolerance 
interval from [0,T], where T is the upper limit. For a Pareto distribution 
defined by m and F0, 

pc =

∫T

F0

π(F|m,F0)dF = 1 − (F0/T)m
. (3) 

If the item does not conform with the specification, then the proba-
bility of non-conformance is 1 − pc. Note that the tolerance interval in 
(3) is actually [F0,T] instead of [0,T]. This is because the Pareto is defined 
for F ≥ F0. 

JCGM 106 [9] published guidelines for such an assessment 
addressing two types of specific risks. Only binary decision criteria are 
evaluated, which means the item must either be deemed as accepted or 
rejected. As such, these risks can be obtained as a function of pc. The first 
is the specific consumer’s risk, denoted here as RS

c = 1 − pc = (F0/T)m, 
which is the probability that an accepted item will be non-conforming. 
The second is the specific producer’s risk, RS

p = pc = 1 − (F0/T)m, 
which is the probability that a rejected item will be conforming. The 
calculation of conformance probabilities allows design of experiment 
questions to be answered, e.g., how many measurement points m are 
required to reduce risks to a specified level. 

3. A practical example 

In this section, we used a Pareto conformance function in (3) to 

Fig. 1. Form error fitting of a circular item with centre (x0, y0), radius r0 and 
several measured points consisting of m discrete points for estimates f . Form 
generated by least squares method. 

Fig. 2. Pareto distribution for various values of m starting with an observed 
value of F0 = 2 μm. 
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assess whether an item is accepted or rejected. We applied the confor-
mance probabilities and risk formulas from the previous section to 
obtain varying conformance probabilities for different values of F0 and 
m used (with a fixed T). For instance, if F0 = 2 μm, m = 10 and T = 3 μm, 
then we accept an item with a conformance rate of 98.3% and an 
associated specific consumer’s risk of 1.7%. Table 2 summarizes the 
decisions made in response to various measurement results. Fig. 3 
graphs the specific risks curves, respectively, for the case of m = 10. 

4. Incorporating measurement uncertainty from random effects 

A slightly more extensive posterior model, taking into consideration 
the probable random effects of form errors, is discussed here for the 
reader’s interest. The calculations in Section 2 assumed that the 
observed residual distances are accurate estimates of the surface’s form 
error estimates fi for were free from some random effects. Suppose now 
that d = f + ε where ε are random effects associated with a Gaussian 
distribution N(0, σ2

ε I). In this case, we can use Bayesian inference to 
obtain a posterior distribution for the convolution of fi + εi. The result of 
the sum of two independent continuous random variables has PDF: 

g
(

z|F,m, σϵ

)

=

∫ F

− F
U
(

t| − F,F
)

N
(

z − t|0, σ2
ϵ

)

dt,

by taking the likelihood of g(z|F,m, σε) after observing m measured 
points and setting a non-informative prior of π0(F)∝1/F, the combined 
posterior PDF is therefore: 

π(F|d, σε)=
C

Fm+1

∏m

i=1

[

erf
(

F + di

σε
̅̅̅
2

√

)

+ erf
(

F − di

σε
̅̅̅
2

√

)]

. (4) 

Here, the constant C is the assigned integrating factor to ensure that 
π(F|d, σε) integrates to one. This distribution reflects the measurement 
uncertainty affiliated with the residual distances examined, due to the 
randomness of σε. Numerical integration is used to compute C, moments, 
quantiles and other common statistics associated with this PDF. The 
conformance probability and specific risks of (4) can be calculated 
numerically using the methods described in Section 2.2. 

The posterior distribution of (4) is compared against the Pareto in 
Fig. 4 using real form error data after measuring 10 points around a 
circular item with a CMM. The following 10 form error measurements 
taken from the data points are 0.74, − 0.46, − 0.26, 0.14, − 0.56, − 1.86, 
0.04, 0.04, 1.84 and 0.34 μm. 

Here we compare the Pareto from (2) with the extended model from 
(4) using two values of σε (differentiated by models A and B, which 
represents a σε value equal to 1.0 and 0.4, respectively). For the 

observed data, the minimum absolute form error is F0 = 1.86 μm. 
Models A and B have mean values of 2.1889 and 2.2796 μm, respec-
tively, which are higher than the Pareto mean of 2.0667 μm. Similarly, 
the standard deviations for both distributions are greater than the Par-
eto, at 0.3330 and 0.4160 μm, respectively, compared to 0.2311 μm. A 
basic distinction between the extended models and the Pareto is that the 
latter ignores measurement uncertainty. Although all distributions take 
little or no account of the probability values when F < F0, the extended 
models takes the measurement uncertainty into consideration to provide 
a smoother, longer, and fatter tail. Thus increasing the value of σε in-
creases measurement uncertainty. 

5. A second practical example 

This section follows a similar procedure as Section 3. In this section, 
we are interested in using the extended model in (4) to calculate the 
conformance and specific risks. Table 3 illustrates the decisions made in 
response to real form error data utilizing a variety of inputs for σε. For 
example, if F0 = 1.86 μm (calculated from real form error data), m = 10, 
T = 3 μm and the random error is 0.25 μm, then we accept an item with 
a conformance rate of 98.53%, which is 0.63% less than the Pareto 
conformance rate (fixed at 99.16%). Fig. 5 graphs the specific con-
sumer’s risk curves for different inputs of σε. 

In general, we find that increasing the random error reduces the 
conformance rate and increases the specific consumer risk, as expected. 
It also widens the difference between Pareto and extended model 
conformance rates. As a result, we find that measurement uncertainty 
has a significant impact on a measured item’s actual conformity rate. 

6. Discussion and concluding remarks 

This paper is concerned with developing a conformity assessment 
criterion for the form error model by comparing the distribution of its 
possible values to a tolerance interval using Bayesian inference, which 
takes measurement uncertainty and sampling effects into account. Most 
conformity assessment problems assume that the uncertainty associated 
with a quantity is Gaussian or Gaussian-like. For form error assessment, 
the associated distribution is far from a Gaussian. Through Bayesian 

Table 1 
Pareto statistics for the posterior mean and median for the case of F0 = 2 μm.   

Number of measured points (m)  

5 10 20 50 100 200 

Posterior mean (μm) 2.50 2.22 2.11 2.04 2.02 2.01 
Posterior median (μm) 2.30 2.14 2.07 2.03 2.01 2.01  

Table 2 
Result of conformity assessment of a measured circular artefact under a Pareto 
posterior distribution from (2) for the case of T = 3 μm. *Item is accepted if RS

c ≤

5%.  

Observed 
value (μm) 

Measured 
points 

Conformance 
probability 

Specific 
consumer’s 
risk 

Decision on 
the item* 

2.0 10 98.3% 1.7% Accept 
2.0 15 99.8% 0.2% Accept 
2.3 10 93.0% 7.0% Reject 
2.3 15 98.1% 1.9% Accept 
2.6 10 76.1% 23.9% Reject 
2.6 15 88.3% 11.7% Reject  

Fig. 3. Specific risk curves versus F0 for making a wrong decision under a 
Pareto distribution for a tolerance limit of T = 3 μm. For conformity rates of 
90% and 95%, the desired observed values are F0 = 2.38 μm and F0 = 2.22 μm, 
respectively. 

Fig. 4. Comparing the posterior PDFs of models (2) and (4). Real form error 
data was used for (4), with F0 = 1.86 μm, m = 10 and different levels of σε. 
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inference, we derived a posterior PDF (Pareto) by considering the like-
lihood of measurement data (e.g., a uniform distribution with unknown 
form error bounds) and a prior distribution, to describe the form error 
model. 

The posterior model was then extended by integrating measurement 
uncertainty from the likely random effects of form errors, which was 
addressed in Section 4 and followed by some interesting results in Sec-
tion 5 for the reader’s interest. The approaches discussed in this paper 
disregard the fact that form error estimates at the surface points are 
determined due to surface fitting, and therefore they are subject to a 
correlating effect associated with the fitting. 

The definite integral of the posterior PDF for a given range is the 
most significant step in the conformance and specific risk calculations, 
and so these calculations are straightforward for univariate distributions 
when using their cumulative distribution function. 
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Table 3 
Result of conformity assessment of a measured circular artefact under the extended model from (4) for the case of T = 3 μm and m = 10. *Item is accepted if RS

c ≤ 5%.  

Observed value (μm) Random error (μm) Conformance probability Difference from Pareto using (3) Specific consumer’s risk Decision on the item 

1.86 0.25 98.53% 0.63% 1.47% Accept 
1.86 0.50 98.07% 1.09% 1.93% Accept 
1.86 1.00 96.90% 2.27% 3.10% Accept 
1.86 1.50 93.65% 5.51% 6.35% Reject  

Fig. 5. Specific consumer’s risk curves versus F0 for making a wrong decision 
under model (4) for a tolerance limit of T = 3 μm. For a risk of less than 5%, the 
desired observed values are F0 = 2.14 μm, 2.02 μm and 1.74 μm when σε = 0.5 
μm, 1.0 μm and 1.5 μm, respectively. 
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