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Abstract
In large buildings, linkingheating, cooling or ventilation systemsbetween themselves and tophysical
spaces is a very time-consuming task that requires highly skilled engineering knowledge, as all these
systems are interconnected and theyhave a certain influence to eachother (ventilation systems are often
connected toheating and cooling), which oftenmakes task of locating the sources of error or anomalies
very time consuming anddifficult as they are performedmanually. Adifferent approachwouldbe towork
out relationships and equipment linkage from time series data providedby the sensors, thus inferring
equipment links fromwhich anomalies canbe tracedback to the sourcemore easily. This paper proposes a
data-based solution toobtain equipment relationships basedon cross-correlations to relateAirHandling
Units (AHUs) to their respective areas of operation.Wealsopropose amethodology, in particular for
AHUs, to identifywhether or not to trust correlations basedon thedifference between supply and return
temperature.A case study is presentedbased a large buildingwith 16AHUsystems.

Nomenclature

AHC AgglomerativeHierarchical Clustering

AHU AirHandlingUnit

ANN Artificial Neural-Network

APAR AirHandlingUnit Performance Assessment Rules

BMS BuildingManagement System

DTW Dynamic TimeWarping

FCU FanCoil Unit

FDD Fault Detection andDiagnosis

GRNN General RegressionNeural-Network

HVAC Heating, Ventilation, andAir Conditioning

MTS Multivariate Time Series

SAT Supply Air Temperature

1. Introduction

BuildingManagement Systems (BMS)present clear advantages for energy control such as identifying locations
of potential energy waste for energy optimisation, decreasing equipment operating cost, providing indoor
environmental safety and comfort throughHeating, Ventilation, andAir Conditioning (HVAC) systems
control, as well as controls of water consumption, elevators, etc. Over the past few years, a lot of efforts have been
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put to control the threemain important aspects of the building: energy consumption, security and comfort. The
schematic infigure 1 represents the a high level overview of the built environment and role of BMS control
signals and information flow,which also takes into account the supply of energy and data from the grid for
demand response events. This figure shows themain building blocks of BMSs, in relation to thewhole smart
building spectrum:

This paper is focused onBMS linkage, which ismainly used for the purpose of failure detection. Thefirst two
experiments are focused onAHU supply and return temperatures with sensor data fromphysical spaces. The
physical spaces for these two experiments correspond to themanufacturing part facility in the ground floor. The
last experiment is slightly different, as supply and return temperatures fromAHUs are linkedwith fan coil units,
which at the same time feed air to a different part of the facility: the office area in thefirstfloor.

The literature has been reviewed in twomain parts: the first one is dedicated to supervised and unsupervised
HVAC equipment linkage for fault detection and diagnosis, as themain purpose of linkingHVAC equipment is
to trace back system failures and to detect system anomalies. The second one to time series clustering, as these are
the kind ofmethodologies that we use to solve this problem.

Whenmobilising a set of building sensors into an analytics platform, BMSpoints are translated into a
naming standard such asHaystack [1] or amore unifiedmetadata schema such as Brick [2], so that the analytics
platform can recognise them, and sensor points can be programmed into rules for energy consumption, systems
linkage, etcwhich requires ametadata framework to form a link between point types, physical spaces and the
linkage ofHVAC components with the purpose of building knowledge relationships. One of thesemethods is
the framework formetadata normalisation Plaster in [3], which requires a certain level of human supervision
such as knowing the point type, location and relationshipwith other equipment parts, specially in large facilities.
Amethodology that works out relationships betweenHVACpoints based on sensor datamay help to reduce
human interactionwhen building this framework.

Ventilation is one of themajor areas of electricity consumption. In large industrial facilities, AirHandling
Units (AHUs) are key consumption points. As represented infigure 2, several units are also involved in AHUs,
such as electric fans, humidifiers (in someAHUs), heating and cooling, which interact with other systems, such
as boilers, cooling systems, etc. Therefore, controlling AHU’s parametersmeans to control a significant part of

Figure 1. Schematic of BMS.

Figure 2. Schematic of AHU.
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electricity consumption, as this is a point where other systems converge. The goal of this paper is to infer
relationships betweenAHUs and both building areas and otherHVACparts for largemanufacturing facilities
using only time series data.

Other studies have presented novelmethodologies to infer relationships betweenHVAC components of
large commercial buildings such as [4], that utilises perturbations of subsystem variables to reveal correct
associationswith a 76% success. The authors state that statisticalmethods are not good for this problem,
however they only use correlations between variables and they don’t testmore complex statistical related
methodologies. [5] uses a series of supervised learningmethodologies to infer point type from sensor data, as
well as to control perturbations to verify relationships betweenHVAC systemparts [6]. Studies a comparison
between different supervised learningmethodologies, inferring equipment characteristics from time series
features. The case study presented in our paper proposes a systemwith old infrastructures where no
documentation nor prior knowledge is available, therefore a supervised learning classification approachwould
not be of use. Inputs and outputs are knownbut, in order to verify such outputs, verification from experienced
engineers has been necessary in order to compensate the lack of documentation, which has been awork that
lasted several weeks. Similarly, [7] uses supervised classification to infer AHU-VAV links by first extracting
statistical features from the data and then random forests for eachVAV. A study offering relationship between
equipment parts according to physical spaces andwithminimal intervention is presented in [8], which converts
time series into frequency domainwith short-time Fourier transformation operator, that contains implicit
information about changes. Then it wraps them in time dimension by using dynamic timewarping and a pre-
defined timewrapping function.

As a part of this study,we consider that themethodology applied couldbeuseful for diagnosis of systemerrors,
which are defined after establishing normalworking conditions of the systemaccording to the clusters.When there
is a significant number ofAHUs and the temperature gets outside a comfort policy, the origin of this failure canbe
very difficult to trace back. ForAHU fault diagnosis somepreviouswork has been reported in the literature [9].
Describes the applicationofArtificialNeuralNetworks (ANNs) to theproblemof fault diagnosis in anAHUby
using residuals of systemvariables to quantify the dominant symptoms of faultmodes of operation. Following the
same approach, [10]proposedAHUsubsystem level fault detectionusing aGeneral RegressionNeural-Network
(GRNN), residual generation and fault detection anddiagnosis. Anovel feature extraction technique to extract
temperature andpower associated features fromhigh-dimensional andunstructured terminal unit data is
presented in [11], to diagnose faultyHVAC in an automatic and remotemanner. Theuse ofAir handling unit
PerformanceAssessmentRules (APAR)was exercisedby [12]. They use control signals to determine themodeof
operationof theAHU.A subset of expert ruleswhich correspond to thatmode is then evaluated to determine
whether a fault exists. In the reviewof fault detection anddiagnosismethodologies carried by [13], various Fault
Detection andDiagnosis (FDD) are described to illustrate the use of evaluation standardparameters for improving
theperformanceofAHUs.Thiswork divides FDDs in threemain categories, namely analytical-basedmethods,
knowledge-basedmethods, anddata-drivenmethods. In amore recent study, [14]proposes amethod that
employs sequential two-state clustering to identify abnormal behaviour of the fan coil unit. Someother recent
studies onHVACsystems fault detection anddiagnosis can be seen in [11, 15, 16].

Themethodologies for detecting failures of AHUs have the specificity of using either control signals or the
internal parameters of theAHU itself. In large facilities, we link different physical spaces with their
correspondent control systems to detect the sources of deviation from the prescribed conditions. There is
growing need of understanding and extracting value from sensor data, specially in large spaces where the
amount of AHUs and of time series data provided by the different sensors can create confusionwhen looking for
links between different equipment units. So the real problemwe aim to solve is to add clarity about equipment-
spaces linkage and therefore, to create real value from sensor data.

This sensor data linkage is done by studying similarities between the time series data, and by clustering them
based on these similarities [17]. States thatfinding the clusters of time series can be advantageous in different
domains for anomaly, discord detection, recognising dynamic changes in time series, prediction and
recommendation and pattern discovery. The problemwe studyfits into the pattern detection category, as we aim
to detect similarities between time series to identify links between assets.

One of thewidely usedmetrics for time series similarities is Dynamic TimeWarping (DTW). One of the
pioneer works, [18] describes experiments with this dynamic programming approach to the problemof pattern
detection [19]. Demonstrates thatDTWcould be used forminingmassive data sets faster thanwith euclidean
distance [20]. Designs an approach that penalizes points with higher difference between a reference point and a
testing point in order to preventminimumdistance caused by outliers.

Some other distancemetrics have proven successful for pattern detection in time series data. Integrated
periodogramdistance [21] presents ametric based on different dependencemeasures to classify time series as
stationary or non-stationary. Simulations results proved that the logarithmof the normalized periodogram and
themetric based on the autocorrelation coefficients can all distinguish ARMAandARIMAmodels, which does
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not happenwith the classical Euclidean distance. Lasso-based approaches are alsowidely used for time series
grouping. As an example, [22]proposed a two-step Lasso procedure formultiple change-point estimation in
time series. [23] used LASSO-Patternsearch algorithm for detecting disease-causing genes. [24] decompose high
dimensionmultivariate time series (MTS) into smaller dimensionMTSwhich are relatively independent of one
another, based on correlation between the variables.

In recent years, several studies have been done in the field of time series clustering, such as [25], which
presents a time series clustering approach for building automation and control systems. This work uses
unsupervisedmachine learning algorithms to improve supervised classification by addingmore robust features
compared tomanual selection [26]. Compares a set of recurrent neural networks on groups of similar time series
for clustering, showing that long-short-termmemory neural networks present a good result for this purpose as
well. Other recent works on time series clusteringmethodologies and applications can be seen in [27, 28].

In this paper, we apply clustering techniques to relate AirHandlingUnits (AHUs) to their respective areas of
operation. In section 2we explain themethodology, and introducemethods and similaritymeasures. In
section 3we describe the data of this case study and introduce the concept of difference in temperature for
testing hypothesis. Later in section 4we design the experiments. Finally, we present the conclusions in section 5.

2.Mehodology

The goal is to partition a set of data objects into homogeneous groups or clusters usingmachine learning
techniques, in order to group similar sensor time series together depending onwhich of the three experiments.
Partition is performed in such away that objects in the same cluster aremore similar to each other than to objects
in other clusters.Wemake this differentiationwith correlations. In this work, several time series data clustering
metrics are tested, namely correlations, dynamic timewarping and integrate periodgramdistance.We use these
metrics to perform agglomerative hierarchical clustering and thenwe test a different clusteringmethodology:
Graphical Lasso.

2.1. Graphical Lasso
In [29], the problemof estimating sparse graphs, graphswith only few edges, by a lasso penalty to the inverse
covariancematrix is considered. Let us consider the casewhereX1, ...,Xn are independent and identically
distributedNp(μ,Σ) and being the estimated precisionmatrix, which is the inversematrix from the covariance
matrix, denotedΩ≡Σ−1. This function solves the following optimisation problem:

ˆ { ( ) ( ) ∣∣ ∣∣ } ( )W = W - W + Wl WÎ +
argmin Tr S detObjective: log 1S 1P

where tr is the trace,λ>0 and the penalisation parameter ∣∣ ∣∣ ∣ ∣W = å Wi j i j1 , , is the L1-NormofΣ (Lasso
regularisation parameter). In order to provide useful information, this problemproposes tomaximise the
penalized log likelihoodwith respect toΩ, so the nodes are not fully connected and the connections kept on each
cluster have useful information concerning the relationships of time series on each cluster. This happens because
Lasso regularisation parameter shrinks the less important features coefficient to zero, removing lessmeaningful
coefficients. The algorithm employed to solve this problem is theGLasso algorithm,which is explained in [29],
where they consider the problemof estimating sparse graphs by a lasso penalty, which is the penalty applied to
non-zero coefficients by the sumof their absolute values, applied to the inverse covariancematrix.

With this estimate of the inverse of the correlationmatrix, we have the partial independence relationship. If
two features are independent conditionally on the others, the corresponding coefficient in the inverse of the
covariancematrix would be zero, as it learns independence relations from the data, instead of being a distance
measure itself between time series.

According to the authors of the implementation package in ‘scikit-learn’ in [30], the search for the optimal
penalization parameter is done on an iteratively refined grid: first the cross-validated scores on a grid are
computed, then a new refined grid is centred around themaximum, and so on.One of the challenges here is that
the solvers can fail to converge to awell-conditioned estimate. The corresponding values of alpha then come out
asmissing values, but the optimummay be close to thesemissing values.

2.2. Agglomerative hierarchical clustering
AgglomerativeHierarchical Clustering (AHC), has a long history, especially in taxonomy or classificatory
systems, and phylogenetics [31, 32]. Further studies generalised this algorithm, [33], and have further developed
and improved [34, 35].

Base on the definition given in [36], the goal of hierarchical clustering is to create a sequence of nested
partitions or clusters, which can be conveniently visualised via a tree or hierarchy of clusters, also called the
cluster dendrogram. InAHC, it starts with each of the n points in a separate cluster, and thenmerging the two
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closest clusters until all points aremembers of the same cluster. Algorithm1 shows this procedure, with
{ }=D x x,..., n1 , where Î x i

d, a clustering ζ={C1, ...,Ck} is a partition of D.

Algorithm1.AgglomerativeHierarchical Clustering (D, k), reproducedwith permission from [36]:

1 { } ∣ ∣z ¬ = ÎC x x Di i i ; //Eachtimeseriesisinaseparateclusterinitially

2 { ( ) }dD ¬ Îx x x x D, : ,i j i j ; //Computematrixwithdistances

3repeat
4 Find the closest pair of clustersCi,Cjä ζ ;

5  È¬C C Cij i j ; //Mergetheclusters

6  ( ⧹ { }) { }Èz z¬ C C C,i j ij ; //Updatetheclustering

7 Update distancematrixΔ to reflect new clustering;

8until∣ ∣z = k

Different distancemeasures between time series can be used for clustering: pearson’s correlation coefficient,
dynamic timewarping and integrated periodogramdistance.

2.2.1. Pearson’s correlation similarity
Let [ ]=x x x x... L

T
1 2 and [ ]=y y y y... L

T
1 2 be two zero-mean real-valued randomvectors of length L. As

described in [37], the Pearson’s correlation coefficient between x and y is

( ) ( )
( ) ( )

( )r =x y
E x y

E x x E y y
, . 2

T

T T
2

2

WithE being the expected value. According to the ‘tsclust’ package documentation in [38], which is the one
used for the purpose of this study, two differentmeasures of dissimilarity between two time series based on the

estimated Pearson’s correlation can be computed. These can be ( )r= -d 2 11 or ( )= r
r

b-
+

d2
1

1
, whereβ

specifies the regulation of the convergence.

2.2.2. Dynamic TimeWarping
DTWhas the basic idea behind that the sequences are extended by repeating elements and the distance is
calculated between extended sequences. Therefore, DTWcan handle input sequences with different
lengths [39].

Let [ ]=x x x x... r
T

1 2 and [ ]=y y y y... s
T

1 2 be two time series, where lengths r and s are not necessarily equal.
LetM be an r×smatrix with the (i, j) element containing the squared Euclidean distance between two points xi
and yj. Each element (i, j) inM corresponds to the alignment between two points xi and yj. Let =W w w w, ,..., k1 2

be awarping path, where the kth elementwk=(ik, jk). Then < + -r s K r smax , 1with thewarping paths
having the following restrictions:monotonicity, continuity and boundary conditions. There are exponentially
many paths that satisfy these conditions, being the optimal path the onewhichminimizes thewarping cost [40]:

( )
( )

( )
å å

= == =
DTW x y

w

K

d x y

K
,

,
, 3l

K
l l

K
i j1 1 l

l

where (il, jl)=wl for l=1, 2,K,K. Then the optimal path can be found through dynamic programming
according to ( ) ( ) ( ) ( ) ( )g g g g= + - - - -i j d x y i j i j i j, , min 1, , 1, 1 , , 1i i , where γ(i, j) is the dynamic
timewarping distance between the sub sequences x1, x2, ..., xi and y1, y2, ..., yj.

2.2.3. Integrated PeriodogramDistance
The distance based on the normalised periodogramwas introduced in [21]. Let ( ) ( )∣ ∣= å =

-P w n x e1x j t
n

t
itw

1
2j

and ( ) ( )∣ ∣= å =
-P w n y e1y j t

n
t

itw
1

2j be periodograms of time series x and y, respectively, at frequencies
[ ]p= = ¼w j n j n2 , 1, , 2j in the range 0 toπ, [n/2] being the largest integer less or equal to n/2.We are

interested only on its correlation structure, so it is better to use normalized periodogramdefined by
( ) ( ) ĝ=NP w P wj j , where ĝ is the sample variance of the time series. Also, since the variance of the

periodogramordinates is proportional to the spectrumvalue at the corresponding frequencies, logarithms can
be taken and therefore, the distance between x and y can be defined by

( ) [ ( ( )) ( ( ))] ( )
[ ]

å= -
=

d x y NP w NP w, log log . 4LNP
j

n

x j y j
1

2
2
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Knowing that the periodogramhas the equivalent representation ( ) [ ˆ ˆ ( )]åg g= + =
-

P w cos w k2j k

n
k j0 1

1
, where

ĝk is the sample autocovariance function (definedwithmore detail in [41])which, according to the authors,
leads to

⎡
⎣⎢

⎤
⎦⎥( ) ( ˆ ˆ ) ( ˆ ˆ ) ( ˆ ˆ ) ( )år r r r r r= - + + - = -- -

=

-

d x y n, 16
1

4
...

1

4
2 . 5NP x y n x n y

k

n

k x k y1, 1,
2

1, 1,
2

1

1

, ,
2

2.3. Implementation
For the implementation of the AHCmethodologies (Pearson’s correlation similarity, dynamic timewarping and
integrated periodogramdistance), R packageTSclust has been used [38]. For lasso clustering, package Scikit-
Learn fromPython version 3.7 has been used [42].

3. Problem anddata description

The building used in this case study is a largemanufacturing facility that consistsmainly onmanufacturing
facilities in the ground floor (AHUvs physical spaces experiments 1 and 2), and office spaces inthefirstfloor
(AHUvs FCU experiment 3).

3.1. Experiments 1 and 2:Manufacturing facility (Groundfloor)
Themanufacturing part is comprised of several spaces, every space dedicated to a part of the process, as this is an
automotivemanufacturing plant. In terms of cooling, heating and ventilation systems, the building has 3
chillers, 6 boilers, 6 fan coil units and 16multi-speed fanAHUs. As the focus of this paper are AHU systems, the
actual linkage betweenAHU-space and type can be seen below in table 1. Some of the AHUs have been discarded
due to the lack of sensors in their respective areas of influence, whichmakes them irrelevant to this study.

We based our experiments on ground truth table 1. The data has been extracted directly from the
manufacturer for every AHU individually [43], technical specifications include also dimensions of boxes and
specs. ofmotors, fans, thermal wheel (if applicable), coils, etc. The data set comprises BMS sensor records. Every
sensor is taggedwith a specific name describing the company and followed by building location and subset
(Ventilation,Metering, Cooling,Heating, Globals, Terminals and Lighting).

The building used for this case study is a Rolls Royce plant located in Rotherham,with 1639BMSpoints in
total. The period chosen for this study is June to July 2018 (30 days). The facility comprises twomain areas: the
production plant on the groundfloor and the offices in the upper floor.

Time series data provided by sensor points is not often reliable and there are data gaps to befilled, units to be
removed, and anomalies, which are bits of datamisplaced between points because of extraction. The used data
points are:

• AHUSupplyAir Temperature (SAT)points: These pointsmeasure the temperature of the air supplied to
the area. There is one of these points per AHU.

Table 1.Ground truth of AHUs of themanufacturing facility for experiments 1 and 2, their associated areas of influence and the number of
temperature sensors in such areas. AHUs’ temperatures are controlled by the average value of the temperature sensors located in their
respective areas, with a data resolution of 10minutes.

AHU Associated zone Control strategy N. of temperature sensors in the zone

AHU01 Lab rooms Avg. room temp—Fixed set point 4

AHU02 Support room Avg. room temp—Fixed set point 3

AHU03 Wax room Avg. room temp—Fixed set point 4

AHU04 Shell room Avg. room temp—Fixed set point 4

AHU05 NPI room Avg. room temp—Fixed set point 3

AHU06 Clean room AHUReturn temp—Fixed set point 0

AHU07A/7B Foundry area Avg. room temp—Fixed set point 8

AHU09/10 Finish room Avg. room temp—Fixed set point 4

AHU11 Inspection/X-Ray rooms PI control loop—variable set point 5

AHU12 Canteen Avg. room temp—Fixed set point 1

AHU14 Pre-fire room Avg. room temp—Fixed set point 2

AHU15 Fresh airmake-up unit Fixed supply temp 0

AHU16 Shell rooms Avg. room temp—Fixed set point 2
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• AHUReturnAir Temperature (RAT)points:These pointsmeasure the temperature of the air extracted from
the space prior to re-circulation or disposal.

• Room temperature points: Sensors are located in each room tomeasure temperature. There are between 1
and 4 sensors located on each room, and consists of averages of the sensors.

• FanCoil Unit (FCU) room temperature:Output temperature of FCUs. This piece of equipment is connected
(or close to) anAHU, andwe define the relationships in one of the experiments below.

3.2. Experiment 3:Office spaces (Firstfloor)
The office spaces contains themeeting rooms and common spaces such as restaurant, canteen, kitchen,
changing roomand open spaces. In this experiment we establish correlations-based relationships of these two
types of equipment. This correlations studywould illustrate theway inwhich different equipment types are
linked, so themain influence areas are clearly defined. A schematic is shown infigure 3. In this case study
building, FCUs feed air to specificmeeting rooms in the office above themanufacturing facilities.

Differentmeeting rooms receive the following generic names:Rhenium,Tugsten,Nickel,Cobalt,Tantalum
and the gym. Themain goal of this experiment is to link the respective rooms, each being fed by a different FCU,
with their closest AHUunit’s area of influence, being the AHU’s the same ones as in experiments 1 and 2.

4. Correlations experiments using real building sensor time series

Weperform various experiments to relate AHUswith their respective work spaces, as well as FCUswith their
respective AHUs. In experiment 1, we perform a comparison of the performance for different clustering
techniques in a controlled experiment consisting of only a small part of the facility. Then the best performing
methodologies from experiment 1 are used in experiment 2 for thewhole facility. Experiment 3 shows a
different clustering focus, linking a different piece of equipment, fan coil units, with their respective areas of
influence.

Figure 3. Schematic of AHUs and FCUs linkage.
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4.1. Linkage significance and difference in temperature
In order to test if the correlations are reliable, we need to ensure their significance. If the link between room
sensors and SAT is established, the internal difference in temperature is an important factor to take into
consideration to define this significance. All spaces in the facilitymay generate heat internally (kitchen,
manufacturing process, people, computer equipment, etc.)which couldmake difficult identification of spaces
with their respective AHUs. This is whywemeasure this internal disruption in the first place, and then gradually
add complexity to the clustering.

For this purpose, the difference between supply and return air temperature has been taken into account,

∣ ∣ ( ) ( )◦D = -T SAT RAT C . 6

Table 2 represents themean, variance,minimumandmaximumvalue of the element-wise difference
between supply and return air temperatures for eachAHU.

Table 2 shows that someAHUs, such as 6, 7A, 7B, 9 and 10 present amuch highermean value of their
difference in supply and return temperatures. However it can be seen that the variance in some of them is not
very high,meaning that the highmean difference in temperature is stable. Probably one area has been constantly
influenced by other areas. On the other handwe canfind areas with a relatively lowmeanwith a high variance,
meaning that the physical space presents temperature disruptions very often. The reason to choose this value is
that the clustering algorithms fail in linking AHUswith sensors above an approximate difference in temperature
of 8 degrees Celsius in experiment 2.

These values are to be used as ameasure on howmuch the definedAHU linkage can be trusted, therefore we
decide to test the following hypothesis: we define a limit for themean difference in temperature as 7.5, above
which the clustermay not be reliable as the internal heat disruptionmay be too high sowe are not able to ensure
that the cluster is comprising these points is correct.

4.2. Experiment 1: Linking three AHUs tofive different rooms
For thefirst experiment, three AHUs have been selected.We chose, according to table 2, the oneswith a
relatively lowmean and variance thus, the oneswith a lower internal difference in temperature. Also it is
necessary to validate how good the solution is, so the site engineers are consulted on the roomnames towhich
the AHUs are supplying air to. The chosenAHUs and corresponding rooms are:

• AHU05 supplying air to the ‘NPI room’

• AHU11 supplying air to the ‘Visual inspection’, ‘Manual inspection’ and ‘XRay’ rooms

• AHU16 supplying air to the ‘Shell drying’ room

We apply themethodologies discussed to this first experiment and later we compare our results with the real
connections. In a properly clustered group, the AHU’s SAT should be in the same group together with their
corresponding space temperature sensors. The dendrograms correspond to the AHCmethodologywith the
three distancemetrics. AHCcan be represented as a dendrogrambecause the algorithmprogressively separates
the clusters based on the different distancemetrics until all the points form a separate cluster. For this reason, the

Table 2.Mean, variance,minimumandmaximumvalue of the difference
between supply and return air temperature (Co).

AHUnumber Mean Variance MinValue MaxValue

AHU01 2.39 7.25 0.00 11.30

AHU02 6.20 14.37 0.01 13.45

AHU03 8.01 0.90 0.48 14.62

AHU04 2.87 0.97 0.02 8.47

AHU05 3.74 0.63 0.04 10.89

AHU06 3.97 0.75 0.06 6.20

AHU07A 17.16 1.06 12.92 20.18

AHU07B 15.49 1.13 12.28 18.34

AHU09 10.37 1.40 8.23 14.86

AHU10 10.12 1.59 6.69 13.80

AHU11 2.28 0.98 0.00 4.99

AHU12 3.50 5.50 0.00 10.69

AHU14 8.09 17.38 0.00 15.61

AHU16 1.04 0.56 0.00 7.90
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lasso clusteringmethodology is represented separately in table 3, as this algorithmdoes not respond to this type
of representation because the search for the optimal penalisation parameter is done in an iteratively refined grid.

For the experiments, we assume thatwe know already that the BMSpoints belong to the different AHU
systems and room temperature sensors.What we assume not to knowbeforehand arewhich of the 13AHUs is
associatedwithwhich of the 11 physical spaces.We know the parent-child relationship once theAHUhas been
associatedwith its corresponding physical space.

In the dendrograms, a distance between clusters has been chosen to the best convenience. The distance
chosen determines which branches below that distance form a cluster. The same distances are used later in the
experiment with thewhole building evaluation. An ideal cluster should contain the AHU sensors togetherwith
their respective temperature sensors within the same. Figures 4–6 show the clustering results of the different
distancemetrics in the formof a dendrogram.

The fact that theAHUs’ SAT belongs in the same cluster as their respective room temperature sensorsmeans
in the case of AHC that, in the lowest levels of the dendrogram, the time series are closer (in terms of the chosen
distance) to each other, and form groups that aremore distant to each other as the branches go up. In the case of
graphical lasso, itmeans that the elements corresponding to the estimated inverse of the covariancematrix are
zero between groups of time series data or clusters, thus forming groupswith the time series data that present the
most similar number of common features.

Figure 4 shows that correlations-based AHC clusters AHU05 andAHU11 properly with their corresponding
temperature sensors. AHU16 is in a cluster together with one of its sensors, however the other sensor is excluded,
thus forming a separate cluster. Figure 5 shows the same clusteringmethodology but based onDTW.On this, it
can be seen that the clusters do not respond to the logic of the physical connections, independently of the
distance chosen to form the clusters. Similarly infigure 6 the clusters do not respond to the ideal behavior either.
In table 3we show the results of lasso clustering. In this case, the clusters respond to themost ideal behavior. The
three AHUs are properly linked to their respective temperature sensors within the same cluster.

Results have been summarised in table 4. The percentages are obtained based on the rate of room
temperature sensors containedwithin the cluster with their corresponding AHUeach. For instance, correlations
AHCclusters elements properly withinAHUs 05 and 11 butmissed one of the two elements in cluster
containing AHU16. The one showing the best results is the graphical lasso clustering, properly grouping AHUs
with their respective areas of influence. This performance is followed by correlations clustering.

Now that themethodologies that performbest have been proved, we are proceedingwith themboth for the
next experiment.

4.3. Experiment 2: Linking all AHUs to rooms (whole building evaluation)
In experiment 2, we use the two best performingmethodologies discussed in section 4.2, Pearson’s distance-
basedAHCand lasso clustering, with all AHUs and all temperature sensors within the building.We can see the
dendrogram as a result of Pearson’s correlation distance-based AHC figure A1, and the results for lasso
clustering in table A1 in the appendix. In the results of the Pearson’s correlation distance-based AHC shown in
figure A1. Correct clusters are considered by using the same distance to analyse the clusters as in experiment 1.
As an example for correct cluster,figure A1 shows that AHU01 is containedwithin the same branch levels as the
four lab rooms, as expected. Similarly, AHU07A andAHU07B are clusteredwith the Foundry area. Other areas
such as Finish rooms,Wax rooms and the canteen, they are in different clusters with respect to their AHUs.
Interestingly, we observe that the related rooms are usually found together in the lowest level of the branches.
Another observation is that AHUs that share common spaces are also clustered together, such as AHU07A and

Table 3. Lasso clustering results

AHU in cluster Room temperature sensors in cluster

Cluster 1: AHU05 SupplyAir Temp RoomNPIRoomTempNo3

RoomNPIRoomTempNo2

RoomNPIRoomTempNo.1

Cluster 2: AHU16 SupplyAir Temp Drying Shell DryingCell TempNo2

Drying Shell DryingCell TempNo1

Cluster 3: AHU11 SupplyAir Temp RoomManual Inspection RoomTemp

RoomManual InspectionRoomTemp.1

RoomVisual InspectionRoomTemp

RoomVisual Inspection RoomTemp.1

RayXRay RoomTemp
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AHU07B. In the results of lasso clustering in table A1, as in experiment 1, we used two columns to separate
AHUs and room temperature sensors within the same cluster. Some of the clusters only group room
temperature sensors, but noAHUSAT is present, as is the case of clusters 2, 5 and 9.On the other hand, clusters
with only AHUs and no temperature sensors are observed in cluster 11. AHU06 is discarded for the lack of
sensors in the room.

As defined in section 4.1, we set a limit value of 7.5 for the difference between SAT andRAT. Below in table 5
we summarised the results obtained. The table describes the result, the average difference in temperature,
confirmation/denial of linkage successful in the appropriate category and the issue associatedwith the AHU if
applicable.

• Issue (a): Open plan space. Heat exchange occurring between nearby rooms.

Figure 4.Experiment 1: Correlations basedAHCwith small subset of 3 AHUs. The number above indicates the incremental distance
between clusters according to thismetric.

10

Eng. Res. Express 2 (2020) 045003 J JMesa-Jiménez et al



• Issue (b): TheAHU is enabled and demand is 100% cooling near constantly but is having no effect on setpoint
(the temperature value set) or is not enough to cool to the set-point. This implies the AHU is notmechanically
sound or capable tomeet requirements but onsite investigationwould confirm this.

Table 5 shows the results of this experiment. The performance of bothmethodologies is very similar,
except that lasso fails to cluster wax roomswith their respective temperature sensors. In general, we can say
that correlations based AHCperforms better than graphical lasso in terms of number of sensors belonging to
the correct cluster. 70% reveals that thismethodology discovers underlying physical patterns between AHUs
and their respective spaces. Also, it can be observed that the AHUswith ameanΔT above the set-up limit fail
to predict thematches between AHUs and physical spaces in general, although exceptions can be seen in
graphical lasso and AHU03. AHUs 07 A and B are in the same branch as their respective sensors in the AHC

Figure 5.Experiment 1:Dynamic timewarping basedAHCwith small subset of 3 AHUs. The number above indicates the incremental
distance between clusters according to thismetric.
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Figure 6.Experiment 1: Integrated periodogramdistance basedAHCwith small subset of 3 AHUs. The number above indicates the
incremental distance between clusters according to thismetric.

Table 4.Distance between cluster chosen for eachAHCmetrics and success rate for both lasso
andAHC.

Clusteringmethodology
Hierarchical clustering

Lasso

Distancemetrics Correlations DTW IPD —

Clusters distance limit 1.4 10 000 150 —

AHU05 3/3 (100%) 0/3 (0%) 0/3 (0%) 3/3 (100%)
AHU11 5/5 (100%) 0/5 (0%) 1/5 (20%) 5/5 (100%)
AHU16 1/2 (50%) 2/2 (100%) 0/2 (0%) 2/2 (100%)
%sucess sensors 90% 20% 10% 100%
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technique. AHUs 2 and 12 have a very high variance (as shown in table 2), which does not seem to affect the
performance of the algorithms in the case of AHU2. For AHU12, bothmethods fail to predict its only sensor
with the canteen.When looking at its variance, it seems to be higher than other AHUs, as the canteen is
crowdedmainly during lunch time. This, together with the fact that its only sensormay bemisplaced, could
explain this issue.

Wewanted to test the hypothesis of the difference in temperature having a determinant effect on obtaining
these relationships. In the case of AHU07A&B and despite being an open space, correlations-based AHChas
been able to properly identify all 8 sensors in thismore challenging case. Thereforewe conclude this hypothesis
cannot be confirmed or the experiment is insufficient.

4.4. Experiment 3: LinkingAHUwith FanCoil Units (FCUs)
Themain goal of this experiment is to link the respective rooms, each being fed by a different FCU,with their
closest AHUunit. The strength of these links has been defined by the Person’s correlation coefficient, with high
showing a strong, very likely correlation,medium showing amoderate strength and low aweak link. These
relationships are shown per FCU, and the links of these with all (if any) of the correlated AHUs. This is
summarised in table 6.

We conclude from correlations that themost influential AHUs to the FCUs are AHU01, 02 and 13.Without
having information about the equipment links, we have some degree of confidence to discard low-flagged
category AHUs. After validationwith the engineers, we found out that AHU02 is the one that has the highest
influence over these areas. Therefore, we uncovered some other potential dependencies from the supply air
temperatures of AHUs 01 and 13 to some of the rooms (Nickel,Tugsten andGym for AHU01 andCobalt,
Rhenium andTantalum for AHU13).

5. Conclusions

In this paper, we propose a solution to obtain equipment relationships based on data correlations and clustering
that relate AHUs to their respective areas of operation. This is an important industrial challenge that requires a
smart solution.

Graphical lasso and correlations-based AHC are the two best performing techniques in the first three
experiments. In the first experiment, lasso clustering proved slightly better than correlations distance-based
AHC. In the second experiment, however, their performance is quite similar, with few differences onWax and
Shell rooms butwith the same number of successfully clustered elements. Experiment 3 shows satisfactory
results as the physical spaces linked to the FCUs correspondwith the real case. This approach allows to quickly
scan the system, as oneAHUcan be connected tomore than one FCU, being in the same area of influence in the
case they are not directly attached.

Thismethodology can be generalised to large buildings with a similar problem. The system could potentially
input labeled time series data corresponding to sensors and output the clusters. Although the accuracy is not

Table 5. Summarised results of experiment 2.

AHU MeanΔT Associated room

Success rate AHC

(Correlations)
Success rateGraphi-

cal lasso Reported issue

AHU01 2.39 Lab rooms 4/4 (100%) 4/4 (100%) N/A

AHU02 6.20 Support room 3/3 (100%) 3/3 (100%) N/A

AHU03 8.01 Wax room 0/4 (0%) 4/4 (100%) N/A

AHU04 2.87 Shell room 4/4 (100%) 0/4 (0%) N/A

AHU05 3.74 NPI room 3/3 (100%) 3/3 (100%) N/A

AHU07A/

AHU07B

17.16/
15.49

Foundry area 8/8 (100%) 1/8 (12.5%) (a)

AHU09/AHU10 10.37/
10.12

Finish room 0/4 (0%) 0/4 (0%) (b)

AHU11 2.28 Inspection/x-ray

rooms

5/5 (100%) 5/5 (100%) N/A

AHU12 3.50 Canteen 0/1 (0%) 0/1 (0%) (b)
AHU14 8.09 Pre-fire room 0/2 (0%) 0/2 (0%) N/A

AHU16 1.04 Drying rooms 1/2 (50%) 1/2 (50%) N/A

%Sensors clustered correctly 70% 52.5%
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100%, this data-driven approach removes weeks of engineering visits to the facility to establish these
relationships by hand and looking at the documentation. By applying thismethodology, it becomes quite
straightforward to establish a first step towardsmore advanced analytics or to determine a standard naming
system that encompasses parent-child relationships.

This top-down perspective aims not to use internal parameters of AHUs and other BMS information, but
instead their direct output. Systems internal information is less likely to be available in comparison to the room
temperature sensors which are commonly installed, but the hardware connections are not documented. The
most recent evolution in smart buildings implies the installation of a significant amount of sensors in large
facilities, so this creates the necessity of generating real value from the data through datamining. Time series
clustering can be used on a daily basis by the site engineers who need to trace back faults without the need of an
extensive installation information on that particular building.
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Table 6.AHUand FCUs linkage. Numerical associationwith correlation
and the degree of stregth defined by flag category.

AHU FCULinked

Pearson’s correlation

coefficient Linkage

AHU01 Nickel 0.68 Medium

Tugsten 0.34 Low

Gym 0.29 Low

AHU02 Nickel 0.89 High

Cobalt 0.51 Medium

Tugsten 0.51 Medium

Rhenium 0.48 Medium

Tantalum 0.05 Low

AHU04 Cobalt 0.14 Low

Nickel 0.11 Low

AHU07A Tugsten 0.25 Low

Nickel 0.24 Low

Gym 0.06 Low

AHU07B Nickel 0.20 Low

Tugsten 0.14 Low

Gym 0.06 Low

AHU09 Nickel 0.02 Low

Gym 0.01 Low

AHU10 Nickel 0.07 Low

Tugsten 0.04 Low

Gym 0.02 Low

AHU11 Cobalt 0.06 Low

Rhenium 0.02 Low

AHU13 Cobalt 0.55 Medium

Rhenium 0.45 Medium

Tantalum 0.16 Low

AHU16 Cobalt 0.08 Low

Tantalum 0.03 Low

Rhenium 0.02 Low
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Appendix. Experiment 2figures:Whole building evaluation

Figure A1.Experiment 2: Correlations basedAHC clusteringwith the complete set of AHUs in the facility. The number above
indicates the incremental distance between clusters according to thismetric.

TableA1.Experiment 2. Lasso clustering results.

AHU in cluster Room temperature sensors in cluster

Cluster 1: AHU02 SupplyAir Temp Support Rm3Temp

Support Rm2Temp

Support Rm1Temp

Room Inspection Svcs RmTemp1
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