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Abstract

In large buildings, linking heating, cooling or ventilation systems between themselves and to physical
spaces is a very time-consuming task that requires highly skilled engineering knowledge, as all these
systems are interconnected and they have a certain influence to each other (ventilation systems are often
connected to heating and cooling), which often makes task of locating the sources of error or anomalies
very time consuming and difficult as they are performed manually. A different approach would be to work
out relationships and equipment linkage from time series data provided by the sensors, thus inferring
equipment links from which anomalies can be traced back to the source more easily. This paper proposes a
data-based solution to obtain equipment relationships based on cross-correlations to relate Air Handling
Units (AHUs) to their respective areas of operation. We also propose a methodology, in particular for
AHUs, to identify whether or not to trust correlations based on the difference between supply and return
temperature. A case study is presented based a large building with 16 AHU systems.

Nomenclature

AHC Agglomerative Hierarchical Clustering
AHU Air Handling Unit

ANN Artificial Neural-Network

APAR Air Handling Unit Performance Assessment Rules
BMS Building Management System

DTW Dynamic Time Warping

FCU Fan Coil Unit

FDD Fault Detection and Diagnosis

GRNN General Regression Neural-Network
HVAC Heating, Ventilation, and Air Conditioning
MTS Multivariate Time Series

SAT Supply Air Temperature

1. Introduction

Building Management Systems (BMS) present clear advantages for energy control such as identifying locations
of potential energy waste for energy optimisation, decreasing equipment operating cost, providing indoor
environmental safety and comfort through Heating, Ventilation, and Air Conditioning (HVAC) systems
control, as well as controls of water consumption, elevators, etc. Over the past few years, a lot of efforts have been

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Schematic of BMS.
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Figure 2. Schematic of AHU.

put to control the three main important aspects of the building: energy consumption, security and comfort. The
schematic in figure 1 represents the a high level overview of the built environment and role of BMS control
signals and information flow, which also takes into account the supply of energy and data from the grid for
demand response events. This figure shows the main building blocks of BMSs, in relation to the whole smart
building spectrum:

This paper is focused on BMS linkage, which is mainly used for the purpose of failure detection. The first two
experiments are focused on AHU supply and return temperatures with sensor data from physical spaces. The
physical spaces for these two experiments correspond to the manufacturing part facility in the ground floor. The
last experiment is slightly different, as supply and return temperatures from AHUs are linked with fan coil units,
which at the same time feed air to a different part of the facility: the office area in the first floor.

The literature has been reviewed in two main parts: the first one is dedicated to supervised and unsupervised
HVAC equipment linkage for fault detection and diagnosis, as the main purpose of linking HVAC equipment is
to trace back system failures and to detect system anomalies. The second one to time series clustering, as these are
the kind of methodologies that we use to solve this problem.

When mobilising a set of building sensors into an analytics platform, BMS points are translated into a
naming standard such as Haystack [ 1] or a more unified metadata schema such as Brick [2], so that the analytics
platform can recognise them, and sensor points can be programmed into rules for energy consumption, systems
linkage, etc which requires a metadata framework to form a link between point types, physical spaces and the
linkage of HVAC components with the purpose of building knowledge relationships. One of these methods is
the framework for metadata normalisation Plaster in [3], which requires a certain level of human supervision
such as knowing the point type, location and relationship with other equipment parts, specially in large facilities.
A methodology that works out relationships between HVAC points based on sensor data may help to reduce
human interaction when building this framework.

Ventilation is one of the major areas of electricity consumption. In large industrial facilities, Air Handling
Units (AHUs) are key consumption points. As represented in figure 2, several units are also involved in AHUs,
such as electric fans, humidifiers (in some AHUs), heating and cooling, which interact with other systems, such
as boilers, cooling systems, etc. Therefore, controlling AHU’s parameters means to control a significant part of
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electricity consumption, as this is a point where other systems converge. The goal of this paper is to infer
relationships between AHUs and both building areas and other HVAC parts for large manufacturing facilities
using only time series data.

Other studies have presented novel methodologies to infer relationships between HVAC components of
large commercial buildings such as [4], that utilises perturbations of subsystem variables to reveal correct
associations with a 76% success. The authors state that statistical methods are not good for this problem,
however they only use correlations between variables and they don’t test more complex statistical related
methodologies. [5] uses a series of supervised learning methodologies to infer point type from sensor data, as
well as to control perturbations to verify relationships between HVAC system parts [6]. Studies a comparison
between different supervised learning methodologies, inferring equipment characteristics from time series
features. The case study presented in our paper proposes a system with old infrastructures where no
documentation nor prior knowledge is available, therefore a supervised learning classification approach would
not be of use. Inputs and outputs are known but, in order to verify such outputs, verification from experienced
engineers has been necessary in order to compensate the lack of documentation, which has been a work that
lasted several weeks. Similarly, [7] uses supervised classification to infer AHU-VAV links by first extracting
statistical features from the data and then random forests for each VAV. A study offering relationship between
equipment parts according to physical spaces and with minimal intervention is presented in [8], which converts
time series into frequency domain with short-time Fourier transformation operator, that contains implicit
information about changes. Then it wraps them in time dimension by using dynamic time warping and a pre-
defined time wrapping function.

As a part of this study, we consider that the methodology applied could be useful for diagnosis of system errors,
which are defined after establishing normal working conditions of the system according to the clusters. When there
is a significant number of AHUs and the temperature gets outside a comfort policy, the origin of this failure can be
very difficult to trace back. For AHU fault diagnosis some previous work has been reported in the literature [9].
Describes the application of Artificial Neural Networks (ANNGs) to the problem of fault diagnosis in an AHU by
using residuals of system variables to quantify the dominant symptoms of fault modes of operation. Following the
same approach, [10] proposed AHU subsystem level fault detection using a General Regression Neural-Network
(GRNN), residual generation and fault detection and diagnosis. A novel feature extraction technique to extract
temperature and power associated features from high-dimensional and unstructured terminal unit data is
presented in [11], to diagnose faulty HVAC in an automatic and remote manner. The use of Air handling unit
Performance Assessment Rules (APAR) was exercised by [ 12]. They use control signals to determine the mode of
operation of the AHU. A subset of expert rules which correspond to that mode is then evaluated to determine
whether a fault exists. In the review of fault detection and diagnosis methodologies carried by [13], various Fault
Detection and Diagnosis (FDD) are described to illustrate the use of evaluation standard parameters for improving
the performance of AHUs. This work divides FDDs in three main categories, namely analytical-based methods,
knowledge-based methods, and data-driven methods. In a more recent study, [ 14] proposes a method that
employs sequential two-state clustering to identify abnormal behaviour of the fan coil unit. Some other recent
studies on HVAC systems fault detection and diagnosis can be seenin[11, 15, 16].

The methodologies for detecting failures of AHUs have the specificity of using either control signals or the
internal parameters of the AHU itself. In large facilities, we link different physical spaces with their
correspondent control systems to detect the sources of deviation from the prescribed conditions. There is
growing need of understanding and extracting value from sensor data, specially in large spaces where the
amount of AHUs and of time series data provided by the different sensors can create confusion when looking for
links between different equipment units. So the real problem we aim to solve is to add clarity about equipment-
spaces linkage and therefore, to create real value from sensor data.

This sensor data linkage is done by studying similarities between the time series data, and by clustering them
based on these similarities [17]. States that finding the clusters of time series can be advantageous in different
domains for anomaly, discord detection, recognising dynamic changes in time series, prediction and
recommendation and pattern discovery. The problem we study fits into the pattern detection category, as we aim
to detect similarities between time series to identify links between assets.

One of the widely used metrics for time series similarities is Dynamic Time Warping (DTW). One of the
pioneer works, [ 18] describes experiments with this dynamic programming approach to the problem of pattern
detection [19]. Demonstrates that DTW could be used for mining massive data sets faster than with euclidean
distance [20]. Designs an approach that penalizes points with higher difference between a reference point and a
testing point in order to prevent minimum distance caused by outliers.

Some other distance metrics have proven successful for pattern detection in time series data. Integrated
periodogram distance [21] presents a metric based on different dependence measures to classify time series as
stationary or non-stationary. Simulations results proved that the logarithm of the normalized periodogram and
the metric based on the autocorrelation coefficients can all distinguish ARMA and ARIMA models, which does
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not happen with the classical Euclidean distance. Lasso-based approaches are also widely used for time series
grouping. As an example, [22] proposed a two-step Lasso procedure for multiple change-point estimation in
time series. [23] used LASSO- Patternsearch algorithm for detecting disease-causing genes. [24] decompose high
dimension multivariate time series (MTS) into smaller dimension M TS which are relatively independent of one
another, based on correlation between the variables.

In recent years, several studies have been done in the field of time series clustering, such as [25], which
presents a time series clustering approach for building automation and control systems. This work uses
unsupervised machine learning algorithms to improve supervised classification by adding more robust features
compared to manual selection [26]. Compares a set of recurrent neural networks on groups of similar time series
for clustering, showing that long-short-term memory neural networks present a good result for this purpose as
well. Other recent works on time series clustering methodologies and applications can be seen in [27, 28].

In this paper, we apply clustering techniques to relate Air Handling Units (AHUs) to their respective areas of
operation. In section 2 we explain the methodology, and introduce methods and similarity measures. In
section 3 we describe the data of this case study and introduce the concept of difference in temperature for
testing hypothesis. Later in section 4 we design the experiments. Finally, we present the conclusions in section 5.

2. Mehodology

The goal is to partition a set of data objects into homogeneous groups or clusters using machine learning
techniques, in order to group similar sensor time series together depending on which of the three experiments.
Partition is performed in such a way that objects in the same cluster are more similar to each other than to objects
in other clusters. We make this differentiation with correlations. In this work, several time series data clustering
metrics are tested, namely correlations, dynamic time warping and integrate periodgram distance. We use these
metrics to perform agglomerative hierarchical clustering and then we test a different clustering methodology:
Graphical Lasso.

2.1. Graphical Lasso

In [29], the problem of estimating sparse graphs, graphs with only few edges, by a lasso penalty to the inverse
covariance matrix is considered. Let us consider the case where X, ..., X,, are independent and identically
distributed N,,(1, 2) and being the estimated precision matrix, which is the inverse matrix from the covariance
matrix, denoted Q2 = ¥~ . This function solves the following optimisation problem:

Objective: O\ = argmingesf{Tr(SQ) — logdet (€2) + ||} )

where tr is the trace, A > 0 and the penalisation parameter ||Q|]; = Ei’lei,jI isthe L;-Norm of X (Lasso
regularisation parameter). In order to provide useful information, this problem proposes to maximise the
penalized log likelihood with respect to €2, so the nodes are not fully connected and the connections kept on each
cluster have useful information concerning the relationships of time series on each cluster. This happens because
Lasso regularisation parameter shrinks the less important features coefficient to zero, removing less meaningful
coefficients. The algorithm employed to solve this problem is the GLasso algorithm, which is explained in [29],
where they consider the problem of estimating sparse graphs by a lasso penalty, which is the penalty applied to
non-zero coefficients by the sum of their absolute values, applied to the inverse covariance matrix.

With this estimate of the inverse of the correlation matrix, we have the partial independence relationship. If
two features are independent conditionally on the others, the corresponding coefficient in the inverse of the
covariance matrix would be zero, as it learns independence relations from the data, instead of being a distance
measure itself between time series.

According to the authors of the implementation package in ‘scikit-learn’ in [30], the search for the optimal
penalization parameter is done on an iteratively refined grid: first the cross-validated scores on a grid are
computed, then a new refined grid is centred around the maximum, and so on. One of the challenges here is that
the solvers can fail to converge to a well-conditioned estimate. The corresponding values of alpha then come out
as missing values, but the optimum may be close to these missing values.

2.2. Agglomerative hierarchical clustering
Agglomerative Hierarchical Clustering (AHC), has a long history, especially in taxonomy or classificatory
systems, and phylogenetics [31, 32]. Further studies generalised this algorithm, [33], and have further developed
and improved [34, 35].

Base on the definition given in [36], the goal of hierarchical clustering is to create a sequence of nested
partitions or clusters, which can be conveniently visualised via a tree or hierarchy of clusters, also called the
cluster dendrogram. In AHC, it starts with each of the n points in a separate cluster, and then merging the two
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closest clusters until all points are members of the same cluster. Algorithm 1 shows this procedure, with
D = {x;,.., X,}, where x; € R% aclustering { = {Cj, ..., C} is a partition of D.

Algorithm 1. Agglomerative Hierarchical Clustering (D, k), reproduced with permission from [36]:

1+ {Ci=x;} [x; € D} //Eachtime seriesisinaseparateclusterinitially
2 A« {0(x;, x): X, Xj € D}; //Computematrixwithdistances
3 repeat

4 Find the closest pair of clusters C;, C; € (3

5 Cij+—CUC; //Merge the clusters

6 (—(C\{GCHUI{C ks //Update the clustering

7  Update distance matrix A to reflect new clustering;

8 until (| =k

Different distance measures between time series can be used for clustering: pearson’s correlation coefficient,
dynamic time warping and integrated periodogram distance.

2.2.1. Pearson’s correlation similarity
Letx = [x %..x]Tand y = [ N Yy e yL]T be two zero-mean real-valued random vectors of length L. As
described in [37], the Pearson’s correlation coefficient between x and y is

E2(xTy)

i £ — 2
E(xTx)E(yTy) @

prx, y) =

With E being the expected value. According to the “#sclust’ package documentation in [38], which is the one
used for the purpose of this study, two different measures of dissimilarity between two time series based on the
B
. > . _ — _ 1-p
estimated Pearson’s correlation can be computed. These canbe d; = /2(1 — p) or d, = (—1 = ) ,where 3
specifies the regulation of the convergence.

2.2.2. Dynamic Time Warping
DTW has the basic idea behind that the sequences are extended by repeating elements and the distance is
calculated between extended sequences. Therefore, DTW can handle input sequences with different
lengths [39].

Letx =[x %..x.]Tand y = [ Yy e yS]T be two time series, where lengths rand s are not necessarily equal.
Let Mbeanr x smatrix with the (4, j) element containing the squared Euclidean distance between two points x;
and y;. Each element (i, j) in M corresponds to the alignment between two points x;and y;. Let W = wy, w; ,..., wy
be a warping path, where the kth element wy, = (i, jx). Then maxr, s < K < r + s — 1 with the warping paths
having the following restrictions: monotonicity, continuity and boundary conditions. There are exponentially
many paths that satisfy these conditions, being the optimal path the one which minimizes the warping cost [40]:

K
DTW (x, y) = @ m

= y 3
< 3
where (i, j)) = wiforl = 1,2, ..., K. Then the optimal path can be found through dynamic programming
accordingto v (i, j) = d(x;, y) + miny(i — 1, ), v — 1,j — 1), v(i, j — 1), where 7(3, j) is the dynamic
time warping distance between the sub sequences xy, x5, ..., x;jand y1, 2, ..., .

2.2.3. Integrated Periodogram Distance

The distance based on the normalised periodogram was introduced in [21]. Let B, (wj) = (1 / m) |30 x e
and P,(w)) = (1/n)|>1_, e~ be periodograms of time series x and y, respectively, at frequencies

w; = 2mj/n, j = 1,...,[n/2]inthe range 0 to 7, [n/2] being the largest integer less or equal to /2. We are
interested only on its correlation structure, so it is better to use normalized periodogram defined by

NP (w;) = P(w;) /4, where ¥ is the sample variance of the time series. Also, since the variance of the
periodogram ordinates is proportional to the spectrum value at the corresponding frequencies, logarithms can
be taken and therefore, the distance between x and y can be defined by

[n/2]
dinp (%, y) = \/ > [log(NE.(w))) — log(NB, (W)} . %)

j=1
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Table 1. Ground truth of AHUs of the manufacturing facility for experiments 1 and 2, their associated areas of influence and the number of
temperature sensors in such areas. AHUS’ temperatures are controlled by the average value of the temperature sensors located in their
respective areas, with a data resolution of 10 minutes.

AHU Associated zone Control strategy N. of temperature sensors in the zone
AHUO1 Lab rooms Avg. room temp—Fixed set point 4
AHUO02 Support room Avg. room temp—Fixed set point 3
AHUO03 Wax room Avg. room temp—Fixed set point 4
AHUO04 Shell room Avg. room temp—Fixed set point 4
AHUO05 NPIroom Avg. room temp—Fixed set point 3
AHU06 Cleanroom AHU Return temp—Fixed set point 0
AHUO07A/7B Foundry area Avg. room temp—Fixed set point 8
AHU09/10 Finish room Avg. room temp—Fixed set point 4
AHU11 Inspection/X-Ray rooms PI controlloop—variable set point 5
AHU12 Canteen Avg. room temp—Fixed set point 1
AHU14 Pre-fire room Avg. room temp—Fixed set point 2
AHU15 Fresh air make-up unit Fixed supply temp 0
AHU16 Shell rooms Avg. room temp—Fixed set point 2

Knowing that the periodogram has the equivalent representation P (w;) = 2[4, + Z::‘ykcos (w;k)], where
4, is the sample autocovariance function (defined with more detail in [41]) which, according to the authors,

leads to
1 1 n—1
dyp(x, y) = \/ 16[Z(ﬁ1,x D ey ﬁn,l,y)Z] = 207 |3 (Prx — i)’ ®)
k=1

2.3. Implementation

For the implementation of the AHC methodologies (Pearson’s correlation similarity, dynamic time warping and
integrated periodogram distance), R package TSclust has been used [38]. For lasso clustering, package Scikit-
Learn from Python version 3.7 has been used [42].

3. Problem and data description

The building used in this case study is a large manufacturing facility that consists mainly on manufacturing
facilities in the ground floor (AHUvs physical spaces experiments 1 and 2), and office spaces inthe first floor
(AHU vs FCU experiment 3).

3.1. Experiments 1 and 2: Manufacturing facility (Ground floor)

The manufacturing part is comprised of several spaces, every space dedicated to a part of the process, as this is an
automotive manufacturing plant. In terms of cooling, heating and ventilation systems, the building has 3
chillers, 6 boilers, 6 fan coil units and 16 multi-speed fan AHUs. As the focus of this paper are AHU systems, the
actual linkage between AHU-space and type can be seen below in table 1. Some of the AHUs have been discarded
due to the lack of sensors in their respective areas of influence, which makes them irrelevant to this study.

We based our experiments on ground truth table 1. The data has been extracted directly from the
manufacturer for every AHU individually [43], technical specifications include also dimensions of boxes and
specs. of motors, fans, thermal wheel (if applicable), coils, etc. The data set comprises BMS sensor records. Every
sensor is tagged with a specific name describing the company and followed by building location and subset
(Ventilation, Metering, Cooling, Heating, Globals, Terminals and Lighting).

The building used for this case study is a Rolls Royce plant located in Rotherham, with 1639 BMS points in
total. The period chosen for this study is June to July 2018 (30 days). The facility comprises two main areas: the
production plant on the ground floor and the offices in the upper floor.

Time series data provided by sensor points is not often reliable and there are data gaps to be filled, units to be
removed, and anomalies, which are bits of data misplaced between points because of extraction. The used data
points are:

+ AHU Supply Air Temperature (SAT) points: These points measure the temperature of the air supplied to
the area. There is one of these points per AHU.
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Facility

Room A Room B Room C

W

Figure 3. Schematic of AHUs and FCUs linkage.

+ AHU Return Air Temperature (RAT) points: These points measure the temperature of the air extracted from
the space prior to re-circulation or disposal.

+ Room temperature points: Sensors are located in each room to measure temperature. There are between 1
and 4 sensors located on each room, and consists of averages of the sensors.

+ Fan Coil Unit (FCU) room temperature: Output temperature of FCUs. This piece of equipment is connected
(or close to) an AHU, and we define the relationships in one of the experiments below.

3.2. Experiment 3: Office spaces (First floor)
The office spaces contains the meeting rooms and common spaces such as restaurant, canteen, kitchen,
changing room and open spaces. In this experiment we establish correlations-based relationships of these two
types of equipment. This correlations study would illustrate the way in which different equipment types are
linked, so the main influence areas are clearly defined. A schematic is shown in figure 3. In this case study
building, FCUs feed air to specific meeting rooms in the office above the manufacturing facilities.

Different meeting rooms receive the following generic names: Rhenium, Tugsten, Nickel, Cobalt, Tantalum
and the gym. The main goal of this experiment is to link the respective rooms, each being fed by a different FCU,
with their closest AHU unit’s area of influence, being the AHU’s the same ones as in experiments 1 and 2.

4. Correlations experiments using real building sensor time series

We perform various experiments to relate AHUSs with their respective work spaces, as well as FCUs with their
respective AHUs. In experiment 1, we perform a comparison of the performance for different clustering
techniques in a controlled experiment consisting of only a small part of the facility. Then the best performing
methodologies from experiment 1 are used in experiment 2 for the whole facility. Experiment 3 shows a
different clustering focus, linking a different piece of equipment, fan coil units, with their respective areas of
influence.
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Table 2. Mean, variance, minimum and maximum value of the difference
between supply and return air temperature (C°).

AHU number Mean Variance Min Value Max Value
AHUO1 2.39 7.25 0.00 11.30
AHUO02 6.20 14.37 0.01 13.45
AHUO03 8.01 0.90 0.48 14.62
AHU04 2.87 0.97 0.02 8.47
AHUO05 3.74 0.63 0.04 10.89
AHUO06 3.97 0.75 0.06 6.20
AHUO7A 17.16 1.06 12.92 20.18
AHUO07B 15.49 1.13 12.28 18.34
AHUO09 10.37 1.40 8.23 14.86
AHU10 10.12 1.59 6.69 13.80
AHU11 2.28 0.98 0.00 4.99
AHUI12 3.50 5.50 0.00 10.69
AHU14 8.09 17.38 0.00 15.61
AHU16 1.04 0.56 0.00 7.90

4.1. Linkage significance and difference in temperature
In order to test if the correlations are reliable, we need to ensure their significance. If the link between room
sensors and SAT is established, the internal difference in temperature is an important factor to take into
consideration to define this significance. All spaces in the facility may generate heat internally (kitchen,
manufacturing process, people, computer equipment, etc.) which could make difficult identification of spaces
with their respective AHUs. This is why we measure this internal disruption in the first place, and then gradually
add complexity to the clustering.

For this purpose, the difference between supply and return air temperature has been taken into account,

AT = [SAT — RAT| (°C). (6)

Table 2 represents the mean, variance, minimum and maximum value of the element-wise difference
between supply and return air temperatures for each AHU.

Table 2 shows that some AHUs, such as 6, 7A, 7B, 9 and 10 present a much higher mean value of their
difference in supply and return temperatures. However it can be seen that the variance in some of them is not
very high, meaning that the high mean difference in temperature is stable. Probably one area has been constantly
influenced by other areas. On the other hand we can find areas with a relatively low mean with a high variance,
meaning that the physical space presents temperature disruptions very often. The reason to choose this value is
that the clustering algorithms fail in linking AHUs with sensors above an approximate difference in temperature
of 8 degrees Celsius in experiment 2.

These values are to be used as a measure on how much the defined AHU linkage can be trusted, therefore we
decide to test the following hypothesis: we define a limit for the mean difference in temperature as 7.5, above
which the cluster may not be reliable as the internal heat disruption may be too high so we are not able to ensure
that the cluster is comprising these points is correct.

4.2. Experiment 1: Linking three AHUs to five different rooms

For the first experiment, three AHUs have been selected. We chose, according to table 2, the ones with a
relatively low mean and variance thus, the ones with a lower internal difference in temperature. Also it is
necessary to validate how good the solution is, so the site engineers are consulted on the room names to which
the AHUs are supplying air to. The chosen AHUs and corresponding rooms are:

+ AHUO5 supplying air to the ‘NPI room’
+ AHU11 supplying air to the ‘Visual inspection’, ‘Manual inspection’ and ‘X Ray’ rooms
+ AHUI16 supplying air to the ‘Shell drying’ room

We apply the methodologies discussed to this first experiment and later we compare our results with the real
connections. In a properly clustered group, the AHU’s SAT should be in the same group together with their
corresponding space temperature sensors. The dendrograms correspond to the AHC methodology with the

three distance metrics. AHC can be represented as a dendrogram because the algorithm progressively separates
the clusters based on the different distance metrics until all the points form a separate cluster. For this reason, the
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Table 3. Lasso clustering results

AHU in cluster Room temperature sensors in cluster
Cluster 1: AHUO5 Supply Air Temp Room NPI Room Temp No3
Room NPI Room Temp No2

Room NPI Room Temp No.1

Cluster 2: AHU16 Supply Air Temp Drying Shell Drying Cell Temp No2
Drying Shell Drying Cell Temp Nol

Cluster 3: AHU11 Supply Air Temp Room Manual Inspection Room Temp
Room Manual Inspection Room Temp.1
Room Visual Inspection Room Temp
Room Visual Inspection Room Temp. 1
Ray X Ray Room Temp

lasso clustering methodology is represented separately in table 3, as this algorithm does not respond to this type
of representation because the search for the optimal penalisation parameter is done in an iteratively refined grid.

For the experiments, we assume that we know already that the BMS points belong to the different AHU
systems and room temperature sensors. What we assume not to know beforehand are which of the 13 AHUs is
associated with which of the 11 physical spaces. We know the parent-child relationship once the AHU has been
associated with its corresponding physical space.

In the dendrograms, a distance between clusters has been chosen to the best convenience. The distance
chosen determines which branches below that distance form a cluster. The same distances are used later in the
experiment with the whole building evaluation. An ideal cluster should contain the AHU sensors together with
their respective temperature sensors within the same. Figures 4-6 show the clustering results of the different
distance metrics in the form of a dendrogram.

The fact that the AHUSs’ SAT belongs in the same cluster as their respective room temperature sensors means
in the case of AHC that, in the lowest levels of the dendrogram, the time series are closer (in terms of the chosen
distance) to each other, and form groups that are more distant to each other as the branches go up. In the case of
graphical lasso, it means that the elements corresponding to the estimated inverse of the covariance matrix are
zero between groups of time series data or clusters, thus forming groups with the time series data that present the
most similar number of common features.

Figure 4 shows that correlations-based AHC clusters AHUO5 and AHU11 properly with their corresponding
temperature sensors. AHU16 is in a cluster together with one of its sensors, however the other sensor is excluded,
thus forming a separate cluster. Figure 5 shows the same clustering methodology but based on DTW. On this, it
can be seen that the clusters do not respond to the logic of the physical connections, independently of the
distance chosen to form the clusters. Similarly in figure 6 the clusters do not respond to the ideal behavior either.
In table 3 we show the results of lasso clustering. In this case, the clusters respond to the most ideal behavior. The
three AHUs are properly linked to their respective temperature sensors within the same cluster.

Results have been summarised in table 4. The percentages are obtained based on the rate of room
temperature sensors contained within the cluster with their corresponding AHU each. For instance, correlations
AHC clusters elements properly within AHUs 05 and 11 but missed one of the two elements in cluster
containing AHU16. The one showing the best results is the graphical lasso clustering, properly grouping AHUSs
with their respective areas of influence. This performance is followed by correlations clustering.

Now that the methodologies that perform best have been proved, we are proceeding with them both for the
next experiment.

4.3. Experiment 2: Linking all AHUs to rooms (whole building evaluation)

In experiment 2, we use the two best performing methodologies discussed in section 4.2, Pearson’s distance-
based AHC and lasso clustering, with all AHUs and all temperature sensors within the building. We can see the
dendrogram as a result of Pearson’s correlation distance-based AHC figure A1, and the results for lasso
clustering in table A1 in the appendix. In the results of the Pearson’s correlation distance-based AHC shown in
figure A1. Correct clusters are considered by using the same distance to analyse the clusters as in experiment 1.
As an example for correct cluster, figure A1 shows that AHUOI is contained within the same branch levels as the
four lab rooms, as expected. Similarly, AHUO7A and AHUO7B are clustered with the Foundry area. Other areas
such as Finish rooms, Wax rooms and the canteen, they are in different clusters with respect to their AHUs.
Interestingly, we observe that the related rooms are usually found together in the lowest level of the branches.
Another observation is that AHUs that share common spaces are also clustered together, such as AHU07A and
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Figure 4. Experiment 1: Correlations based AHC with small subset of 3 AHUs. The number above indicates the incremental distance
between clusters according to this metric.

AHUO7B. In the results of lasso clustering in table A1, as in experiment 1, we used two columns to separate
AHUs and room temperature sensors within the same cluster. Some of the clusters only group room
temperature sensors, but no AHU SAT is present, as is the case of clusters 2, 5 and 9. On the other hand, clusters
with only AHUs and no temperature sensors are observed in cluster 11. AHUO06 is discarded for the lack of
sensors in the room.

As defined in section 4.1, we set a limit value of 7.5 for the difference between SAT and RAT. Below in table 5
we summarised the results obtained. The table describes the result, the average difference in temperature,
confirmation/denial of linkage successful in the appropriate category and the issue associated with the AHU if
applicable.

+ Issue (a): Open plan space. Heat exchange occurring between nearby rooms.
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Figure 5. Experiment 1: Dynamic time warping based AHC with small subset of 3 AHUs. The number above indicates the incremental
distance between clusters according to this metric.

+ Issue(b): The AHU is enabled and demand is 100% cooling near constantly but is having no effect on setpoint
(the temperature value set) or is not enough to cool to the set-point. This implies the AHU is not mechanically
sound or capable to meet requirements but onsite investigation would confirm this.

Table 5 shows the results of this experiment. The performance of both methodologies is very similar,
except that lasso fails to cluster wax rooms with their respective temperature sensors. In general, we can say
that correlations based AHC performs better than graphical lasso in terms of number of sensors belonging to
the correct cluster. 70% reveals that this methodology discovers underlying physical patterns between AHUs
and their respective spaces. Also, it can be observed that the AHUs with a mean AT above the set-up limit fail
to predict the matches between AHUs and physical spaces in general, although exceptions can be seen in
graphical lasso and AHUO3. AHUs 07 A and B are in the same branch as their respective sensors in the AHC
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Figure 6. Experiment 1: Integrated periodogram distance based AHC with small subset of 3 AHUs. The number above indicates the
incremental distance between clusters according to this metric.

Table 4. Distance between cluster chosen for each AHC metrics and success rate for both lasso

and AHC.

Hierarchical clustering
Clustering methodology Lasso
Distance metrics Correlations DTW IPD —
Clusters distance limit 14 10 000 150 —
AHU 05 3/3(100%) 0/3 (0%) 0/3 (0%) 3/3(100%)
AHU 11 5/5(100%) 0/5(0%) 1/5(20%) 5/5(100%)
AHU 16 1/2(50%) 2/2(100%) 0/2 (0%) 2/2(100%)
% sucess sensors 90% 20% 10% 100%
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Table 5. Summarised results of experiment 2.

Success rate AHC Success rate Graphi-

AHU Mean AT Associated room (Correlations) callasso Reported issue
AHUO1 2.39 Lab rooms 4/4(100%) 4/4(100%) N/A
AHUO02 6.20 Supportroom 3/3(100%) 3/3(100%) N/A
AHUO03 8.01 Wax room 0/4 (0%) 4/4(100%) N/A
AHU04 2.87 Shell room 4/4(100%) 0/4(0%) N/A
AHUO05 3.74 NPIroom 3/3(100%) 3/3(100%) N/A
AHUO07A/ 17.16/ Foundry area 8/8 (100%) 1/8 (12.5%) (a)

AHUO07B 15.49
AHU09/AHU10 10.37/ Finish room 0/4 (0%) 0/4 (0%) (b)

10.12
AHU11 2.28 Inspection/x-ray 5/5(100%) 5/5(100%) N/A
rooms
AHUI2 3.50 Canteen 0/1(0%) 0/1(0%) ®)
AHU14 8.09 Pre-fireroom 0/2 (0%) 0/2 (0%) N/A
AHU16 1.04 Drying rooms 1/2(50%) 1/2(50%) N/A
% Sensors clustered correctly 70% 52.5%

technique. AHUs 2 and 12 have a very high variance (as shown in table 2), which does not seem to affect the
performance of the algorithms in the case of AHU 2. For AHU 12, both methods fail to predict its only sensor
with the canteen. When looking at its variance, it seems to be higher than other AHUs, as the canteen is
crowded mainly during lunch time. This, together with the fact that its only sensor may be misplaced, could
explain this issue.

We wanted to test the hypothesis of the difference in temperature having a determinant effect on obtaining
these relationships. In the case of AHU07 A & B and despite being an open space, correlations-based AHC has
been able to properly identify all 8 sensors in this more challenging case. Therefore we conclude this hypothesis
cannot be confirmed or the experiment is insufficient.

4.4. Experiment 3: Linking AHU with Fan Coil Units (FCUs)

The main goal of this experiment is to link the respective rooms, each being fed by a different FCU, with their
closest AHU unit. The strength of these links has been defined by the Person’s correlation coefficient, with high
showing a strong, very likely correlation, medium showing a moderate strength and low a weak link. These
relationships are shown per FCU, and the links of these with all (if any) of the correlated AHUs. This is
summarised in table 6.

We conclude from correlations that the most influential AHUs to the FCUs are AHU 01, 02 and 13. Without
having information about the equipment links, we have some degree of confidence to discard low-flagged
category AHUs. After validation with the engineers, we found out that AHUO2 is the one that has the highest
influence over these areas. Therefore, we uncovered some other potential dependencies from the supply air
temperatures of AHUs 01 and 13 to some of the rooms (Nickel, Tugsten and Gym for AHUO1 and Cobalt,
Rhenium and Tantalum for AHU13).

5. Conclusions

In this paper, we propose a solution to obtain equipment relationships based on data correlations and clustering
that relate AHUs to their respective areas of operation. This is an important industrial challenge that requires a
smart solution.

Graphical lasso and correlations-based AHC are the two best performing techniques in the first three
experiments. In the first experiment, lasso clustering proved slightly better than correlations distance-based
AHC. In the second experiment, however, their performance is quite similar, with few differences on Wax and
Shellrooms but with the same number of successfully clustered elements. Experiment 3 shows satisfactory
results as the physical spaces linked to the FCUs correspond with the real case. This approach allows to quickly
scan the system, as one AHU can be connected to more than one FCU, being in the same area of influence in the
case they are not directly attached.

This methodology can be generalised to large buildings with a similar problem. The system could potentially
input labeled time series data corresponding to sensors and output the clusters. Although the accuracy is not
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Table 6. AHU and FCUs linkage. Numerical association with correlation
and the degree of stregth defined by flag category.

Pearson’s correlation

AHU FCU Linked coefficient Linkage
AHUO01 Nickel 0.68 Medium
Tugsten 0.34 Low
Gym 0.29 Low
AHUO02 Nickel 0.89 High
Cobalt 0.51 Medium
Tugsten 0.51 Medium
Rhenium 0.48 Medium
Tantalum 0.05 Low
AHU04 Cobalt 0.14 Low
Nickel 0.11 Low
AHUO07A Tugsten 0.25 Low
Nickel 0.24 Low
Gym 0.06 Low
AHUO07B Nickel 0.20 Low
Tugsten 0.14 Low
Gym 0.06 Low
AHU09 Nickel 0.02 Low
Gym 0.01 Low
AHU10 Nickel 0.07 Low
Tugsten 0.04 Low
Gym 0.02 Low
AHU11 Cobalt 0.06 Low
Rhenium 0.02 Low
AHU13 Cobalt 0.55 Medium
Rhenium 0.45 Medium
Tantalum 0.16 Low
AHU16 Cobalt 0.08 Low
Tantalum 0.03 Low
Rhenium 0.02 Low

100%, this data-driven approach removes weeks of engineering visits to the facility to establish these
relationships by hand and looking at the documentation. By applying this methodology, it becomes quite
straightforward to establish a first step towards more advanced analytics or to determine a standard naming
system that encompasses parent-child relationships.

This top-down perspective aims not to use internal parameters of AHUs and other BMS information, but
instead their direct output. Systems internal information is less likely to be available in comparison to the room
temperature sensors which are commonly installed, but the hardware connections are not documented. The
most recent evolution in smart buildings implies the installation of a significant amount of sensors in large
facilities, so this creates the necessity of generating real value from the data through data mining. Time series
clustering can be used on a daily basis by the site engineers who need to trace back faults without the need of an
extensive installation information on that particular building.
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Figure Al. Experiment 2: Correlations based AHC clustering with the complete set of AHUs in the facility. The number above

Table Al. Experiment 2. Lasso clustering results.

AHU in cluster Room temperature sensors in cluster
Cluster 1: AHUO2 Supply Air Temp Support Rm3 Temp
Support Rm2 Temp
Support Rm1 Temp

Room Inspection Sves Rm Temp1
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Table Al. (Continued.)

AHU in cluster Room temperature sensors in cluster

Cluster 2: (No AHU in cluster) Foundry Room Temp4
Foundry Room Temp3
Foundry Room Temp2
Foundry Room Temp1
Foundry Room Temp 3
Foundry Room Temp 2
Foundry Room Temp 1

Cluster 3: AHUO7A Supply Air Temp Radiant Foundry Verification Rm Temp

AHUO07B Supply Air Temp Canteen Room Temp
Room Finish Temp 4
Room Finish Temp 3
Room Finish Temp 2
Room Finish Temp 1

Room Finish Room Temp 3

Room Finish Room Temp 2

Room Finish Room Temp 1

Room Finish Room Temp

Cluster 4: AHU11 Supply Air Temp Room Manual Inspection Room Temp
Room Manual Inspection Room Temp.1
Room Visual Inspection Room Temp
Room Visual Inspection Room Temp. 1
Ray X Ray Room Temp

Cluster 5: (No AHU in cluster) Room Inspection Sves Rm Temp4
Room Inspection Svcs Rm Temp3
Room Inspection Svcs Rm Temp2

Cluster 6: AHU10 Supply Air Temp Lab Scope Rm Temp
AHUO1 Supply Air Temp Lab Polish Rm Temp
AHU14 Supply Air Temp Lab Mount Cutoff Rm Temp
Room Lab Shell Rm Temp,
Cluster 7: AHUO5 Supply Air Temp Room NPI Room Temp No3
Room NPI Room Temp No2

Room NPI Room Temp No.1

Cluster 8: AHU16 Supply Air Temp Drying Shell Drying Cell Temp Nol
Cluster 9: (No AHU in cluster) Drying Shell Drying Cell Temp No2
Room Shell Room Temp No4
Room Shell Room Temp No3
Room Shell Room Temp No2
Room Shell Room Temp Nol
Cluster 10: AHUO3 Supply Air Temp Room Inspection Sves Rm Temp1
AHUO09 Supply Air Temp Room Wax Room Temp No4
Room Wax Room Temp No3
Room Wax Room Temp No2
Room Wax Room Temp Nol
Cluster 11: AHU12 Supply Air Temp
AHUO04 Supply Air Temp
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