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Abstract—In this paper, we address robust precoding in high-
frequency (HF) skywave massive multiple-input multiple-output
(MIMO) systems with imperfect channel state information (CSI).
We first employ a sparse beam based a posteriori channel
model and demonstrate that robust precoding can be efficiently
solved in the Slepian transform domain with a large number
of base station (BS) antennas. Next, we introduce two Slepian
transform based robust precoding methods, including a joint
approach that leverages inverse fast Fourier transform (IFFT) for
reduced complexity with a large number of user terminals (UTs).
We then establish a local optimum for the Slepian transform
domain robust precoder (STRP) design using the majorization
minimization (MM) algorithm, taking advantages of HF skywave
massive MIMO channel sparsity and Slepian sequence properties.
Further, two distinct designs are presented: separate STRP
(SSTRP) and joint STRP (JSTRP). Simulation results confirm
the effectiveness of proposed robust precoders, showcasing their
excellent ergodic sum-rate performance and low complexity.

Index Terms—Massive MIMO, HF skywave communications,
robust precoding, Slepian transform.

I. INTRODUCTION

THE future of wireless networks aims to offer high-data-
rate global services, even in remote areas [1]. High

frequency (HF) skywave communications, operating in the
3 to 30 MHz range, facilitate beyond-line-of-sight commu-
nications through ionospheric refraction [2]. Traditional HF
skywave systems, however, are limited by lower data rates
in single-input single-output configurations. The adoption of
massive multiple-input multiple-output (MIMO) technology, a
cornerstone of 5G systems, significantly boosts sum-rate and
spectrum efficiency by employing numerous antennas at the
base station (BS) to serve multiple UTs [3]–[5]. Integrating
massive MIMO into HF skywave communications, as shown
in [6], markedly improves spectral and energy efficiency in
these systems.

In massive MIMO downlink (DL) transmissions, precoder
design is crucial for boosting sum-rate performance. In en-
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vironments where the ionosphere changes slowly and UTs
move at lower speeds, HF skywave massive MIMO chan-
nels are quasi-static [7]. This enables leveraging instanta-
neous DL channel state information (CSI) at the base station
(BS) in time-division duplex (TDD) mode. Consequently,
precoders such as signal-to-leakage noise ratio (SLNR) [8],
minimum mean-squared error (MMSE) [6], and weighted
MMSE (WMMSE) [9] are applicable. However, under rapidly
changing HF skywave channels, due to a disturbed iono-
sphere [2] and high UT mobility, perfect instantaneous DL
CSI at the BS becomes unattainable. In these scenarios, the
channel varies symbol by symbol, impacting precoding in
data segments. Precoders designed for slowly-varying statis-
tical CSI or imperfect DL CSI are then utilized [10]–[13].
Despite this, precoders using statistical CSI in quasi-static
scenarios [10] show limited efficacy, and the independent
and identically distributed (i.i.d.) assumption for channels is
inaccurate in spatially correlated HF skywave massive MIMO
contexts [11]–[13].

In massive MIMO systems, it’s essential to tackle chal-
lenges such as channel estimation errors, channel aging, and
spatial correlation. A robust precoding technique, based on
the a posteriori channel model and utilizing the majorization-
minimization (MM) algorithm, has been established to effec-
tively reduce multi-user interference and improve sum-rate
performance [14]. Advanced strategies have also emerged,
including robust precoding through matrix manifold optimiza-
tion [15] and deep learning based approaches [16]. However,
these techniques become complex with an increasing number
of base station (BS) antennas, primarily due to their operation
in the spatial domain. To counter this complexity, the beam do-
main robust precoder (BDRP) for HF skywave massive MIMO
has been introduced [17], significantly reducing complexity by
utilizing the sparsity of beam domain channels. Nonetheless,
the non-orthogonality of the beam matrix in BDRP poses a
challenge to sum-rate performance.

This paper introduces Slepian transform domain robust
precoders for HF skywave massive MIMO systems, addressing
the limitations of the BDRP approach. Utilizing the Slepian
basis, known for its orthogonality and exceptional spectral
concentration [18]–[24], we make several key contributions:

• We develop a sparse beam based a posteriori channel
model to describe imperfect CSI at the BS, highlighting
the crucial relationship between beam domain channels
and the Fourier spectrum of spatial domain channels for
robust precoder design.

• We formulate the robust precoding problem to maximize
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the ergodic sum-rate under a total transmit power con-
straint and transform it into the Slepian transform domain.
We demonstrate that Slepian transform domain robust
precoding is asymptotically optimal for a sufficiently
large number of BS antennas. We propose two precoding
approaches based on the Slepian transform and introduce
an efficient joint precoding implementation that utilizes
a low-dimensional inverse fast Fourier transform (IFFT).
The implementation complexities of these algorithms are
also thoroughly analyzed.

• To address the computational intensity of ergodic sum
rate, we focus on maximizing an ergodic sum-rate upper
bound. A local optimum for the Slepian transform do-
main robust precoder (STRP) design is derived using the
MM algorithm. By exploiting the properties of Slepian
sequences, we simplify the STRP design into separate
(SSTRP) and joint (JSTRP) versions. The computational
complexity analysis and simulation results demonstrate
that our robust precoder designs maintain low complexity
with near-optimal performance.

The remainder of this paper is structured as follows: Sec-
tion II introduces the channel model for HF skywave massive
MIMO systems. Section III investigates robust precoding with
Slepian transform, while Section IV details the design of
Slepian transform domain robust precoders and their complex-
ity analysis. Simulation results are presented in Section V, and
the paper concludes in Section VI.

Notations: Boldface lower case letters and boldface upper
case letters represent vectors and matrices, respectively. The
operators (·)∗, (·)T, and (·)H denote the conjugate, transpose
and conjugate-transpose, respectively. IM and OM×N repre-
sent M -dimensional identity matrix and M ×N matrix with
all zeros, respectively. eM,m, 1M and 0M indicate the m-
th column of IM , M -dimensional all-one vector and all-zero
vector, respectively. diag{a} and [A]i,j denote the diagonal
matrix with a along its main diagonal and the (i, j)-th entry
of A, respectively. ⊗ and ⊙ represent the Kronecker product
operator and the Hadamard product operator, respectively. ȷ =√
−1 denotes the imaginary unit. |A| denotes the cardinality

for set A. E{·}, ⟨·⟩N and ∥·∥ denote the ensemble expectation,
modulo-N operation and the Frobenius norm, respectively. Z+

represents the set of positive integers and Z+
N ≜ {1, · · · , N}.

⌊a⌋ (⌈a⌉) indicates the maximum (minimum) integer that
is not greater (less) than a. CN{a,A} denotes the circular
symmetric complex Gaussian distribution with mean a and
convariance A.

II. SYSTEM MODEL

In this section, we present the system configuration for
HF skywave massive MIMO orthogonal frequency division
multiplexing (OFDM) systems. We introduce the beam based
a priori and a posteriori channel models. Additionally, we
establish the relationship between the sparsity of the beam
domain channel and the Fourier spectrum of the spatial domain
channel.

A. System Configuration

We examine an HF skywave massive MIMO-OFDM system
operating in TDD mode, where a uniform linear array (ULA)
with M antennas is deployed at the base station (BS) to serve
U single-antenna UTs, as depicted in Fig. 1. Notably, ULA is
a practical choice in the HF band, as implementing multiple
antennas in the elevation direction is challenging due to the
substantial wavelength. Additionally, it’s worth mentioning
while the antenna array aperture is typically large, it remains
relatively small compared to the overall propagation distance.
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Fig. 1. HF skywave massive MIMO-OFDM system.

The frame structure of the HF skywave massive MIMO-
OFDM system is visualized in Fig. 2. Each frame contains N
OFDM symbols that are further divided into Ñ uplink (UL)
data symbols, along with one training symbol, and N − Ñ −1
DL data symbols. Moreover, the number of subcarriers, the
length of the cyclic prefix (CP), the number of valid subcarriers
and subcarrier spacing are denoted by Nc, Ng, Nv and ∆f ,
respectively. We define fc as the carrier frequency and fo
as the highest system operating frequency since fc varies
with different ionosphere condition [2], [25]. The inter-antenna
spacing is set as d = λo/2 instead of half wavelength of
carrier in traditional terrestrial massive MIMO systems, where
λo = c/fo is the wavelength corresponding to fo and c is the
speed of light.

… Training …

UL data DL data

Fig. 2. Frame structure of the HF skywave massive MIMO-OFDM system.

B. Beam Based A Priori Channel Model

In DL transmission, the signal transmitted for UT u at
subcarrier k of symbol n is denoted as xu,n,k ∈ CM . The
corresponding received signal takes the following form [6]

yu,n,k = hH
u,n,k

U∑
u′=1

xu′,n,k + zu,n,k, (1)
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where zu,n,k ∼ CN (0, σ2
z ) represents the additive white

Gaussian noise, and the channel frequency response hu,n,k

is given by

hu,n,k =

Pu∑
p=1

ηu,p,n,kvk (Ωu,p) ∈ CM , (2)

where ηu,p,n,k defines the path characteristics, and vk(Ω) is a
vector function of the direction, as expressed in the following
equations:

ηu,p,n,k ≜ βu,pe
ȷ̄ϕu,peȷ̄2πf

d
u,pnTsyme−ȷ̄2πk∆fτu,p , (3)

vk(Ω) ≜[
1, e−ȷ̄2π(fc+k∆f )∆τ1Ω, · · · , e−ȷ̄2π(fc+k∆f )∆τ (M−1)Ω]T. (4)

Besides, in (2), Pu denotes the number of paths for UT
u, and ∆τ = d/c. Parameters βu,p, ϕu,p, fd

u,p, τu,p, and
Ωu,p represent the path gain, initial phase, Doppler frequency,
propagation delay, and direction cosine of the p-th path,
respectively.

We derive a beam based channel model by uniformly
sampling the direction cosine range [−1, 1) into segments
Sm̃, m̃ ∈ Z+

M̃
, with M̃ = ⌈FMfc/fo⌉ representing the

number of samples, determined by the fine factor F . Each
segment is defined as Sm̃ = [Ωm̃,Ωm̃ + 2/M̃), where
Ωm̃ = (2m̃− 2− M̃)/M̃ . For large values of M̃ , the channel
frequency response hu,n,k is approximated as

hu,n,k =

M̃∑
m̃=1

∑
Ωu,p∈Pu∩Sm̃

ηu,p,n,kvk(Ωm̃) = Vkh̃u,n,k, (5)

where Pu ≜ {Ωu,1, · · · ,Ωu,Pu
} represents the set of direction

cosines for all paths to UT u. The beam matrix at subcarrier
k is given by Vk = 1√

M
[vk(Ω1), · · · ,vk(ΩM̃

)] ∈ CM×M̃ .

The beam domain channel vector h̃u,n,k ∈ CM̃ , where each
element [h̃u,n,k]m̃ =

√
M
∑

Ωu,p∈Pu∩Sm̃
ηu,p,n,k, m̃ ∈ Z+

M̃
.

It should be noted that Vk is correlated with subcarriers due
to the spatial-wideband effect, stemming from the propagation
delay across the large-scale antenna array [26]. This corre-
lation leads to (5), forming a beam based a priori channel
model. It is worth mentioning that the traditional massive
MIMO channel model corresponds to specific conditions, such
as fo = fc, F = 1, and the absence of the spatial-wideband
effect. The beam domain channel power vector for UT u,
defined as

ω̃u ≜ E
{
h̃u,n,k ⊙ h̃∗

u,n,k

}
= M

[∑
Ωu,p∈Pu∩S1

β2
u,p, · · · ,

∑
Ωu,p∈Pu∩S

M̃
β2
u,p

]T
,

(6)

serving as the statistical CSI, reflecting the aggregated path
gains within each segment.

C. Beam Based A Posteriori Channel Model

Consider ĥu,k,Ñ+1 as the estimated beam domain channel
for UT u at subcarrier k on the training symbol Ñ + 1. It
is assumed that accurate CSI can be estimated [27], [28].
To accommodate channel aging, the channel at subcarrier k

of symbol n is modeled using a first-order Gauss-Markov
process [29], [30]:

hu,n,k = Vk

(
αu,nĥu,Ñ+1,k +

√
1− α2

u,nh̃u,n,k

)
, (7)

where αu,n is the temporal correlation coefficient between
training symbol Ñ + 1 and symbol n, reflecting the channel
Doppler spread and encapsulates channel uncertainties. This
equation represents an a posteriori channel model, considering
the imperfections in CSI across various mobile scenarios. If
αu,n is close to 1, the channel is quasi-static, whereas a value
nearing 0 indicates rapid channel changes.

Owing to the narrow angle spread from the BS to each
UT [31], the beam domain channel shows remarkable sparsity,
especially as M increases. This leads to hu,n,k being charac-
terized as a narrowband sequence with a continuous Fourier
spectrum band-limit Lu,k = [νlu,k, ν

r
u,k]. The limits νlu,k and

νru,k can be approximated as follows [32]

νlu,k = −(fc + k∆f )∆τ

(
2

M̃
max {Bu} − 1

)
, (8a)

νru,k = −(fc + k∆f )∆τ

(
2

M̃
min {Bu} − 1

)
, (8b)

respectively, where Bu is the index set of non-zero elements in
the beam domain channel vector, and Bu indicates the count
of non-zero beams.

III. ROBUST PRECODING WITH SLEPIAN TRANSFORM

In this section, our focus is on robust DL precoding for
HF massive MIMO systems using the a posteriori channel
model, based on Slepian transform. First, we outline the
problem of robust precoding along with an introduction to
Slepian sequences. We then establish that robust precoding
can be seamlessly transformed into the Slepian transform
domain while maintaining optimality. This holds true when
the objective is to maximize the ergodic sum-rate or its upper
bound. Finally, we introduce two variants of Slepian transform
based precoding. In particular, the joint Slepian transform
based approach enables efficient implementation through IFFT,
with a detailed discussion on its implementation complexity.

A. Robust Precoding

We consider DL precoding for HF massive MIMO systems
at subcarrier k of symbol n, using the a posteriori channel
model. For simplicity, we drop the indices n and k henceforth.
In the context of linear precoding, the signal model simplifies
to

yu = hH
ux+zu = hH

u

U∑
u′=1

pu′xu′ +zu = hH
upuxu+nu, (9)

where pu is the precoder for UT u, xu is the intended
data symbol with zero mean and unit variance, and x ≜∑U

u′=1 pu′xu′ represents the precoded transmit signal. The
term nu = hH

u

∑
u′∈Z+

U \u pu′xu′ + zu denotes the aggre-
gate interference-plus-noise, with its covariance given by
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∑
u′∈Z+

U \u p
H
u′E

{
huh

H
u

}
pu′+σ2

z . Assuming that nu is Gaus-
sian noise, the ergodic rate of UT u can be expressed as [14]:

ru(p1, · · · ,pU ) =

E

{
log

(
1 +

pH
uhuh

H
upu

σ2
z +

∑
u′∈Z+

U \u p
H
u′E {huhH

u }pu′

)}
,

(10)

where the expectation is over the channel realizations.
The robust precoding problem, aimed at maximizing the

ergodic sum-rate, is formulated as:

pop
1 , · · · ,pop

U = argmax
p1,··· ,pU∈CM

U∑
u=1

ru(p1, · · · ,pU )

s.t.
U∑

u=1

pH
upu ≤ P,

(11)

where pop
u is the robust precoder for each UT u, under

the total transmit power constraint P . However, this non-
convex problem presents significant computational challenges
in massive MIMO systems, even though suboptimal solutions
can be found using the MM algorithm [33].

To simplify the robust precoding problem, we leverage
the characteristics of HF skywave massive MIMO channels,
transforming the high-dimensional problem in (11) into a
lower-dimensional format using Slepian sequences, introduced
in the following subsection.

B. Slepian Sequences

Slepian sequences were developed to maximize energy
concentration within the Fourier spectrum interval [−W,+W ]
(W < 1/2) across all finite-length sequences. This is achieved
by maximizing [34]

λ =

∫ +W

−W
|
∑M−1

n=0 s[n]e−ȷ̄2πnν |2dν∫ 1
2

− 1
2

|
∑M−1

n=0 s[n]e−ȷ̄2πnν |2dν
=

sHBs

sHs
, (12)

where s ≜ [s[0], · · · , s[M − 1]]
T ∈ RM is a sequence of

length M and B ∈ RM×M is the prolate matrix with elements
[B]i,j ≜ 2W sinc(2W (i − j)), i, j ∈ Z+

M . Eq. (12) represents
the Rayleigh quotient. Its maximum value corresponds to the
maximum eigenvalue of B, with the optimal sequence being
the respective eigenvector. Thus, the eigenvectors of B are
identified as Slepian sequences, denoted by sm,m ∈ Z+

M .
The eigenvalues of B follow the order 1 > λ1 > · · · > λM >
0. Approximately the first 2MW eigenvalues are close to 1,
while the rest tend towards 0 [35]. This indicates that the
initial ≈ 2MW Slepian sequences adequately represent any
sequence of length M with energy predominantly concentrated
in the interval [−W,+W ].

Building on Slepian sequences, modulated Slepian se-
quences have been developed to characterize sequences with
energy primarily concentrated in a shifted interval M(ν) =
[ν−W, ν+W ] for ν ̸= 0. These sequences are represented by
the matrix D(ν) ≜ [d1(ν), · · · ,dK(ν)] ∈ CM×K [36], where
dm(ν) = ω(ν)⊙ sm ∈ CM ,m ∈ Z+

M and

ω(ν) =
[
1, eȷ̄2πν , · · · , eȷ̄2πν(M−1)

]T ∈ CM . (13)

Upon normalization, dm(ν),m ∈ Z+
M form an orthonormal

basis in CM , termed as the Slepian basis. Considering a
sequence a = [a[0], · · · , a[M − 1]]T within the majority
band limit of M(ν), we observe that for K ≈ 2MW , the
approximation D(ν)DH(ν)a ≈ a holds. This implies that the
sequence a can be effectively compressed to a(ν) = DH(ν)a
and later reconstructed using D(ν)a(ν) with minimal energy
loss. Therefore, a(ν) is thus termed as the Slepian transform
of a, leveraged in our robust precoder designs.

C. Problem Formulation of Slepian Transform Based Robust
Precoding

Motivated by the beam structured robust precoding intro-
duced in [17], we propose using the Slepian basis as an
alternative to the conventional beam matrix. This involves
representing the precoder as pu = D(νu)wu, where wu ∈ CK

is a low-dimensional vector. By doing so, we simplify the
precoder design problem from pu to wu. The ergodic rate of
UT u can be rewritten as

ru(w1, · · · ,wU ) =

E
{
log
(
1 + ρ−1

u wH
uGu(νu)huh

H

uG
H
u (νu)wu

)}
,

(14)

where ρu ≜ σ2
z +

∑
u′∈Z+

U \u w
H
u′Θu(νu′)wu′ , and

Gu(νu′) ≜ DH(νu′)VNu ∈ CK×Bu , (15)

Θu(νu′) ≜ Gu(νu′)AuG
H
u (νu′) ∈ CK×K , (16)

Au ≜ α2
uhuh

H
u + (1− α2

u)diag{ωu} ∈ CBu×Bu , (17)

where hu ≜ NT
u h̃u ∈ CBu , hu ≜ NT

u ĥu ∈ CBu , and
ωu ≜ NT

u ω̃u ∈ CBu represent the reduced-dimensional
beam domain instantaneous CSI, estimated CSI and statistical
CSI, respectively. The beam selection matrix Nu is given by
Nu ≜

[
e
M̃,bu[1]

, e
M̃,bu[1]

, · · · , e
M̃,bu[Bu]

]
∈ RM̃×Bu , where

bu[1] < bu[2] < · · · < bu[Bu] are elements in Bu. The
constraint

∑U
u=1 p

H
upu ≤ P leads to

∑U
u=1 w

H
uwu ≤ P since

U∑
u=1

pH
upu =

U∑
u=1

wH
uD

H(νu)D(νu)wu =
U∑

u=1

wH
uwu. (18)

Accordingly, the problem of (11) can be reformulated as

wop
1 , · · · ,wop

U = argmax
w1,··· ,wU∈CK

U∑
u=1

ru(w1, · · · ,wU )

s.t.
U∑

u=1

wH
uwu ≤ P.

(19)

Since wu can be expressed as the Slepian transform of pu, i.e.,
wu = DH(νu)D(νu)wu = DH(νu)pu, we refer to wop

u in
(19) as the Slepian transform domain robust precoder (STRP).

Note that this new problem formulation essentially adds the
constraint pu ∈ span{D(νu)} to (11), where span{·} denotes
the column space. Although there is an inherent ergodic sum-
rate performance loss in this new solution compared to (11),
the gap is small due to the sparse nature of beam domain chan-
nels in HF skywave massive MIMO. Proper parameterization
of D(νu) further mitigates this loss, as we demonstrate in the
following theorem.
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Theorem 1. Assume Pu ∩ Pu′ = ∅ for all u, u′ ∈ Z+
U and

u ̸= u′, when Lu ⊆ M(νu) for all u ∈ Z+
U , K = ⌊2MW (1+

ϵ)⌋, 0 < ϵ < 1
2W − 1, we have

lim
M→∞

U∑
u=1

(ru(p
op
1 ,· · ·,pop

U )−ru(w
op
1 ,· · ·,wop

U ))=0. (20)

Proof: See Appendix A.
Theorem 1 indicates that under given conditions, the prob-

lem in (11) can be converted to (19) without any loss of
optimality.

The expression of ru(w1, · · · ,wU ) in (14) involves expec-
tation, which means it is hard to obtain the optimal solution
of the problem (19) with close-form. To tackle this issue, we
use the ergodic sum-rate upper bound to obtain an approxi-
mate solution for the original problem. According to Jensen’s
inequality, an upper bound of ru(w1, · · · ,wU ) is given by

rubu (w1, · · · ,wU )

= log
(
1 + ρ−1

u wH
uGu(νu)E

{
huh

H

u

}
GH

u (νu)wu

)
= log

(
1 + ρ−1

u wH
uΘu(νu′)wu

)
,

(21)

where the ergodic rate upper bound rubu is typically tight for
single-antenna UTs [15]. This leads to a new optimization
problem

wub,op
1 , · · · ,wub,op

U = argmax
w1,··· ,wU∈CK

U∑
u=1

rubu (w1, · · · ,wU )

s.t.
U∑

u=1

wH
uwu ≤ P. (22)

In accordance with Jensen’s inequality and E
{
huh

H
u

}
=

V
(
α2
uĥuĥ

H
u + (1 − α2

u)diag{ω̃u}
)
VH, an upper bound of

ru(p1, · · · ,pU ) is

rubu (p1, · · · ,pU ) =

log

1+ pH
uV
(
α2
uĥuĥ

H
u + (1− α2

u)diag{ω̃u}
)
VHpu

σ2
z+
∑

u′∈Z+
U\u

pH
u′V
(
α2
uĥuĥH

u+(1−α2
u)diag{ω̃u}

)
VHpu′

.
(23)

Replacing ru(p1, · · · ,pU ) in (11) by (23) yields the spatial
domain robust precoding problem based on maximizing the
ergodic sum-rate upper bound, whose optimal solution is
denoted as pub,op

u , u ∈ Z+
U . Similarly, one can prove that the

following relation holds when the conditions in Theorem 1 are
satisfied

lim
M→∞

U∑
u=1

(
rubu
(
pub,op1 ,· · ·,pub,opU

)
−rubu

(
wub,op

1 ,· · ·,wub,op
U

))
=0, (24)

which implies that with the objective of maximizing the
ergodic sum-rate upper bound, there is only negligible perfor-
mance loss in converting the spatial domain robust precoding
problem to Slepian transform domain.

D. Slepian Transform Based Robust Precoding

By solving the optimization problem (19) or (22), we
obtain the STRP, which is denoted as wu, u ∈ Z+

U for
brevity. By judiciously configuring the parameters for D(νu),
one can ensure the reliable performance of precoding while
achieving efficient implementation. Specifically, we develope
the following DL precoding approaches.

1) Separate Slepian Transform Based Robust Precoding:
Based on Theorem 1, we define the parameters for each UT
as follows:

νu = νu, W ≥ W, (25)

where νu ≜ (νlu + νru)/2 and W ≜ maxu∈Z+
U
(νru − νlu)/2.

These settings ensure Lu ⊆ M(νu), affirming the optimality
of the Slepian transform domain robust precoder (STRP) when
K ≥ ⌊2MW ⌋ and M is sufficiently large. Since D(νu) is
designed individually for each UT, we refer to wu, u ∈ Z+

U

as the separate STRP (SSTRP), denoted by wu, u ∈ Z+
U . In

line with this, the precoded signal vector can be written as
x =

∑U
u=1 D(νu)wuxu.

2) Joint Slepian Transform Based Robust Precoding: When
the number of UTs increases, designing D(νu) for each UT
separately becomes complex. To address this, we construct L
fixed transform matrices D(ν̃l), l ∈ Z+

L , where M is divisible
by L and ν̃l, l ∈ Z+

L are set as

ν̃l = L−1 (l − 0.5)− 0.5. (26)

UTs are then grouped into L categories Nl, l ∈ Z+
L , defined

as
Nl ≜

{
u ∈ Z+

U

∣∣lu = l
}
, with Nl = |Nl|, (27)

where lu is the group index for UT u. Each UT is allocated
to the nearest group, determined by

lu ≜ argmin
l∈Z+

L

|ν̃l − νu| = ⌊L (νu + 0.5)⌋+ 1. (28)

We set νu = ν̃lu , meaning UTs in Nl reuse D(ν̃l) for
precoding. To satisfy Lu ⊆ M(νu) as per Theorem 1, we
set

W ≥ W +
1

2L
. (29)

Alternatively, when W is fixed, L should be at least 1
2(W−W )

,
and ideally as small as possible to reduce complexity. Thus,
the number of groups L can be chosen by

minL, s.t. L ∈ Z+, L ≥ 1

2(W −W )
and L|M, (30)

where L|M represents M is divisible by L. This grouping
leads to the joint STRP (JSTRP) for wu, u ∈ Z+

U , denoted as
w̃u, u ∈ Z+

U .
The precoded vector x based on JSTRP can be expressed

as

x =
U∑

u=1

D(ν̃lu)w̃uxu =
L∑

l=1

D(ν̃l)cl = Qc, (31)

where cl ≜ W̃lÑ
T
l x ∈ CK , l ∈ Z+

L are transform domain
precoded vectors, Ñl ≜

[
eU,ul[1], eU,ul[2], · · · , eU,ul[Nl]

]
∈
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RU×Nl is the UT selection matrix for group l with elements
ul[1] < ul[2] < · · · < ul[Nl] in Nl, and

W̃l ≜ [w̃1, w̃2, · · · , w̃U ]Ñl ∈ CK×Nl , (32)

Q ≜ [D(ν̃1),D(ν̃2), · · · ,D(ν̃L)]

=[diag{d1(ν̃1)},· · ·,diag {dK(ν̃1)}](IK⊗Ω)MT
L,K , (33)

Ω ≜ [ω (0),ω (1/L) ,· · ·,ω ((L−1)/L)]=1M/L⊗FH
L , (34)

c ≜
[
cT1 , c

T
2 , · · · , cTL

]T ∈ CKL, (35)

where ML,K ∈ RKL×KL is a permutation matrix with the i-th
column being eKL,K⟨i−1⟩L+⌊(i−1)/L⌋+1, FL is L-dimensional
DFT matrix with [FL]i,j = e−ȷ2π(i−1)(j−1)/L, i, j ∈ Z+

L .
Consequently, substituting (33) and (34) into (31) yields

x = [diag {d1 (ν̃1)} , · · · ,diag {dK (ν̃1)}] (IK ⊗Ω)MT
L,Kc

=
K∑
i=1

di (ν̃1)⊙
(
1M/L ⊗

(
FH

Lmi

))
, (36)

where mi ≜ (eK,i ⊗ IL)M
T
L,Kc ∈ CL, i ∈ Z+

K . Thus the
computation of x can be efficiently implemented with L-point
IFFT, as shown in Fig. 3. Importantly, this precoding method
is not limited to JSTRP, it can be applied to all precoders with
a joint Slepian transform structure.

…

…
…

…

…
…

…

…

…
…

…

…

L-point IFFT

L-point IFFT

L-point IFFT

Permutation

… …

Hadamard Product and 
Summation

Transmitted 
Vector

Precoded 
Vector

U

…
…

…
…

…
…

…

…
…

…

…
…

…

⊙

⊙

⊙

⊕ …

Low-dimensional 
Precoding


1W


2W

K L L M M M

1 1( )d 

2 1( )d 

1( )K d 

x x


LW

1c

2c

Lc

1m

2m

Km

H
LF

H
LF

H
LF

Fig. 3. Efficient implementation of joint Slepian transform based precoding.

E. Implementation Complexity Analysis

We next analyze the implementation complexities of pro-
posed precoding approaches in terms of required complex mul-
tiplications. The implementation complexity with the SSTRP
comes from the computation of x =

∑U
u=1 D(νu)wuxu,

which requires (M + 1)KU complex multiplications. For
JSTRP, the utilization of IFFT can significantly reduce the
implementation complexity. Note that mi is extracted from the
permutation of c and 1M/L⊗

(
FH

Lmi

)
represents stacking with

M/L copies of FH
Lmi, which contribute no computational

complexity. And the complex multiplications required for the
computation of c, the IFFT of mi and the Hadamard product
of di (ν̃1) ⊙

(
1M/L ⊗

(
FH

Lmi

))
are

∑L
l=1 KNl = KU ,

0.5L logL and M , respectively. Consequently, the implemen-
tation complexity with JSTRP is KU +

∑K
i=1(0.5L logL +

M) = K(M + U + 0.5L logL).

For comparison, the implementation complexity with the
SDRP [14] and the BDRP [17] are respectively MU and
UB + M + M̃ + S(1 + logS), where B ≜ 1

U

∑U
u=1 Bu

and S ≥ M + M̃ − 1. When M and U are both large, the
implementation complexity of the JSTRP is the lowest among
all robust precoders.

IV. DESIGN OF SLEPIAN TRANSFORM DOMAIN ROBUST
PRECODERS

In this section, we derive a STRP design by maximizing the
ergodic sum-rate upper bound within the framework of MM
algorithm. Further, we prove that STRP design can be simpli-
fied by omitting partial inter-UT interferences. Consequently,
the SSTRP design and the JSTRP design are developed, re-
spectively. Finally, the design complexities of different robust
precoders are analyzed.

A. Slepian Transform Domain Robust Precoder Design With
MM Algorithm

For the sake of making the STRP design easier to im-
plement, we focus on the solution of problem (22) and
derive a local optimum for it within the framework of MM
algorithm [37]. Denote w

(i)
u as the i-th iteration of STRP wu.

Define a minorizing function f to minorize
∑U

u=1 r
ub
u at the

point
(
w

(i)
1 , · · · ,w(i)

U

)
with

f
(
w1,· · ·,wU

∣∣w(i)
1 ,· · ·,w(i)

U

)
≤

U∑
u=1

rubu (w1,· · ·,wU ), (37a)

f
(
w

(i)
1 ,· · ·,w(i)

U

∣∣w(i)
1 ,· · ·,w(i)

U

)
=

U∑
u=1

rubu
(
w

(i)
1 ,· · ·,w(i)

U

)
, (37b)

which yields

∂f

∂wu

∣∣∣∣
wu=w

(i)
u

=

U∑
u′=1

∂rubu′

∂wu

∣∣∣∣
wu=w

(i)
u

, for u ∈ Z+
U . (38)

The MM algorithm relies on finding a minorizing function
for the objective function at each point of the optimization
process. Once the minorizing function f is obtained, it is
used to replace the objective function, and the algorithm
proceeds by maximizing f to obtain an iterative solution.
Denote

(
w

(i+1)
1 , · · · ,w(i+1)

U

)
as the maximizer of f , then

U∑
u=1

rubu
(
w

(i+1)
1 ,· · ·,w(i+1)

U

)
≥

U∑
u=1

rubu
(
w

(i)
1 ,· · ·,w(i)

U

)
. (39)

(38) and (39) guarantee the generated sequence can converge
to the locally optimal solution of maximizing

∑U
u=1 r

ub
u .

Theorem 2. A minorizing function for
∑U

u=1 r
ub
u at the point(

w
(i)
1 , · · · ,w(i)

U

)
is given by

f(w1, · · · ,wU |w(i)
1 , · · · ,w(i)

U ) =
U∑

u=1

a(i)u +
U∑

u=1

(
q(i)
u

)H
wu

+
U∑

u=1

wH
u q

(i)
u −

U∑
u=1

U∑
u′=1

wH
uT

(i)
u′,uwu, (40)
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where

a(i)u = log
(
1 +

(
ρ(i)u

)−1(
w(i)

u

)H
Θu(νu)w

(i)
u

)
− σ2

z

(
ρ(i)u

)−1
+ σ2

z

(
ρ(i)u +

(
w(i)

u

)H
Θu(νu)w

(i)
u

)−1

−
(
ρ(i)u

)−1(
w(i)

u

)H
Θu(νu)w

(i)
u , (41a)

ρ(i)u =σ2
z +

∑
u′∈Z+

U \u
(
w

(i)
u′

)H
Θu(νu′)w

(i)
u′ , (41b)

q(i)
u =

(
ρ(i)u

)−1
Θu(νu)w

(i)
u , (41c)

T
(i)
u,u′ =

((
ρ(i)u

)−1−
(
ρ(i)u +ρ(i)u

(
w(i)

u

)H
q(i)
u

)−1)
Θu(νu′), (41d)

Proof: See Appendix B.
Based on the minorizing function f , the optimal solution in

the (i+1)-th iteration can be obtained by solving the following
optimization problem

w
(i+1)
1 , · · · ,w(i+1)

U = argmax
w1,··· ,wU∈CK

U∑
u=1

((
q(i)
u

)H
wu+wH

u q
(i)
u −wH

u

U∑
u′=1

T
(i)
u′,uwu

)
s.t.

U∑
u=1

wH
uwu ≤ P. (42)

The problem in (42) is a concave quadratic optimization
problem, which can be solved by the Lagrange multiplier
methods [38]. Construct the Lagrangian function

L =
U∑

u=1

((
q(i)
u

)H
wu +wH

u q
(i)
u −wH

u

U∑
u′=1

T
(i)
u′,uwu

)
− µ

( U∑
u=1

wH
uwu − P

)
,

(43)

where µ ≥ 0 represents the Lagrange multiplier. According to
the first-order optimal conditions, the iteration equation of the
precoder is given by

w(i+1)
u =

( U∑
u′=1

T
(i)
u′,u + µopIK

)−1

q(i)
u , (44)

where µop ≥ 0 is the optimal Lagrange multiplier. Note
that

∑U
u=1 w

H
uwu is a monotonically decreasing function of

µ. Thus, if µop = 0 and
∑U

u=1 w
H
uwu ≤ P , the optimal

solution is w
(i+1)
u =

(∑U
u′=1 T

(i)
u′,u

)−1
q
(i)
u , Otherwise, µop

can be obtained by using a bisection method. Eq. (44) provides
an iterative process to obtain general STRP. Note that the
computation of ρ

(i)
u and w

(i+1)
u requires summation over all

UTs, which can be further simplified by the following theorem.
Theorem 3. When Lu ∩ M(νu′) = ∅, u, u′ ∈ Z+

U , K =
⌊2MW (1− ϵ)⌋, 0 < ϵ < 1, we have

lim
M→∞

Gu(νu′) = OK×Bu , (45)

Proof: See Appendix C.
Theorem 3 implies that when K < ⌊2MW ⌋, the negligibly

small interference from UTs that are not overlapped with UT
u can be omitted to simplify the computation of ρ

(i)
u and

w
(i+1)
u . However, K < ⌊2MW ⌋ conflicts with the condition

in Theorem 1, which means a portion of optimality will be

sacrificed. Nevertheless, it can be known from the simulation
that the loss of optimality is negligible when K is slightly
smaller than ⌊2MW ⌋. To this end, we introduce a threshold
λth which is less than and close to 1, and set

K = max
K′∈Z+

M , λK′>λth
K ′. (46)

Therefore, for M(νu′)∩Lu = ∅, we have Gu(νu′) ≈ OK×Bu

and
Θu(νu′) = Gu(νu′)AuG

H
u (νu′) ≈ OK×K , (47)

thus partial summation terms in (41b) and (44) can be ig-
nored for simplification. Concretely, the designs of SSTRP
and JSTRP in III-D are developed as the following two
subsections.

B. Separate Slepian Transform Domian Robust Precoder De-
sign

For SSTRP design, according to Throrem 3, ρ(i)u in (41b)
and w

(i+1)
u in (44) can be respectively simplified as

ρ(i)u = σ2
z +

∑
u′∈Gu

(
w

(i)
u′

)H
Θu(νu′)w

(i)
u′ , (48)

w(i+1)
u =

(∑
u′∈Uu

ζ
(i)

u′ Θu′(νu) + µopIK

)−1

q(i)
u , (49)

where

ζ
(i)

u =
(
ρ(i)u

)−1 −
(
ρ(i)u + ρ(i)u

(
w(i)

u

)H
q(i)
u

)−1

, (50)

q(i)
u =

(
ρ(i)u

)−1
Θu(νu)w

(i)
u , (51)

and the interference UT sets are respectively defined as

Gu ≜
{
u′ ∈ Z+

U

∣∣M(νu′) ∩ Lu ̸= ∅, u′ ̸= u
}
, (52a)

Uu ≜
{
u′ ∈ Z+

U

∣∣M(νu) ∩ Lu′ ̸= ∅
}
, (52b)

with Gu = |Gu| and Uu = |Uu|.
Note that Θu(νu′) varies symbol by symbol due to the

temporal correlation coefficient αu varies as OFDM symbol
changes. However, the computation of Θu(νu′) for each
symbol can be avoided. Using (16) and (17), Θu(νu′) can
be expressed as

Θu(νu′) = α2
uΘu(νu′) + (1− α2

u)Θu(νu′), (53)

where

Θu(ν) ≜ Gu(ν)huh
H
uG

H
u (ν), (54a)

Θu(ν) ≜ Gu(ν)diag{ωu}GH
u (ν). (54b)

According to (8a) and (8b), Lu varies as statistical CSI ω̃u

changes. Since ω̃u changes slowly compared to the instan-
taneous CSI [28], the update of D(νu) and G(νu) is also
slow. Therefore, the computation of Θu(νu′) is required for
each slot since the estimated CSI hu is obtained in each
slot’s training symbol. On the other hand, the computation
of Θu(νu′) is only needed when ω̃u changes. Hence, αu in
(53) can be adjusted to achieve the variation of Θu(νu′) with
symbols, where Θu(νu′) and Θu(νu′) can be pre-calculated.

The design procedure of SSTRP is summarized in Algo-
rithm 1.
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Algorithm 1: SSTRP design

1 Initialize w(i)
u , u ∈ Z+

U which satisfies∑U
u=1

(
w(i)

u

)H
w(i)

u ≤ P . Set i = 0.
2 repeat
3 Compute ρ

(i)
u ,q(i)

u , ζ
(i)

u , u ∈ Z+
U by (48), (51) and

(50), respectively.
4 Update w(i+1)

u , u ∈ Z+
U by (49) and set i = i+ 1.

5 until
∣∣∣∑U

u=1 r
ub,(i)
u −

∑U
u=1 r

ub,(i−1)
u

∣∣∣ ≤ v1 (v1 is a
predefined target)

6 Obtain wu = w(i)
u , u ∈ Z+

U .

C. Joint Slepian Transform Domain Robust Precoder Design

According to Theorem 3, for JSTRP design, M(ν̃l)∩Lu =

∅, l ∈ Z+
L , u ∈ Z+

U leads to Θu(ν̃l) ≈ OK×K . Then ρ
(i)
u in

(41b) and w
(i+1)
u in (44) can be simplified as

ρ̃(i)u = σ2
z +

∑
u′∈G̃u

(
w̃

(i)
u′

)H
Θu

(
ν̃lu′

)
w̃

(i)
u′ , (55)

w̃(i+1)
u = Ẽ

(i)
lu
q̃(i)
u , (56)

respectively, where

ζ̃(i)u =
(
ρ̃(i)u

)−1 −
(
ρ̃(i)u + ρ̃(i)u

(
w̃(i)

u

)H
q̃(i)
u

)−1

, (57)

Ẽ
(i)
l =

(∑
u∈Ũl

ζ̃
(i)
u Θu(ν̃l) + µopIK

)−1

, (58)

q̃(i)
u =

(
ρ̃(i)u

)−1
Θu(ν̃lu)w̃

(i)
u , (59)

and the interference UT sets are respectively defined as

G̃u ≜
{
u′∈ Z+

U

∣∣M(
ν̃lu′

)
∩ Lu ̸= ∅, u′ ̸= u

}
, (60a)

Ũl ≜
{
u ∈ Z+

U

∣∣M(ν̃l) ∩ Lu ̸= ∅
}
, (60b)

with G̃u = |G̃u| and Ũl = |Ũl|. It is worth noting that in each
iteration, the matrix inversion term (58) needs to be applied L
times instead of U times in (49), which is cost effective when
U is significantly larger than L.

Similar to (53), Θu(ν̃l) can be rewritten as

Θu(ν̃l) = α2
uΘu(ν̃l) + (1− α2

u)Θu(ν̃l). (61)

Since D(ν̃l) and the beam matrix V are fixed, G(ν̃l) =
DH(ν̃l)V can be computed offline. Consequently, Θu(ν̃l) and
Θu(ν̃l) can be pre-calculated before designing the precoder
as well. Additionally, the number of Θu(ν̃l) required for
the precoder design is

∑L
l=1 Ũl, whereas that of Θu(νu′) in

SSTRP design is
∑U

u=1 Uu, which implies that the STRP
design in this subsection enjoys lower storage requiremnets
when the number of UTs gets huge.

Algorithm 2 summarizes the JSTRP design.

D. Design Complexity Analysis

In this subsection, we evaluate the design complexities of
proposed precoders. It is worth noting that all robust precoders
feature a bisection step that only needs a small number of itera-
tions and can be disregarded in complexity analysis. Therefore,
we simplify the analysis by representing the design complexity
as the number of complex multiplications required for each

Algorithm 2: JSTRP design

1 Initialize w̃
(i)
u , u ∈ Z+

U which satisfies∑U
u=1

(
w̃

(i)
u

)H
w̃

(i)
u ≤ P . Set i = 0.

2 repeat
3 Compute ρ̃

(i)
u , q̃

(i)
u , ζ̃

(i)
u , u ∈ Z+

U by (55), (59) and
(57), respectively.

4 Compute Ẽ
(i)
l , l ∈ Z+

L by (58).
5 Update w̃

(i+1)
u , u ∈ Z+

U by (56) and set i = i+ 1.

6 until
∣∣∣∑U

u=1 r
ub,(i)
u −

∑U
u=1 r

ub,(i−1)
u

∣∣∣ ≤ v2 (v2 is a
predefined target)

7 Obtain w̃u = w̃
(i)
u , u ∈ Z+

U .

iteration. We define G ≜ 1
U

∑U
u=1 Gu and G̃ ≜ 1

U

∑U
u=1 G̃u

for the purpose of analysis.
Note that for SSTRP, Θu(νu′) can be pre-calculated. There-

fore, the complexities of computing ρ
(i)
u , q(i)

u and ζ
(i)

u are
respectively K(K+1)GU , K2U and KU , and the complexity
of updating w(i+1)

u is (0.5K3 + 2.5K2 + K)U [39]. The
overall design complexity of the SSTRP is thus given by
(0.5K3 + (3.5 + G)K2 + (G + 1)K)U . In a similar way,
the design complexity of the JSTRP is ((G̃ + 2)K2 + (G̃ +
1)K)U +

(
0.5K3 + 1.5K2

)
L.

For comparison, the design complexities of the SDRP [14]
and the BDRP [17] are ((U+1)M2+UM)U+0.5M3+1.5M2

and (0.5B3+(2.5+U)B2+UB)U , respectively. When M is
large, the design complexities of proposed precoders are much
lower than that of the SDRP. Moreover, when U is large, the
design complexities of proposed STRPs can be lower than that
of the BDRP.

V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate
advantages of the proposed precoders for HF skywave massive
MIMO systems.

In our simulations, we use the parameters listed in Ta-
ble I for the HF skywave massive MIMO-OFDM system.
Specifically, the BS is located at (34◦N, 118◦E). UTs are
distributed at a distance of 2000 km from the BS, with the az-
imuth angles distributed in [−70◦, 70◦]. Realistic HF skywave
channel parameters are generated using the commercial ray-
tracing software Proplab-Pro version 3.1 [40]. This includes
the signal strength, azimuth (elevation) angles of departure
(AoD), and propagation distance for each path, from which
we compute the path gain, direction cosine, and propagation
delay, respectively. Additionally, we generate random initial
phases and Doppler shifts for each path. Using (2), we get the
spatial domain channel, while the beam domain channel and
statistical CSI are obtained using the method proposed in [28]
with M̃ = 2M .

The performances of various DL robust precoders are com-
pared by computing the ergodic sum-rates versus the system
configurations and parameters, where the ergodic sum-rate is
obtained by averaging channel realizations among DL data
symbols and valid subcarriers. For proposed STRPs, we adopt
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Carrier frequency fc 16 MHz

Number of antennas at BS M 128 / 256 / 512
Subcarriers spacing ∆f 250 Hz

Antenna spacing at BS d 9 m
Number of subcarriers Nc 2048

Number of valid subcarriers Nv 1536

Frame structure (N, Ñ) (14, 6)
Number of UTs U 64

the threshold λth = 0.99. Specifically, the following DL robust
precoders are compared:

• SDRP: Spatial domain robust precoder [14].
• BDRP: Beam domain robust precoder [17].
• SSTRP: Separate Slepian transform domain robust pre-

coder, designed in Algorithm 1.
• JSTRP: Joint Slepian transform domain robust precoder,

designed in Algorithm 2.

Fig. 4 provides an overview of the ergodic sum-rates for dif-
ferent precoders. Fig. 4(a) specifically demonstrates the robust-
ness of our proposed precoders under varying channel Doppler
spreads. These spreads are influenced by UT speeds and
ionospheric-induced Doppler effects, with maximum values set
to 60 km/h (200 km/h) and 3 Hz (5 Hz), respectively. SSTP
(JSTP) stands for the separate (joint) Slepian transform domain
precoder using genie-aided perfect instantaneous CSI, which
is designed in terms of the criterion of sum-rate maximization
within the framwork of MM algorithm as well. Additionally,
we employ an MMSE precoder, designed based on channel
estimates during training symbols and applied in DL data
symbols. The figure reveals that, compared to SSTP and JSTP,
the performances of our proposed precoders experience a mod-
erate decline at higher Doppler spreads. This result is expected
because perfect instantaneous CSI becomes challenging to ob-
tain when the channel exhibits significant temporal variability.
Nonetheless, both SSTRP and JSTRP consistently outperform
the MMSE precoder, particularly when the channel undergoes
rapid variations. This observation underscores the robustness
of our proposed precoders. Further performance comparison
with other robust precoders is presented in Fig. 4(b). Notably,
JSTRP’s sum-rate performance closely aligns with SSTRP,
approaching that of SDRP and outperforming BDRP in regions
with high transmit power.

In Fig. 5, we depict the relationship between sum-rate
performance and system parameters with M = 256. The max-
imum UT speed and ionospheric-induced maximum Doppler
spread are fixed at 60 km/h and 3 Hz, respectively, for all sub-
sequent simulations. From the Figure, it’s evident that the sum-
rate performance of our proposed precoders improves as W
increases, surpassing the BDRP and closely approaching the
SDRP’s performance. Additionally, for JSTRP, performance
improves with larger L values but lags behind SSTRP when
L < U . However, the differences become less significant when
W ≥ 0.04 and L ≥ 32, as this fulfills conditions in (25)
and (29). Consequently, to strike a balance between precoding
performance and complexity, choosing W = 0.04 and L = 32
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(a)
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Fig. 4. Ergodic sum-rates of various precoders with (M,W,L) =
(256, 0.04, 32) under different channel Doppler spreads. (a) Performance of
robustness for SSTRP and JSTRP; (b) Performance comparison with SDRP
and BDRP.

is a suitable option in this scenario.
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Fig. 5. Ergodic sum-rate comparison with (a) different W (L = 32) (b)
different L (W = 0.04).

Fig. 6 compares the ergodic sum-rate performances of
different precoders with different number of BS antennas.
From the figure, the proposed precoders achieve a near-optimal
sum-rate performance, and the sum-rate gap compared with
the SDRP increases as the transmit power grows due to the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation 
information: DOI10.1109/TCOMM.2024.3362146, IEEE Transactions on Communications

Copyright © 2024 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/
publishing-ethics/guidelines-and-policies/post-publication-policies/ for more information. 



10

impact of inter-UT interference. Further, the gap between
proposed precoders and the SDRP gets smaller as M increases
since the channel vectors of UTs become nearly orthogonal
when M is sufficiently large, in which case the inter-UT
interference becomes relatively small, leading to high ergodic
sum-rate performance. Moreover, when M tends to infinity,
the ergodic sum-rate gap tends to vanish, which is confirmed
by Theorem 1.
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0
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400

500

600
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SDRP  (M=512) 
SSTRP (M=256) 
JSTRP (M=256)

SDRP (M=256) 
SSTRP (M=128)

JSTRP (M=128) 
SDRP (M=128)

Fig. 6. Ergodic sum-rates of SSTRP, JSTRP, and SDRP with different number
of BS antennas and (W,L) = (0.04, 32).

Further, the convergence performance of the proposed ro-
bust precoder design algorithms is investigated. Fig. 7 illus-
trates the ergodic sum-rates of Algorithm1 and Algorithm 2
at each iteration, where the total transmit power respectively
equals 15 dBW, 25 dBW, and 35 dBW for M = 256. The
initial values of precoders are generated randomly. It is ob-
served from the figure that both Algorithm 1 and Algorithm 2
exhibit fast convergence. Specifically, the proposed algorithms
converge in only 2 to 4 iterations when the total transmit
power is 15 dBW or 25 dBW, while about 10 iterations are
required when the total transmit power is 35 dBW. Thus,
the effectiveness of the proposed Slepian transform based
robust precoding for HF skywave massive MIMO systems is
confirmed.

0 5 10 15 20
0

50

100

150

200

250

300

350

Algorithm 1, 15 dBW

Algorithm 2, 15 dBW

Algorithm 1, 25 dBW

Algorithm 2, 25 dBW

Algorithm 1, 35 dBW

Algorithm 2, 35dBW

Fig. 7. Convergence of Algorithm 1 and Algorithm 2 with random initial
values and (W,L) = (0.04, 32).

Finally, to show the feasibility for practical applications,
the computational complexities of SSTRP, JSTRP, SDRP and
BDRP are plotted with different number of BS antennas
and UTs under typical parameter settings in Fig. 8. The
complexities in Fig. 8 refer to the computational complexity
for each valid subcarrier in one OFDM symbol. For design
complexity, Fig. 8(a), Fig. 8(b) and Fig. 8(c) exhibit that the
advantage of the proposed precoders is rather apparent with

various typical parameter settings, especially for the JSTRP.
For implementation complexity in Fig. 8(d), Fig. 8(e) and
Fig. 8(f), the SSTRP has no superiority, while the complexity
advantage of the JSTRP is highlighted when the UTs number
is sufficiently large. Therefore, for situations with few UTs,
the SSTRP can be chosen. For scenarios with a large number
of UTs, the JSTRP is preferred.

VI. CONCLUSIONS

In this paper, we have investigated the DL robust precoding
for HF massive MIMO with Slepian transform. An a posteriori
channel model based on beams is introduced, and the relation-
ship between the sparse beams and the Fourier spectrum of
the spatial domain channel is established. Using this channel
model, it is proved that the robust precoding problem of
maximizing ergodic sum-rate or its upper bound can be solved
in Slepian transform domain. Moreover, we develope two
Slepian transform based robust precoding approaches, and
propose an efficient implementation of joint Slepian transform
based precoding. Additionally, a local optimum for the STRP
design is derived within the framework of the MM algo-
rithm. After simplifying the STRP design by using features
of modulated Slepian sequences, the SSTRP design and the
JSTRP design are proposed, respectively. Simulation results
demonstrate that the proposed robust precoders can achieve
near-optimal performance with low complexity.

APPENDIX A
PROOF OF THEOREM 1

According to [17] we know that when Pu ∩Pu′ = ∅ for all
u, u′ ∈ Z+

U and u ̸= u′,

lim
M→∞

(pop
u −VNub

op
u ) = 0M , (62)

where bop
u is the optimal beam domain robust precoder

(BDRP). (62) demonstrates that when M → ∞, pop
u can be

modelled as a beam structured vector, and shares the same set
of beams with hu, i.e., Bu, then the support set of Pu(ν) is Lu,
where Pu(ν) represents the discrete time Fourier transform
(DTFT) of sequence pop

u . According to the Parseval’s theorem,

lim
M→∞

∣∣dH
i (νu)p

op
u

∣∣ = lim
M→∞

∣∣∣∣∫
Lu

D∗
i (νu, ν)Pu(ν)dν

∣∣∣∣ , (63)

where Di(νu, ν) is the DTFT of sequence di(νu). For Lu ⊆
M(νu),∣∣∣∣∫

Lu

D∗
i (νu, ν)Pu(ν)dν

∣∣∣∣2 (a)

≤(∫
M(νu)

|Di(νu, ν)|2dν

)(∫
Lu

|Pu(ν)|2dν
)

(b)

≤ λiP,

(64)

where (a) follows from the Cauchy-Schwarz inequality [41]
and

∫
Lu

|Di(νu, ν)|2dν ≤
∫
M(νu)

|Di(νu, ν)|2dν, (b) follows
from

λi=
sHi Bsi
sHi si

=
dH
i (νu)B(νu)di(νu)

dH
i (νu)di(νu)

=

∫
M(ν)

|Di(νu, ν)|2dν, (65)
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Fig. 8. Complexity comparison of SSTRP, JSTRP, SDRP and BDRP versus the number of UTs. (a) Design complexity with M = 64; (b) Design complexity
with M = 128; (c) Design complexity with M = 256; (d) Implementation complexity with M = 64; (e) Implementation complexity with M = 128; (f)
Implementation complexity with M = 256.

and power constraint
(
pop
u

)H
pop
u ≤

∑U
u=1

(
pop
u

)H
pop
u ≤ P ,

where B(νu) ≜
(
ω(νu)ω

H(νu)
)
⊙B. According to [18] and

[36, Lemma 4.2], when i > K = ⌊2MW (1 + ϵ)⌋, 0 < ϵ <
1

2W − 1 and M ≥ MW,ϵ, we have the following inequality∣∣∣∣∣
∫
M(ν)

D∗
i (νu, ν)Pu(ν)dν

∣∣∣∣∣ ≤√λiP ≤
√
Pe−CW,ϵM , (66)

where CW,ϵ and MW,ϵ are positive constants depend on W
and ϵ. According to ∥di(νu)∥ = 1, (63) and (66), we have∥∥pop

u −D(νu)D
H(νu)p

op
u

∥∥ =

∥∥∥∥∥
M∑

i=K+1

di(νu)d
H
i (νu)p

op
u

∥∥∥∥∥
≤

M∑
i=K+1

∣∣dH
i (νu)p

op
u

∣∣ , (67)

lim
M→∞

M
M∑

i=K+1

∣∣dH
i (νu)p

op
u

∣∣ ≤ lim
M→∞

√
PM(M−K)e−CW,ϵM/2

= 0. (68)

Then we have

lim
M→∞

M ∥pop
u − p⋄

u∥ = 0, (69)

where p⋄
u = D(νu)w

⋄
u, w⋄

u = DH(νu)p
op
u .

The difference between the ergodic sum-rates under the
precoder pop

u , u ∈ Z+
U and p⋄

u, u ∈ Z+
U is given by

U∑
u=1

(ru(p
op
1 , · · · ,pop

U )− ru(p
⋄
1, · · · ,p⋄

U )) =

U∑
u=1

(
log δu + E{log δu}

)
,

(70)

where

δu ≜
σ2
z +

∑
u′∈Z+

U \u E{(p⋄
u′)Hhuh

H
up

⋄
u′}

σ2
z +

∑
u′∈Z+

U \u E{(p
op
u′ )HhuhH

up
op
u′ }

, (71a)

δu ≜
σ2
z+
∑

u′∈Z+
U\u

E{(pop
u′ )Hhuh

H
up

op
u′ }+(pop

u )Hhuh
H
up

op
u

σ2
z+
∑

u′∈Z+
U\u

E{(p⋄
u′)HhuhH

up
⋄
u′}+(p⋄

u)
HhuhH

up
⋄
u

.

(71b)

Obviously, δu > 0, then we have

1− δ−1
u ≤ log δu ≤ δu − 1. (72)

According to
∑

u′∈Z+
U \u E{(p

op
u′ )Hhuh

H
up

op
u′ } ≥ 0 and abso-

lute value inequalities, we have

|δu−1|=

∣∣∑
u′∈Z+

U\u
E{(p⋄

u′)Hhuh
H
up

⋄
u′−(pop

u′ )Hhuh
H
up

op
u′ }
∣∣

σ2
z +

∑
u′∈Z+

U \u E{(p
op
u′ )HhuhH

up
op
u′ }

≤ σ−2
z

∑
u′∈Z+

U \u

E
{∣∣|hH

up
⋄
u′ |2 − |hH

up
op
u′ |2

∣∣} . (73)

Moreover,∣∣|hH
up

⋄
u′ |2 − |hH

up
op
u′ |2

∣∣
= (|hH

up
⋄
u′ |+ |hH

up
op
u′ |)
∣∣|hH

up
⋄
u′ | − |hH

up
op
u′ |
∣∣

(a)

≤ (|hH
up

⋄
u′ |+ |hH

up
op
u′ |)|hH

u (p
⋄
u′ − pop

u′ )|
(b)

≤ ∥hu∥2(∥p⋄
u′∥+ ∥pop

u′ ∥)∥p⋄
u′ − pop

u′ ∥
(c)

≤ 2
√
PEuM∥p⋄

u′ − pop
u′ ∥,

(74)

where (a) follows from the fact that
∣∣|x| − |y|

∣∣ ≤ |x − y|,
(b) follows from the compatibility of the Frobenius norm, (c)
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follows from power constraints for precoders and ∥hu∥2 ≤
MEu, where Eu ≜

(∑Pu

p=1 βu,p

)2
. Substituting (74) into (73)

yields

|δu − 1| ≤ 2σ−2
z

√
PEu

∑
u′∈Z+

U \u

M∥p⋄
u′ − pop

u′ ∥. (75)

Similarly,

|1−δ−1
u | ≤ 2σ−2

z

√
PEu

∑
u′∈Z+

U \u

M∥p⋄
u′ − pop

u′ ∥. (76)

According to (69), limM→∞ 2σ−2
z

√
PEu

∑
u′∈Z+

U \u M∥p⋄
u′−

pop
u′ ∥ = 0. Combining (72), (75), (76) and the squeeze

theorem,

lim
M→∞

log δu = lim
M→∞

|δu − 1| = lim
M→∞

|1− δ−1
u | = 0. (77)

In a similar manner, we have limM→∞ log δu = 0. Therefore,
according to (70),

lim
M→∞

U∑
u=1

(ru(p
op
1 , · · · ,pop

U )− ru(p
⋄
1, · · · ,p⋄

U )) = 0. (78)

Since pop
u , u ∈ Z+

U and wop
u , u ∈ Z+

U are the optimizers of
(11) and (19), respectively, then

U∑
u=1

ru(p
op
1 , · · · ,pop

U ) ≥
U∑

u=1

ru(w
op
1 , · · · ,wop

U )

≥
U∑

u=1

ru(w
⋄
1, · · · ,w⋄

U ),

(79)

Combining (78), (79) and the relationship ru(w
⋄
1, · · · ,w⋄

U ) =
ru(p

⋄
1, · · · ,p⋄

U ), we have

lim
M→∞

U∑
u=1

(ru(p
op
1 ,· · ·,pop

U )−ru(w
op
1 ,· · ·,wop

U ))=0. (80)

This concludes the proof.

APPENDIX B
PROOF OF THEOREM 2

Define γu ≜
(
1 + ρ−1

u wH
uΘu(νu)wu

)−1
, then rubu =

− log γu is convex over γu. According to the first-order
condition, in the i-th iteration we have

− log γu ≥ − log γ(i)
u −

(
γ(i)
u

)−1(
γu − γ(i)

u

)
= 1− log γ(i)

u −
(
γ(i)
u

)−1
γu,

(81)

where γ
(i)
u ≜

(
1 +

(
ρ
(i)
u

)−1(
w

(i)
u

)H
Θu(νu)

(
w

(i)
u

))−1

. Let

ϵu =1− γ
(i)
u

ρ
(i)
u

((
w(i)

u

)H
Θu(νu)wu +wH

uΘu(νu)w
(i)
u

)
+

(
γ
(i)
u

ρ
(i)
u

)2
ρu
γu

(
w(i)

u

)H
Θu(νu)w

(i)
u

(a)
=ρuγ

−1
u

((
ρ(i)u

)−1
γ(i)
u w(i)

u − ρ−1
u γuwu

)H
Θu(νu)

×
((

ρ(i)u

)−1
γ(i)
u w(i)

u − ρ−1
u γuwu

)
+ γu

(b)

≥γu,

(82)

where (a) follows from ρ−1
u γuw

H
uΘu(νu)wu + γu = 1, (b)

follows from the fact that Θu(νu) is semi-positive and the
equality holds when wu = w

(i)
u . Therefore, for any w

(i)
u ,(

γ
(i)
u

)−1
ϵu ≥

(
γ
(i)
u

)−1
γu. Combine with (81) we have

− log γu ≥ 1− log γ(i)
u −

(
γ(i)
u

)−1
ϵu. (83)

Construct

f =
U∑

u=1

(
1− log γ(i)

u −
(
γ(i)
u

)−1
ϵu

)
(a)
=

U∑
u=1

a(i)u +
U∑

u=1

(
q(i)
u

)H
wu +

U∑
u=1

wH
u q

(i)
u

−
U∑

u=1

U∑
u′=1

wH
uT

(i)
u′,uwu,

(84)

where (a) follows from
∑U

u=1

∑U
u′=1 w

H
u′T

(i)
u,u′wu′ =∑U

u=1

∑U
u′=1 w

H
uT

(i)
u′,uwu, and

a(i)u =1− log γ(i)
u −

(
γ(i)
u

)−1
+ σ2

z

(
ρ(i)u

)−1(
γ(i)
u − 1

)
= log

(
1 +

(
ρ(i)u

)−1(
w(i)

u

)H
Θu(νu)w

(i)
u

)
− σ2

z

(
ρ(i)u

)−1
+ σ2

z

(
ρ(i)u +

(
w(i)

u

)H
Θu(νu)w

(i)
u

)−1

−
(
ρ(i)u

)−1(
w(i)

u

)H
Θu(νu)w

(i)
u , (85a)

q(i)
u =

(
ρ(i)u

)−1
Θu(νu)w

(i)
u , (85b)

T
(i)
u,u′ =

((
ρ(i)u

)−2
γ(i)
u

(
w(i)

u

)H
Θu(νu)w

(i)
u

)
Θu(νu′)

=
((
ρ(i)u

)−1−
(
ρ(i)u +ρ(i)u

(
w(i)

u

)H
q(i)
u

)−1)
Θu(νu′). (85c)

According to (82) and (83) we have

f=
U∑

u=1

(
1−logγ(i)

u −
(
γ(i)
u

)−1
ϵu

)
≤−

U∑
u=1

logγu=
U∑

u=1

rubu , (86a)

f |
wu=w

(i)
u ,u∈Z+

U

=
U∑

u=1

rubu
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wu=w

(i)
u ,u∈Z+

U

, (86b)

respectively. Hence, f is a minorizing function for
∑U

u=1 r
ub
u

at the point
(
w

(i)
1 , · · · ,w(i)

U

)
. This concludes the proof.

APPENDIX C
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The (i, j)-th element of Gu(νu′) can be expressed as

[Gu(νu′)]i,j=
1√
M

dH
i (νu′)v(Ωm̃j

), i∈Z+
K , j∈Z+

Bu
, (87)

where m̃j ∈ Bu is the beam index which is related to j.
Similar to the proof of Theorem 1, as M → ∞, the support
set of V (Ωm̃j

, ν) contains in Lu, where V (Ωm̃j
, ν) is the

DTFT of sequence 1√
M
v(Ωm̃j

), and

lim
M→∞

∣∣∣∣ 1√
M

dH
i (νu′)v(Ωm̃j

)

∣∣∣∣=lim
M→∞

∣∣∣∣∫
Lu

D∗
i (νu′,ν)V (Ωm̃j

,ν)dν

∣∣∣∣.
(88)

When Lu ∩M(νu′) = ∅,∣∣∣∣∫
Lu

D∗
i (νu′ , ν)V (Ωm̃j

, ν)dν

∣∣∣∣2
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≤
(∫

Lu

|Di(νu′ , ν)|2dν
)(∫

Lu

|V (Ωm̃j
, ν)|2dν

)
≤

(
1−

∫
M(νu′ )

|Di(νu′ , ν)|2dν

)(∫ 1
2

− 1
2

|V (Ωm̃j
, ν)|2dν

)
(a)
= 1− λi, (89)

where (a) follows from the fact that
∫ 1

2

− 1
2

|V (Ωm̃j
, ν)|2dν =

1
M vH(Ωm̃j

)v(Ωm̃j
) = 1. According to [18] and [36, Lemma

4.1], when i ≤ K = ⌊2MW (1 − ϵ)⌋, 0 < ϵ < 1 and M ≥
MW,ϵ, we have the following inequality∣∣∣∣∫

Lu

D∗
i (νu′ , ν)V (Ωm̃j

, ν)dν

∣∣∣∣≤√1−λi≤e−CW,ϵM/2, (90)

where CW,ϵ and MW,ϵ are positive constants depend on W
and ϵ. Therefore, for i ≤ K,

lim
M→∞

[Gu(νu′)]i,j= lim
M→∞

∣∣∣∣∫
Lu

D∗
i (νu′ , ν)V (Ωm̃j

, ν)dν

∣∣∣∣
= lim

M→∞
e−CW,ϵM/2 = 0

(91)

Then limM→∞ Gu(νu′) = OK×Bu , This concludes the proof.
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