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Abstract 

This review systematically analyzes over 200 publications to explore the growing role of data-

driven methods and their potential benefits in accelerating alloy development. The review 

presents a comprehensive overview of different aspects of alloy innovation by machine learning 

and other computational approaches used in recent years. These methods harness the power of 

advanced simulation techniques and data analytics to expedite materials’ discovery, predict 

properties, and optimize performance. Through analysis, significant trends and disparities within 

the data discerned, while highlighting previously overlooked research gaps, thus underscoring 

areas that require further exploration. Machine Learning techniques are widely applied across 

various alloys, with a pronounced emphasis on steel and High Entropy Alloys. Notably, 

researchers primarily investigate the physical, mechanical, and catalytic properties of materials. 

In terms of methodology, while 68% of the examined papers rely on a single machine learning 

model, the remainder employ a range of 2 to 12 models, with Neural Network being the most 

prevalent choice. However, a notable concern arises as 53% of these papers do not share their 

dataset, and a staggering 81% do not provide access to their code. Paramount importance of 

adopting a systematic approach when scrutinizing machine learning methodologies is 

underscored. Analysis shows lack of consistency and diversity in the methods employed by 

researchers in the field of alloy development, highlighting the potential for improvement through 
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standardization. The critical analysis of the literature not only reveals prevailing trends and 

patterns but also shines a light on the inherent limitations within the traditional trial-and-error 

paradigm. 

 

Keywords: Alloy development, machine learning, data-driven research, materials 

informatics, Materials Genome Initiative, Materials databases 

 

1. Introduction 
Owing to high-speed computers, networks, and massive storage cloud spaces, nowadays artificial 

intelligence (AI), and machine learning (ML) have proved that they could considerably speed up 

fundamental and applied materials science research [1][2]. This paper explores the profound 

impact of AI and ML algorithms and techniques, which have used in an era of unprecedented 

materials discovery and development across a wide spectrum of material types, including 

structural materials, catalysts, high-entropy alloys (HEA), superalloys, shape-memory alloys, 

magnetic materials, and energy storage materials that their study can be complicated and 

complex. 

For instance, when it comes to the mechanical properties of an alloy, achieving the desired 

properties necessitates providing a balance between accurate prediction and occasional 

envisioning. An example of such studies is reported by Olson et al. [3]. Using a classic materials 

search approach, they looked to design a new alloy that has less nickel and copper to reduce its 

cost while preserving the look of the alloy, its excellent corrosion properties, and its electrical 

conductivity [3]. The pursuit of optimal trade-offs within these complex and complicated 

systems is facilitated by ML. While an increasing number of scholars have harnessed ML 

techniques to ascertain the optimal trade-off, several key inquiries persist, including the 

identification of the most suitable ML technologies and models, which remain unaddressed. 

This paper represents a comprehensive synthesis of insights drawn from a meticulous statistical 

analysis of over 200 publications. Specifically, the study focuses on peer-reviewed journals that 

employ rigorous methodologies, featuring a diverse array of ML models. Each publication 
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presents its optimal model, contributing to the broader understanding of the field. All the papers 

under study are succinctly summarized within the main text and are visually represented in the 

accompanying graphs. Consequently, these papers are duly cited in the reference section of this 

research. 

Chapter 2 offers a global perspective on the field's evolution and tracing its development over the 

years. Chapter 3 provides a comprehensive overview of the alloys under examination. Chapter 4 

delves into the application of ML in alloy development by covering predicted parameters, dataset 

sizes, ML optimization, and commonly used models. Mechanical property prediction, model 

accuracy, and alignment with first principles and CALPHAD are explored. We also address data 

generation challenges and presented the best suggested ML models. Chapter 5 reviews various 

ML deployment strategies, while Chapter 6 focuses on data and code availability in publications. 

Lastly, Chapter 7 concludes our journey by summarizing findings and providing an outlook for 

the field's future. 

The present review offers a specific perspective on ML-driven research within the domain of 

alloy development. It elucidates critical methodologies, applications, theoretical predictions, and 

experimental validations. Furthermore, it presents the results of various studies, comparing and 

discussing discrepancies and contradictions while identifying gaps in the existing literature. The 

primary objectives of this research endeavor are as follows:  

I. To gain a comprehensive understanding of the prevailing ML models and technologies 

employed by researchers to address multifaceted challenges in materials science research. 

II. To uncover underlying patterns and correlations among diverse material features. 

III. To analyze the structures and dynamics of ML approaches, as well as the intricate 

interconnections between model, structure, and property. 

IV. To discern the impacts and implications of various compositional elements, considering 

experimental procedures, with potential implications for decision-making and policy. 

V. To determine the optimal scenarios for utilizing experimental research data versus 

computational data. 

VI. To identify the ML models recommended by researchers for predicting desired alloy 

properties. 
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Throughout this study, data visualization techniques such as bar charts, pie charts, and sankey 

graphs are employed to enhance the clarity of the narrative. These visual aids provide a holistic 

perspective on the landscape of ML research within the materials science domain. It is worth 

noting that this review exclusively encompasses publications in the English language, with 

publications in other languages excluded from consideration. 

In summary, this paper addresses a critical juncture in materials science research, where the 

convergence of AI and ML is poised to reshape the landscape of materials discovery, 

development, and innovation. The insights presented herein have profound implications for 

researchers, policymakers, and practitioners seeking to harness the power of AI and ML in the 

pursuit of advanced materials with tailored properties and applications. 

 

2. Current ML development in the world 

Diverse national contingents of researchers have manifested distinct methodological inclinations 

in their research to harness ML for alloy development. This study has undertaken a 

comprehensive analysis, systematically extracting the first author's country of origin from each 

publication, thereby elucidating the myriad national strategies and approaches employed in the 

application of ML for advancing alloy development. Figure 1 shows a bar chart detailing 

publications analyzed in this review from 1995 to 2022, including the first authors’ countries. 

The graph shows that before 2012, a few papers used ML for alloy development while the 

number increased by time. It is worths to mention that ML studies regained scientific interest in 

late 2014 and the beginning of 2015 when the Google speech recognition program was already 

launched [4]. Publications within the domain exhibited a substantial upswing, notably in the 

years 2016 and 2017, with the USA at the forefront of this surge. Nevertheless, commencing 

from 2020, China surpassed the USA in terms of the volume of papers published in this field. It 

worth mentioning that in this research, the affiliated country of the first author of every 

publication is considered the country of that publication. 

Figure 2 shows the distribution of publications across different journals in the field of using ML 

in alloy development. Notably, a significant number of journals cover this topic, with 67% of the 

papers distributed among various journals, demonstrating a wide dissemination of research. It's 
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evident that publication in this field is not confined to a limited number of journals. 

Computational Materials Science, in particular, has a notable 10% share of publications, 

highlighting its significant contribution to the literature in this domain. 

 

3. Alloys  

The allocation of scholarly interest among countries exhibits intriguing patterns, emphasizing the 

diverse approaches of distinct national research bodies. Figure 3 shows a sankey diagram 

illustrating the various alloys and materials studied by ML by every country. Most of cited 

researchers in this work have studied steel, HEA, and Aluminum (Al) alloys. The vast majority 

of research contribution are held by China and USA, followed by the UK, India and the rest of 

the world. Steels, HEA and Al-based alloys consist of large number of publications due to their 

obvious industrial importance. Range of alloys, Catalysts, Ti-based alloys, and Metallic glasses 

are also of great interest for most of these countries. The term 'Range of Alloys' indicates the 

publications that looked at a range of alloys instead of focusing on one alloy with a single base 

metal. It is noticeable that China’s publications are focused more on steel, HEA, metallic glass, 

and magnesium alloys, while the USA focuses on steel, catalysts, and HEA.  

In their publications, researchers from the USA have frequently explored a wide range of alloys, 

a practice less commonly observed among researchers from other nations. This highlights a 

notable difference in the approach to alloy consideration, with USA-based researchers 

demonstrating a penchant for encompassing multiple alloys within a single publication, a 

tendency not as commonly shared by their counterparts from other countries. The sankey 

diagram offers a comprehensive visual representation of how different countries engage in ML 

research pertaining to various alloys and highlights distinctive research among these nations. 

Further elaboration on the research about each specific alloy is presented in this chapter. 

This chapter examines the alloys studied in this research and demonstrates the required 

properties of these alloys, as well as presenting the approaches researchers have employed to 

address these challenges. 
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3.1 Aluminum alloys 

Aluminum-based alloys are widely used in many applications, such as the aerospace and 

automotive industry, because of their low density, high strength, and low production-

maintenance costs. Compared to steel, aluminum-based alloys have a strength disadvantage. Al-

alloys are heat-treated to attain high strength, with experimental procedures often needing to be 

optimized or difficult to control [5]. Modeling is valuable for reducing experimental procedures; 

however, it bears its own inherent limitations. So, researchers have employed ML techniques to 

address this challenge. 

For instance, the modeling of crystal nucleation in aluminum or amorphization, requires the 

construction of interatomic interactions that can reproduce the properties of both the solid and 

the liquid states. The simulation necessary to capture such a mechanism may take much larger 

capacity beyond the capability of first-principles calculations. Marchand et al. [6] have presented 

the first family of NN potentials to describe the binary Al-Cu system with comparable accuracy 

to the first-principles method. The newly developed potentials could be used to predict elastic 

constants, solid solution of dilute systems, interfaces, stacking faults, intermetallic compounds, 

and defect energies. This demonstrated the clear advantage of using the ML approach. Also, 

Jakse et al. [7] have studied the solidification process in aluminum by simulations on the atomic 

scale by coupling classical molecular dynamics simulations and a NN. A set of configurations 

relevant to solidification phenomena were generated. 

Özhavak et al. [8] have used a Convolutional NN algorithm, ANN, and Random Forest (RF) 

regression to determine the change in mechanical properties of AA2024 aluminum produced 

with different manufacturing methods after aging at various temperatures and times. The 

Convolutional NN obtained the best accuracy of 93%. 

Kumar et al. [9] studied the performance of decision tree, RF, and XGBoost ML models to 

determine the best classifier model for a friction stir welded AA 6061-T6 aluminum alloy. The 

XGBoost model showed a maximum accuracy of about 96% among the three models, which 

shows promising results that help lower the time and cost of manufacturing these alloys. Yao et 

al. [10] have proposed a parameter identification method based on semi-coupled damage 

mechanics and ML to describe the fracture behavior of 6061 aluminum alloy. A set of reliable 



ACCEPTED M
ANUSCRIP

T

parameters were generated to circumvent extracting the stress state evolution from the calibrated 

specimens. Due to the large demand for its wide applications, modern parts based on 6XXX 

series aluminum are recently produced by additive manufacturing techniques, where developing 

ML predictions is essential for 3D printing parameter optimization. Based on Gaussian process 

regression, Liu et al. [11] have developed a ML approach to identify the optimized processing 

window for laser powder bed fusion. The newly predicted processing parameters helped to print 

dense new AlSi10Mg alloys with a higher ultimate tensile strength between 297 to 389 MPa, and 

an elongation to failure from 6 to 10%. Yanase et al. [12] have examined the densification 

behavior and microstructural formation of the Al–10 mass %Si–0.35 mass %Mg alloy fabricated 

using the Selective Laser Melting method based on experimental work and NN ML approach. 

The combined techniques have identified the required processing factor which quantitatively 

influences the behavior. Using a back-propagation NN algorithm, Chun et al. [13] could 

accurately predict manufacturing parameters for aluminum alloys, such as flow stress, roll force, 

and roll torque. 

Li et al. [14] studied the relationship between alloy composition, process parameters, and 

mechanical properties, using a genetic algorithm combined with backpropagation and radial 

basis function NN to develop the properties of 7XXX aluminum alloys. The accuracy of 

combining the NN with the genetic algorithm was superior to that of those predicted by the NN 

and radial function. Predicted fine and dispersed spherical precipitates formed after aging heat 

treatment were observed experimentally by SEM and HRTEM, confirming that their mixed 

approach may greatly assist metallurgists in developing 7XXX aluminum alloys. Aydin [15] has 

studied the volume loss of AA7075 with 5 wt% Al2O3 composites under load, using linear 

regression, support vector regression (SVR), ANN, and extreme learning machine for the 

prediction. The extreme learning machine approach showed the highest R2 coefficient compared 

to other methods, which shows the model's remarkable ability to predict the wear behavior of 

aluminum composites. Decke et al. [16] have focused on predicting the hot deformation behavior 

of thermo-mechanically processed precipitation-hardenable aluminum alloy AA7075 based on a 

comparative study of modeling techniques based on ML and the Zerilli–Armstrong modeling. 

They could predict stress-strain curves using the gradient boosting model as their best model 

with an accuracy of 91%. 
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Haghdadi et al. [17] have estimated the high-temperature flow behavior of a cast A356 

aluminum alloy using a feed-forward back propagation NN with a single hidden layer composed 

of 20 neurons for a series of isothermal compression tests. The results demonstrate that the NN 

model is a robust tool for predicting the high-temperature flow behavior of cast A356 aluminum 

alloy. 

Shang et al. [18] reported the characterization of the dynamic hardening behavior of an 

aluminum alloy, sheet of 5182-O (wrought alloy), for strain rate and temperature coupling effect. 

Polynomial algorithm and ANN were used to describe the highly non-linearity and coupling of 

strain hardening. The study found that the network structure, parameter setting, and optimization 

algorithm have affected the ANN prediction accuracy. Using ML, Soofi et al. [19] have 

estimated the properties of commercial wrought aluminum alloys. Starting from a small dataset 

of 236 features, six mechanical and nine technological properties, they could capture 

composition/processing-property relations. 

Takara et al. [20] used multiple regression with supervised learning to predict the linear 

relationship between voids and their corresponding elemental compound composition. 

Lian et al. [21] have predicted the fatigue life of aluminum alloy using a ML framework 

combined with empirical formulas and data-driven models. They used gradient boost regression 

to predict the fatigue life of seven different series of aluminum alloys, achieving a great 

improvement compared to conventional models. Their findings successfully demonstrated the 

advantages of the ML approach, which provides a unique way to predict fatigue life to reduce the 

time and cost of experiments. Similarly, Chun et al. [22] have proposed a RF ML method to 

predict structural damage from vibrational measurements in aluminum alloys. 

Several reports about the ML prediction of equilibrium phases, composition, and thermal 

transport were published. Jiang et al. [23] have developed a new ML model to predict the quasi-

phase equilibrium equations for multicomponent alloys to reduce the long time required to solve 

such equations. A NN model of three inputs, four outputs, and a hidden layer of 150 nodes was 

tested to study the quasi-phase equilibrium during the isothermal solidification of Al-Cu-Mg 

alloy. Dai et al. [24] classified five types of aluminum alloys using laser-induced breakdown 

spectroscopy combined with principal component analysis and least-squares support vector 
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machine (SVM) algorithm. An accuracy of 100% was achieved, suggesting the model is an 

efficient approach to identifying aluminum alloys. In a similar way, Wang et al. [25] have 

studied thermal transport in aluminum with precipitate morphology. They developed a Finite 

Element Method to create a database. A correlation analysis was conducted from the obtained 

data to evaluate the importance of various precipitate features. Thermal conductivity was 

predicted by linear regression, Bayesian Ridge, Kernel Ridge, Nearest Neighbors, and RF. In 

similar way, ML can uncover hidden patterns and correlations that elude traditional approaches. 

Thus, the heightened understanding enables the precise manipulation of alloy characteristics to 

achieve desired outcomes. 

 

3.2 Titanium alloys 

Researchers published a range of publications on adopted ML and data-driven strategies to 

further develop titanium alloys. Malinov and Sha [26][27] have proposed a ML model based on 

ANNs for modeling correlations between processing parameters and properties in titanium alloys 

and γ-TiAl-based alloys. Combined with computer programs for optimization of the inputs, the 

ANN models could be powerful tools for practical applications in solving various problems in 

titanium alloys. 

Zhu et al. [28] have proposed a titanium alloy design method based on experiments and ML. The 

work discusses the effect of Mo and Cr on the microstructure and mechanical properties of 

newly developed titanium alloys (Ti–3Al–2Nb-1.2V–1Zr–1Sn-xCr-yMo). The predicted results 

agree with experimental values. The mechanical test result shows an excellent balance of 

strength (Yield Strength~1200 MPa) and plasticity (Elongation~12%) can be achieved after the 

solution treatment at 750°C and ageing at 550°C for 6 hours. Using heat assisted single-point 

incremental forming, Bautista-Monsalve et al. [29] have reported ML-based procedure for the 

determination of the surface finish quality of titanium alloy parts.  

Currently, additive manufacturing technology is widely used in fabricating titanium alloy parts 

for aerospace applications. Zhan et al. [30] have reported a Data-driven fatigue life prediction in 

additive manufactured titanium alloy. The paper presents a damage mechanics-based ML 
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framework for additive manufacturing titanium alloy's data-driven fatigue life prediction. The 

work presents a theoretical framework for the damage mechanics-based fatigue models and a 

strategy to compute the damage and the construction process. A RF model was used, and the 

predicted results were compared with the experimental data to verify the proposed method. Li et 

al. [31] have presented ML-based very-high-cycle fatigue life prediction of Ti-6Al-4V alloy 

fabricated by selective laser melting.  Sun et al. [32] have reported developing a constitutive 

relationship model of Ti600 alloy using an ANN.  

To capture the effect of alloying elements and the influence of the heat-treatment on the stability 

of titanium alloys, a ML approach based on an ANN modeling was proposed by Reddy et al. 

[33].  

Kwak et al. [34] have predicted the mechanical properties of γ-TiAl alloys produced using a RF 

regression model.  The accuracy of the prediction results was evaluated using the R2 value. The 

R2 values were 0.9336, 0.9902, 0.8104, and 0.9810, for the tensile strength, elongation, 

nanoindentation hardness, and interlamellar space, respectively.  

Ti-6Al-4V titanium is a difficult-to-cut material used in critical applications in the aerospace 

industry requiring high-reliability levels. Selecting the cutting conditions can improve the 

machinability of the alloy, including the generation of compressive residual stresses. The work 

by Outeiro et al. [35] proposed orthogonal cutting tests of Ti-6Al-4V titanium were performed, 

and a designed experiment was used to investigate the influence of the cutting conditions on 

residual stresses, the forces, and the chip compression ratio. The residual stress was only 

measured for selected cutting conditions due to the time consumed and the high cost. A ML 

regression model was applied to predict the residual stresses for other cutting conditions. Wu et 

al. [36] have proposed an ensemble NNs model that is developed for targeting the effects of 

alloying elements on phase stability and low Young's modulus of Ti alloys. The work also 

provided guidelines for future material designs considering the stability of β phase and discussed 

the effects of some alloying elements, such as Nb, Zr, Mo, Sn, and Ta. 
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3.3 Magnesium alloys 

Improving the strength of magnesium alloys is still a challenge that is limiting its potential 

applications as a lightweight metal. ML can help in the development of high-strength Mg alloys. 

Liu et al. [37] have used a surrogate model to optimize the composition and heat treatment 

conditions of Mg cast alloys. A new alloy with the composition of Mg-10.0Al-2.0Sn-2.0Zn-

0.1Ca-0.1Mn (at. %) was identified, aged at 200°C for 96 hours. The alloy shows a Vickers 

hardness value superior to the conventional alloy.  

Because of many variances from different suppliers, the mechanical properties of AZ31 

magnesium alloys are hard to control. Xu et al. [38] proposed a ML approach using the ANN and 

the SVM algorithms to understand better the relationship between alloy compositions, processing 

parameters, and mechanical properties. The yield strength, ultimate tensile strength, and tensile 

elongation were predicted by both models, and a new AZ31 extruded alloy was fabricated. 

Ibarra-Hernández et al. [39] have used a combination of a NN algorithm with metaheuristic 

structural global search algorithms to screen the Mg–Ca binary system for new (meta)stable 

alloys. This allows for efficient exploration of the potential energy surface beyond the possibility 

of the traditional searches based on ab initio calculations. Some low-enthalpy structures were 

identified at different stoichiometries.  

Gui et al. [40] have used a novel Mg-4Y-3Nd-2Sm-0.5Zr alloy prepared to explore the twin 

nucleation behavior of Mg alloys by combining ML and electron backscattered diffraction 

techniques. Three ML algorithms, including gradient boosting, ANN, and the proposed 

relevance-based ensemble scheme, are used to model to predict the twin nucleation. The AUC 

score was 0.880, 0.879, and 0.756 for the proposed relevance-based ensemble scheme, ANN, and 

gradient boosting, respectively. 

Wei et al. [41] have collected 150 pieces of the work function of Mg-based solid solutions and 

Mg-containing second phases to build an initial dataset estimated by density functional theory. 

Fourteen features were used as input variables. Four ML models, including multiple linear 

regression, support vector regression (SVR), gradient boosting regression tree, and extreme 
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gradient boosting tree, were used to predict the work function of the second phase. The result 

shows that the SVR model has the highest accuracy and best generalization ability. 

Fang et al. [42] have used a linear regression model to investigate the relationship between the 

widths of supercooled liquid regions of Mg-based bulk metallic glasses and bond parameters. 

They deduced an equation for the first time to predict whether Mg-based multicomponent alloys 

can form metallic glasses. 

To analyze the solution behavior of a second element in the primary phase of α-Mg, Chen et al. 

[43] have collected the interaction features of solutes and Mg obtained from first-principles 

calculation, the intrinsic physical properties of the pure elements and structural features. They 

have used RF and decision tree algorithm methods and found that the solution behavior of an 

element in α-Mg can be affected mainly by four features: formation energy, electronegativity, 

non-bonded atomic radius, and work function. 

 

3.4 Copper, cobalt, and additive manufactured alloys 

Qiao et al. [44], Wang et al. [45], Rovinelli et al. [46], Wang et al. [47], Zhang et al. [48], Seko 

et al. [49] used various ML methods, such as ANNs, GAs, Bayesian networks, RFs, etc., to 

predict and optimize the properties of copper alloys with different alloying elements, such as Co, 

Ni, Si, Cr, Zr, etc. These studies used different features to represent the alloys, such as elemental 

composition, thermodynamic data, microstructural parameters, etc., and different ML models to 

capture the non-linear relationships between the features and the properties. 

Another application of ML methods for copper alloys is to design alloys with specific colors for 

art and decoration purposes. For example, Reitz and Barojas [50], Oh et al. [51], Chintakindi et 

al. [52], Yang et al. [53] used various ML methods, such as Monte Carlo simulation, feature-

assisted ML algorithms, principal component analysis (PCA), hyper-parameter optimization, 

etc., to predict and optimize the color values of copper alloys with different alloying elements, 

such as Al, Zn, Sn, etc. These studies used different features to represent the alloys, such as 

elemental composition, annealing temperature, color coordinates, etc., and different ML models 

to capture the complex color phenomena. 
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A third application of ML methods for copper alloys is to model the mechanical behavior and 

microstructural evolution during deformation and heat treatment processes. For example, Mayeur 

et al. [54], van Nieuwenburg et al. [55], Sun et al. [56], Fu et al. [57], Kautz et al. [58], 

Grabowski et al. [59] used various ML methods, such as crystal plasticity model with dislocation 

transport (CPDT), confusion matrix method (CMM), DNN, sensitivity analysis and ML 

surrogate model (SMLSM), image-driven ML approach (IDMLA), ab initio vibrational free 

energies including anharmonicity (AFEA), etc., to predict and optimize the mechanical 

properties and microstructural features of copper alloys with different alloying elements, such as 

Ni, Co, Si, Mo, etc.  

 

3.5 High-entropy alloys 

HEA are the vast majority of alloys treated by ML before aluminum alloys and steels. This top 

place is gained because of the complex nature of the alloys and a considerable number of 

possible configurations that could never be all calculated or fabricated. 

Chang et al. [60] have utilized an ANN to predict the composition of HEAs applied to a non-

equimolar AlCoCrFeMnNi to achieve high hardness. The work successfully predicted new 

compositions of AlCoCrFeMnNi-based HEAs, exhibiting hardness values higher than those 

available in the literature. 

George et al. [61] have reported the implementation of gradient boosting trees ML algorithm 

trained on nearly 7000 ordered inorganic HEAs, with a combined experimental and 

computational approach based on in-situ neutron-diffraction characterizations and ab initio 

calculations, to explore and predict the elastic moduli of single-phase face-centered-cubic 

Al0.3CoCrFeNi HEAs. ML models trained on a large dataset could accurately predict the elastic 

properties of the alloys. The ML models demonstrated the dependence of bulk and shear moduli 

on several material features, which can help tune elastic properties in HEAs. 

Qingfenget al. [62] have studied the eutectic formation of the Al-Co-Cr-Fe-Ni system as an 

example representative of HEA via an ANN algorithm. Essential elements and strongly 
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associated elements were identified. Cr is strongly associated with Al, Ni, Co, and Fe. These 

findings can accelerate the employment of the algorithm in designing more complex alloys. 

Menou et al. [63] have integrated a computational HEA design. Their strategy combines a multi-

objective genetic algorithm with statistical criteria to guide the formation of a single phase, 

supplemented by computational thermodynamics (Thermo-Calc) to study solid solution-

strengthening models. Many of non-equimolar face-centered-cubic single-phase alloys are 

designed. Best designed alloys are synthesized experimentally. 

Also, the Menou et al. [64] used a multi-objective optimization genetic algorithm combining 

solid solution hardening and thermodynamic modeling (CALPHAD) with data mining to design 

HEA. The approach found the best stable alloys and designed several optimal HEA. 

Al35Cr35Mn8Mo5Ti17 (at.%) is chosen for experimental validation. 

Zhuang et al. [65] have developed a method integrating a multicomponent diffusion-multiple and 

ML to study the effects of alloying elements, such as Ni, Al, W, Ti, Ta, Cr, Mo, and Nb, on the 

microstructures. 

A class of ML potential called Moment Tensor Potential (MTP) has been developed and used 

by Jafary-Zadeh et al. [66] to predict the structure and elastic properties of the multi-principal 

element alloy. 

Rickman et al. [67] have proposed a ML approach using supervised data fed to two 

complementary algorithms: multiple regression analysis and a genetic algorithm. The 

methodology is validated after identifying promising multi-principal elements with high 

hardness. 

A study by Ozerdem and Kolukisa [68] has employed an ANN approach to predict the 

mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys. The ANN used multi-layer perceptron 

architecture with a back-propagation algorithm. The compositions were used as input, and yield 

strength, tensile strength, and elongation were employed as outputs to be predicted. 

Zhang et al. [69] used molecular dynamics simulation combined with ML methods to study the 

mechanical properties of non-equiatomic Fe-Cr-Ni-Co-Mn HEAs. Molecular Dynamic 
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simulation provided a database describing the relationship between material composition and 

mechanical properties. These properties are trained and investigated using three ML models, 

including SVM, kernel-based extreme learning machine, and DNN, for predicting the yield 

stress. The DNN model outperformed other models for the classification of yield stress. 

Kostiuchenko et al. [70] have proposed a computational method for studying HEAs based on 

applying ML potentials derived from ab initio data in combination with Monte Carlo 

simulations. The approach is employed to study phase stability, phase transitions, and short-

range chemical order. 

Rao et al. [71] have integrated ML with density-functional theory, thermodynamic calculations, 

and experiments to predict high-entropy Invar alloys. The method led to the characterization of 

17 new alloys, where two were identified as high-entropy Invar alloys with low thermal 

expansion. 

Machaka et al. [72] have constructed a dataset based on 430 peer-reviewed experimental 

publications, including 40 metallurgy-specific predictor features. This study comprised eight ML 

classifiers: regression tree, linear discriminant analysis, naїve Bayes, generalized linear 

regression, RF, ANN, k-nearest neighbors, and SVMs. These classifiers were trained and 

evaluated to classify HEA solid solution phases across feature ensemble sizes.  

Zhang et al. [73] proposed a systematic methodology based on a genetic algorithm to select the 

ML model and materials descriptors from many alternative HEAs. Several HEAs were selected 

and experimentally synthesized. 

Batchelor et al. [74] have presented a theoretical method to find new active alloy electrocatalysts. 

Using the multicomponent Ir-Pd-Pt-Rh-Ru alloy, the alloy composition with the best predicted 

catalytic activity was found. 

Using the concepts of Louvain and modified particle swarm optimization (PSO) algorithms, Nia 

et al. [75] tried to find correlations between HEA descriptors to predict HEA candidates with 

similar functionality. The proposed method predicted the HEA phase composition with an 

accuracy of 93%. 
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The gradient-boosting regression model was used by Wan et al. [76] to map the oxygen 

reduction reaction catalytic activity of millions of reactive sites on HEA surfaces. The model 

showed high accuracy and generalization, accurately predicting the catalytic activities of 

numerous reactive sites on HEA surfaces. 

Clausen et al. [77] developed a methodology to predict the oxygen reduction reaction's net 

catalytic activity in Ag-Ir-Pd-Pt-Ru alloy. Based on ab initio calculations, a graph convolution 

NN is used to predict adsorption energies of *OH and *O.  

Mishra et al. [78] used ML models on design parameters using classification for HEA phase 

prediction. The ML models are RF, Stacked Ensemble, and SVM. The training dataset 

comprising 601 cast alloys is used with cross-validation for test data. The stacked ensemble was 

the best model, overperforming the SVM and RF.  

Wen et al. [79]  described a relationship derived from the electronegative difference of elements 

to characterize solid solution strengthening in the four HEAs: Al-Co-Cr-Fe-Ni, Co-Cr-Fe-Ni-Mn, 

Hf-Nb-Ta-Ti-Zr, and Mo-Nb-Ta-W-V. Their findings are based on ML methods involving 

feature construction and selection, which are essential to determining the most important 

descriptors. 

Aided by ML-based interatomic potentials, Zhou et al. [80]  developed an approach based on 

density-functional theory and computational thermodynamic integration to perform extensive 

screening in vast compositional space on an equiatomic HEA, Ta-V-Cr-W, and discovered the 

most stable ones, after comparing their free energies. 

Numerous other studies covering many applications in HEAs, have included predictions of new 

alloys [81], phase formations [82][83], heterogeneous Grain Structures [84], large and enhanced 

hardness [85][86], strengthening mechanisms [87],  formation energies [88], sublattice formation 

in Co-Cr-Fe-Ni [89], phase formations through considering the formation enthalpy and atom-size 

difference [90], configurational energy [91], quality prediction of additively manufactured alloys 

[45], stability and structure prediction of cubic phases [92], efficient exploration of the 

composition-phase space [93], the discovery of single-phase refractory [94], multi-objective 
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optimization [95], selective CO2 reduction to methanol [96] and discovery of high-entropy 

ceramics [97]. 

Different methods to design HEA were employed, such as thermodynamics and Gaussian 

process statistical analysis [98], mined from binary phase diagrams [99], statistical approaches 

[100] and feature engineering to characterize limited material datasets. 

 

3.6 Steel 

Similar to the developments and advances in aluminum and HEAs, a breakthrough in multi-

component steel design also requires a comprehensive understanding of complex multi-phases. 

This necessitates the systematic exploration and screening of numerous prospective 

configurations across extensive composition ranges, where ML methodologies have the potential 

to provide valuable assistance. 

Deng et al. [101], Wang et al. [47], Shin et al. [102], Geng et al. [103], Peng et al. [104], and 

Yang et al. [105] used ML methods to develop steel alloys and optimize their properties. These 

studies performed similar activities, such as predicting steel alloys' elastic properties, creep life, 

and atmospheric corrosion resistance. However, they differ in the specific alloys and properties 

studied and the ML methods used. 

Rakhshkhorshid and Sendesi [106], Zhan and Li [107], Thanush, et al. [108], Wang et al. [109], 

and Wang et al. [110] also used ML methods to develop steel alloys and predict their properties. 

These studies focused on predicting austenite formation temperatures, fatigue life, atmospheric 

corrosion rate, creep life, and molten salt corrosion resistance of steel alloys. 

ML methods have been used to predict various properties of steel alloys such as austenite 

formation temperatures, rolling force in cold rolling, and optimal design of alloy steels 

[26][111][112][113][114][115]. ML also used to predict deformation behavior, high-temperature 

deformation behavior, ductile damage in sheet metal forming, stacking faulting energy in 

austenitic steels, materials defects [116][117][118][119][120][121][122][123][124][125][126], 

porosity in metal-based additive manufacturing, flow stress in hot deformation, tensile strength 
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of alloy steels and high cycle fatigue performance of polycrystalline microstructures 

[127][128][129][130][131][132][133][134]. 

Fu et al. [57] and Rahnama et al. [135] used ML methods to predict various properties of steel 

alloys, such as grain structure after thermomechanical processing, kinetic modeling of a 

discontinuous precipitation reaction, vibrational free energies including anharmonicity for 

multicomponent alloys and the occurrence of interphase precipitation in High Strength Low 

Alloy (HSLA) steels. 

One of the main applications of ML methods for maraging steels is to predict the tensile strength 

and hardness based on the composition and aging temperature. For example, Guo and Sha [131] 

used an ANN to model the correlation between processing parameters and properties of 

maraging steels. They found that the aging temperature significantly influenced tensile strength 

and hardness. Rao and Prasad [132] used a NN approach to evaluate the flow stress of maraging 

steels during hot deformation. They found that the flow stress increased with increasing strain 

rate and decreasing temperature. Gocheva-llieva and Dobrev [133][134] used polynomial 

regression to study the tensile strength of alloy steels and found that the tensile strength 

increased with increasing carbon and manganese content. 

Another application of ML methods for maraging steels is to predict fatigue life and crack 

growth based on the microstructural features and loading conditions. For example, Paulson et al. 

[134] used data-driven reduced-order models to rank-order polycrystalline microstructures' high 

cycle fatigue performance. They found that the grain size, grain orientation spread, texture 

coefficient, etc., influenced the fatigue life. Fu et al. [57] used sensitivity analysis and a ML 

surrogate model to predict the grain structure of U-10Mo alloy after thermomechanical 

processing. They found that the grain size distribution was affected by the rolling temperature, 

reduction ratio, annealing temperature and etc. 

A third application of ML methods for maraging steels is to predict the precipitation kinetics and 

phase transformation behavior based on the thermodynamic data and kinetic models. For 

example, Kautz et al. [136] used an image-driven ML approach to model the kinetic behavior of 

a discontinuous precipitation reaction in a Fe-Ni-Cr alloy. They found that the precipitation rate 

was controlled by diffusion and interface migration. Grabowski et al. [59] used ab initio 
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vibrational free energies, including anharmonicity, for multicomponent alloys and found that the 

vibrational entropy significantly affected the phase stability of Fe-Ni-Cr alloys. Rahnama et al. 

[135] used ML to predict the occurrence of interphase precipitation in HSLA steels. They found 

that the composition, cooling rate, austenite grain size, etc, influenced the interphase 

precipitation. 

Deng et al. [101] have designed oxide dispersion-strengthened steel with a composition of Fe-

12%Cr-4.5%Al-2.0%W-0.3%Y2O3 (wt%) by a radial basis function ANN and prepared by hot 

isostatic pressing. They found a small amount of Y-Al-O composite oxide, and its average size is 

significantly larger than Y2O3. The tensile strength and elongation measured at room temperature 

and 700°C are consistent with the predicted values of ML.  

Wang et al. [47] have reported a ML approach using randomized trees and deep NNs to cluster 

expansion-generated data to predict the bulk and shear moduli of Fe-Cr-Al alloys. They found 

that the compositions and temperature are critical features in bulk modulus, while compositions, 

temperature, and the ordering effect are essential in shear modulus. 

By combining measured creep data of a high-temperature alloy and alloy features derived from a 

computational thermodynamic approach, Shin et al. [102] have proposed a methodology to 

predict new creep-resistant alloys. The method has highlighted important features essential to 

better understanding new alloy designs. 

A feedforward ANN model has been developed by Geng et al. [103] using relevant material 

descriptors, including chemical composition, to predict the hardenability of boron steel. The 

model has successfully predicted new steel with a good hardenability of 0.04% V-added boron 

steel.  

 

3.7 Amorphous, shape memory, metallic glass, and catalytic materials  

In the past, scientists and researchers have relied on domain knowledge, trial and error, and luck 

to obtain materials with optimized composition and process. Ling et al. [137] have proposed a 

methodology, called RFs with Uncertainty Estimates for Learning Sequentially (FUELS), built 
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on an RF model, that can accelerate getting desirable materials by fitting data-driven models to 

experimental data. 

Li et al. [138] have successfully generated and optimized ML models to predict the elastic 

properties of amorphous alloys by implementing six different algorithms, including linear 

algorithms (Lasso and Ridge) and nonlinear algorithms (RF, Extreme Gradient Boosting, SVR, 

ANN). The predictions agreed with glass forming ability and plasticity prediction ternary 

amorphous alloy systems. 

Bulk-metallic glasses are a unique class of alloy materials utilized in various applications due to 

their attractive physical properties. Xiong et al. [139] have tested over 20 ML models to predict 

the properties of metallic glasses and amorphous metallic alloys. RF gave the best prediction for 

their study. The model predictions for a newly introduced dataset were in agree with the 

experimental results. 

Tang et al. [140] have used ML to accelerate the design of Fe–based amorphous alloys with six 

magnetic desired properties. Linear Regression, Support Vector Regression, Decision Tree 

Regression, ANN, and RF Regression are employed to build prediction models. The ANN 

algorithm showed the best predictability with an accuracy of over 90% while the prediction yield 

into the design of Fe83-B9-P3-C4-Nb1, which was verified experimentally. 

Artrith and Kolpak [141] have proposed an approach that combines site-based Monte-Carlo 

simulations to sample the composition space and molecular dynamics simulations for 

electrocatalysts suitable for sustainable energy applications. To describe the atomic interactions, 

they used ANN potentials to interpolate density-functional theory calculations. The equilibrium 

compositions at finite temperatures: 300 K and 500 K, are compared to the ground state 

configurations for Cu- Au nanoalloys. 

Mueller [142] presented a theoretical study of Au-Pd nanoparticles. Using a Bayesian approach 

to cluster expansions, he has calculated the equilibrium atomic structures, energies, and the 

electronic surface d-band centers across the entire range of compositions at different 

temperatures. The prediction error of the estimated formation energies was lower than the error 

relative to density functional theory (1 meV/atom). 
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Cao et al. [143] have developed a method based on cluster expansions and density functional 

theory that may facilitate the rational design of new catalysts. The method is allowing scientists 

to quickly predict the near-surface atomic arrangement and catalytic properties, giving them the 

possibility to identify the synthesizing conditions of the best alloys. 

Tran and Ulissi [144] have presented an automated computational screening approach, 

combining ML and optimization to guide density functional theory to predict electrocatalyst 

performance. They demonstrated the feasibility of this method by screening various alloys with 

different elements. 

Gao et al. [145] have built a model based on an overlap of ML and atomic positions to accelerate 

the estimation of formation energies of amorphous alloys and considerably reduce the cost of the 

required DFT calculations. The results with high accuracy could help to develop the Pd40-Ni10-

Cu30-P20 catalyst. 

Yang et al. [53] have simulated a NN model based on DFT calculations to predict the potential 

energies across the Cu–Pd–Au ternary space. With reasonable accuracy, the simulation results 

qualitatively agree with the experimental data for PdAu and CuAu. Other important studies 

reporting advanced ML models used in predicting properties of Ni-P based amorphous alloys 

[146], and shape memory alloys [147][148][149][150][151][152]. 

Cai et al. [153] have reported the progress of component design methods for bulk metallic glass. 

The group reported extensive studies on the development of glass forming alloys by ANN, to 

reduce transition temperatures [154], modeling for undercooled liquid region [155], and 

predicting of critical cooling rate [156]. 

Among other methodologies of using ML in predicting forming metallic glasses, a two-step 

fused ML approach was used by Zhang et al. [157]. They used multivariate analysis and 

classification using principal component analysis. Tripathi et al. [158], a support vector 

classification method for predicting the glass-forming ability of binary metallic alloys from 

compositions, randomly selected. Sun et al. [159] were employed the same method to predict 

elastic properties and glass-forming ability of bulk metallic glasses.  Xiong et al. [160], predicted 

the ability to exist in an amorphous state, critical casting diameter and supercooled liquid range 
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by using decision trees and RF. Ward et al. [161] and Ren et al. [162] developed accelerated 

discovery of metallic glasses using ML iteration and high-throughput experiments.  

In case of catalytic materials, ML used for a range of applications including the development of 

platinum-modified amorphous alloy surface catalysts [163], optimizing ternary catalytic alloy 

electrode for efficiency improvement of semiconductor performance [164], electrocatalytic for 

oxygen reduction [165], composition and activity of electrocatalytic nanoalloys in aqueous 

solvents [166], catalytic activity of nanoparticles [167], generated feature engineering of ML 

chemisorption modeling [168], bimetallic catalysts [169], scaling relations for the description of 

catalytic material and beyond [170], predicting binding energies by building convolutional NN 

for atomic surface structures [171], CO2 electrocatalysts [172], and nanocatalysts for oxygen 

reduction reaction [173]. 

Other studies have covered vast scientific research areas naming: Inconel 718 alloys [174], 

thermoelectrics [175], CO2 electroreduction catalyst screening [176], electronic density states 

[177], nanoclusters [178][179], casting parts [180], electrochemical curve simulation of 

corrosion and its application [181] and copper alloys [182]. The search for stable Cu-Pd-Ag 

nanoparticles [183] predicting stress hotspots in face centered cubic materials [184] search for 

rare-earth-free permanent magnets [185] were other research in the field. Predicted the Curie 

temperature of ferromagnets Nelson and Sanvito [186], the discovery of new half-heusler [187], 

low-thermal-conductivity of half-heusler semiconductors [188][189], elastic moduli of k-nary 

inorganic polycrystalline compounds [190], properties of metastable polymorph structures [191] 

amorphous LixSi [192] low-melting alloys [193] predicting properties of inorganic materials 

[194] and processing-structure relationships in soft magnetic alloys [195] were the next groups 

of research in the field. 

 

3.8 Ni-based superalloy 

Distinct groups could be identified upon careful examination of the abstracts of the selected 

papers on ML methods for developing nickel alloys. The first group comprises Tancret [196], 

Menou, et al. [197], and Conduit et al. [198], who shared a common focus on the design and 
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optimization of nickel alloys. These papers employed various computational tools, optimization 

algorithms, and techniques such as computational thermodynamics, genetic algorithms, and data 

mining to optimize alloy compositions and achieve desired mechanical and microstructural 

properties. 

The second group includes Jiang et al. [199], Chandran et al. [200], and Schooling et al. [201], 

who rather focused on the application of ML for a target property prediction. These papers 

explore lattice misfit prediction, estimation of interface energy, and modeling of fatigue 

thresholds in nickel alloys. They leverage ML algorithms, such as SVR, NNs, and neuro-fuzzy 

networks, to accurately predict and analyze several material properties. Taylor and Conduit 

[202]  have used Gaussian process regression ML to predict good properties for laboratory and 

commercial Ni-based superalloys. Wu et al. [203] proposed a novel methodology for classifying 

multi-principal element alloys with excellent strength–ductility. They predicted a yield strength 

of more than 1 GPa and a ductility of over 20%. Islam et al. [204] have employed a NN in the 

ML framework to gain insights into designing multi-principal element alloys (MPEA) to 

recognize the underlying data pattern using an experimental dataset to classify the corresponding 

phase selection in MPEAs.   

 

4. ML and alloy  
 

This chapter presents the approaches of researchers using ML algorithms to address the 

challenges in alloy research. Their strategies for selecting predictive parameters, dataset size, and 

ML model optimization are examined. The most commonly employed ML models, including 

ensemble techniques and ANN, are also investigated. Furthermore, the chapter explores 

methodologies for designing and predicting mechanical properties and assesses the accuracy of 

ML models. Additionally, it delves into the utilization of first-principles, CALPHAD, and 

thermodynamics in related research. The challenges of data generation, high-throughput 

approaches, and image processing are discussed in detail. Finally, the most effective ML models 

are presented. 
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4.1 Predicted parameter  

Predicted parameter, country and alloy 

Choosing the right predicted parameter is crucial because ML is utilized to optimize specific 

alloy properties, a consistent focus in reviewed papers. The sankey diagram of Figure 4 is 

structured with distinct columns for countries, predicted parameters, and the studied alloys. 

Notably, China emerges as a preeminent contributor, accounting for the highest volume of 

publications, dedicating 40% to the prediction of physical properties, 45% to mechanical 

properties and 15% on other parameters. In contrast, research publications from the USA allocate 

35% toward physical properties, 26% toward mechanical properties, and 39% toward various 

other parameters. Significantly, a substantial proportion of research pertaining to catalytic 

properties (46%), crystal properties (77%), and process parameters (75%) originates from USA 

researchers. In the case of the United Kingdom, 50% of their research endeavors are centered on 

the prediction of physical properties, while 33% are focused on mechanical properties. 

In addition to the conventional single-parameter prediction approach, an alternative strategy has 

surfaced, wherein a combined and integrated approach is employed to simultaneously predict 

both physical and mechanical properties. This innovative methodology is exemplified in the 

references [37][44][12]. 

This collective analysis suggests that while researchers from diverse countries engage in 

predicting a spectrum of alloy properties, the USA exhibits a proclivity for a more extensive 

range of parameter prediction when employing ML techniques compared to their international 

counterparts. This implies a certain level of diversification and specialization in the global 

research landscape, with implications for the unique research priorities and strengths of each 

contributing nation. 

Figure 4 reveals a comprehensive analysis of predicted parameters, encompassing a range of 

properties including mechanical and physical properties across a diverse array of alloys. Notably, 

the research landscape displays distinct tendencies, with 57% of studies focusing on steel, 58% 

on aluminum alloys, and 57% on titanium alloys to predict the mechanical properties. In 
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contrast, the prediction of physical properties is notably prevalent in specific domains, with 25% 

of steel research, 65% of HEA investigations, 17% of aluminum alloys’ research, and 67% of 

metallic glass studies concentrating on this aspect. A salient observation pertains to the strong 

inclination among studies that encompass multiple alloys, where 60% of such research endeavors 

prioritize the prediction of physical properties, exemplifying the multifaceted nature of the 

research paradigm. 

 

Predicted parameter and ML model 

Various ML models are employed for predicting specific alloy properties and researchers are 

divided in choosing ML models to predict alloy properties. The sankey diagram in Figure 5, 

shows the associations between predicted parameters and the corresponding ML models 

employed for prediction. 38% of researchers utilize NN for predicting mechanical properties, and 

22% for predicting physical properties. An observed preference is noted for Linear Regression, 

where 60% of researchers employing this model for mechanical property prediction. Moreover, 

40% of researchers resort to NN for predicting catalytic properties. Interestingly, 66% of 

researchers harness Gaussian Process to predict physical properties. 

Further analysis reveals that predominantly, NN, RF, and SVM constitute the preferred ML 

models that collectively representing 20% of all models employed. Notably, NN is frequently 

utilized, with 40% of its applications dedicated to predicting both mechanical and physical 

properties. In the case of RF, 40% of its applications focus on predicting physical properties, 

while 40% are oriented toward mechanical properties. SVM allocations reveal 38% for 

mechanical property prediction and 34% for physical property prediction. 

The co-utilization of ML models for predicting both mechanical and physical properties is 

evident that is highlighting the adaptability and utility of these models in alloy research. 

Researchers exhibit diverse preferences for ML models, and while certain models are 

specialized, others, like Linear Regression, have specific applications in the eyes of researchers. 
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4.2 Large/small datasets, and raw data collection 

The size of the dataset has a significant impact on the accuracy of ML models. A larger dataset 

can improve model accuracy by reducing overfitting and increasing generalization. However, 

most of dataset provided from metallurgy for ML applications are small and limited to few 

samples. Overfitting occurs when a model is trained too well on a small dataset and performs 

poorly on new data. A larger dataset can also enhance the robustness of a model by making it 

more resistant to noise and outliers. However, collecting large datasets of alloys can be 

expensive and time-consuming. One of most robust methods in materials search adapted for 

small dataset is based on a trade-off between an exploitation (ML model) and exploration 

(uncertainties) approaches. In this regard, Xue et al. [205] have developed an adaptive design 

strategy, coupled with experiments, that can accelerate the discovery process of NiTi-based 

shape memory alloys. 

Several initiatives have emerged to build materials databases due to the Materials Genome 

Initiative, data-management policies enforced by funding agencies, and the recent awareness 

within the materials community of the positive impact of data sharing and dissemination. A wide 

range of databases, both empirical and computational, have become available that cover a 

diverse set of materials properties such as structures, formation energetics, thermodynamic phase 

diagrams, and electrical and mechanical properties across different material classes, including 

metals, ceramics, alloys, glasses, 2D materials and nanocomposites [62]. Table 1 shows some 

notable data repositories and their application in the studied publications. Although a few of 

these data repositories are frequently used by researchers, a significant number of them remain 

largely unnoticed. It's intriguing to note that researchers often struggle to create more data to 

make their ML models better, even though there's a lot of unused data in existing databases. 

We'll delve deeper into this in Chapter 7, which titled 'Data and Code Availability'. 

Researchers are facing a significant challenge arises in forming the libraries used for ML 

predictions. The most likely scenario is to consider multiple databases specialized around a 

specific type of desired data, e.g., first-principles calculations, crystallography, mechanical 

properties, Scanning Transmission Electron Microscopy (STEM) imaging, etc. Having open, 
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well-documented, and standardized dataset models is essential in all cases to enable better 

integration [206]. 

Despite presenting intriguing research findings, some attempts in this review did not yield 

successful outcomes. One such endeavor was to compare the sizes of datasets used in 

constructing ML models. However, making such comparisons among published papers often 

proved challenging, as several studies did not provide information about the size of their 

datasets. In cases where data sizes were reported, there was considerable variability. For 

example, Tang et al. [140] utilized a dataset comprising 2083 inputs representing 36 different 

elements, while Yan et al. [94] mentioned 1807 entries. This is while some studies indicated just 

the number of rows and columns of the datasets [207][208]. These disparities made it difficult to 

establish clear dataset size comparisons. As a result, the dataset sizes often remained unreported. 

It would be beneficial for future research to standardize and report dataset sizes consistently for 

better comparisons. 

 

4.3 ML optimization: Feature selection and hyperparameter tuning 

Feature selection is a process where the most relevant features in a data are automatically 

selected. Hyperparameter tuning is the process of selecting the optimal set of hyperparameters 

for a learning algorithm [209]. Evaluating a model means analyze how it will perform on the test 

dataset. For instance, ML data scientists train their models and compare how well it generalizes 

utilizing the test set. It is supposed that they selected the best model configuration, but now they 

must apply some regularization to avoid model overfitting. The main question is, how do they 

choose the value of the regularization hyperparameter? One option is to train models using 

different values for this hyperparameter, by running hyperparameter tuning. Most publications 

do not apply feature selection or processing and hyperparameter tuning to their models. Some 

only highlighted their feature selection [24][29][31][34][140], and others only tuned their model 

hyperparameters [38][40] or used default settings [102][210]. Studies considering both feature 

selection and hyperparameter tuning are rare [2][11][16][19]. The most used hyperparameter 

search approaches are the grid search method with cross-validation [21] or the random search 
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method with cross-validation [36]. These all mean the research community could benefit from 

more comprehensive and systematic approaches to model refinement. 

 

4.4 Ensemble techniques 

Suppose a complex question presented to thousands of random persons, then their answers are 

collected. Generally, their collective answer is better than an answer from an expert. This is 

called the wisdom of the crowd. Similarly, if a material property is predicted by using a group of 

predictors (such as classifiers or regressors), often better predictions are carried out than the best 

individual predictor. A group of predictors is called an ensemble, and the technique is called 

ensemble learning. An ensemble learning algorithm is also called an ensemble technique. For 

example, Yan et al. [128] used 3 ensemble models to predict hardness of steel. A typical example 

of ensemble learning is RFs which perform better than individual decision trees [209]. RF is 

employed in a variety of alloy development research that is discussed later sections in this 

chapter.  

 

4.5 Artificial Neural Network 

ANNs are ML models inspired by biological neuron networks in our brains [209]. ANNs have 

gradually become quite different from their biological cousins. They are versatile, robust, and 

scalable, ideal for tackling large and highly complex ML tasks such as classifying billions of 

images, powering speech recognition services, or recommending the best videos to watch to 

hundreds of millions of daily users. 

A massive quantity of data is nowadays available to train ANNs in different fields, and ANNs 

frequently outperform other ML techniques on vast and complex problems. The significant 

increase in computing power since the end of the 1990s and the beginning of the 2000s, also 

thanks to the gaming industry, which has stimulated producing powerful GPU cards, made it 

possible to train large ANNs in a reasonable amount of time [209]. 
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A required large dataset, which most cases not available for particular materials or alloys, is one 

of the main theoretical limitations of ANNs. Also, many researchers thought that ANN training 

algorithms would likely get stuck in local optima. Still, this is not a big problem in practice, 

especially for more extensive ANNs: the local optima often perform almost as well as the global 

optimum [209]. ANNs had slow progress because of their complexity and lack of interpretability 

of their results. Nevertheless, this did not stop more attention toward them, resulting in more and 

more improvement and even more unique predictions. 

It's essential to note that, the terms 'neural network' (NN), 'artificial neural network' (ANN), and 

'deep neural network' (DNN) are not used interchangeably in this research because it is important 

to use the terminology that accurately describes the type of network you are discussing. 

 

4.6 Design and prediction of mechanical properties 

Researchers used ML to enhance design of experiments including developing high-throughput 

rapid experimental alloy development [211], proposing a general experimental design [212], 

maximin and centroid design strategies [213], improving alloy design efficiency [214][215] and 

catalyst design [216]. 

Estimating the mechanical properties (e.g., Yield strength) of an indented material is often 

challenging. Conventional optimization techniques are generally unable to yield accurate values. 

Fernandez-Zelaia et al. [217] have proposed combining a Gaussian Process surrogate model 

using finite element models of spherical indentation, a Bayesian optimization and Markov Chain 

Monte Carlo sampling. The efficiency of the approach was tested against the experiment with 

good agreement.  In a separate instance, ML models were applied to anticipate the tensile 

strength of metallic materials subjected to hydrogen exposure [218]. Additionally, ML was 

employed to classify stress hotspots in another case [219]. 
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4.7 ML models and accuracy 

In Figure 6, a sankey diagram illustrates the relationship between ML models and the alloys 

under study. Notably, NN, RF, and SVM, which are the most frequently employed ML models, 

are used to predict parameters across a diverse array of alloys. This indicates that researchers do 

not confine themselves to a particular ML model when investigating specific alloys. Notably, 

steel, HEA, aluminum, nickel, and range of alloys (researches that encompassing a range of 

alloys within a single paper), collectively account for 50% of the papers employing ML in alloy 

development. Furthermore, it is observed that 18% of steel research and 33% of aluminum 

research employ NN as their preferred ML model. The graphical representation underscores that 

researchers do not impose limitations on the choice of ML models for specific alloys, resulting in 

a relatively equitable distribution of models across the various alloys studied. 

Various ML models such as ANNs, SVMs, and decision trees have been applied to the alloy 

development process. These models can be used to predict the properties of an alloy based on an 

optimal composition for a given set of desired properties. 

 
4.8 ML, first-principles, CALPHAD and thermodynamic approaches  

Inputs derived from first-principles calculations [59][150] and thermodynamic modeling 

methods such as CALPHAD [211][214] have been heavily used in ML applications in alloy 

research. First, theoretical modeling can generate big data sets for ML models. Theoretical 

modeling calculations are heavy and slow for computing machines, while similar calculations of 

ML can be performed faster in similar computing machines. Secondly, traditional modeling 

methods can be used to validate the outcome of the ML models. Both advantages show how 

traditional modeling and ML can balance each other. 

One approach to using ML in alloy development is first to gather a large dataset of alloy 

compositions and their related properties. This dataset can then be used to train an ML model, 

which can then be used to make predictions about the properties of new alloy compositions. The 

accuracy of the model can be improved by increasing the size and diversity of the training 

dataset and by hyperparameter tuning of the ML model. 
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Another approach is to use an evolutionary model, such as genetic models [196][197], to search 

for the optimal alloy composition. This approach generates and evaluates an initial population of 

alloy compositions based on their predicted properties. The compositions that perform best are 

then used to generate a new population, which is again evaluated, and the process is repeated 

until the optimal composition is found. 

 

4.9 The challenge to generate data 

Research shows that the accuracy of ML models can differ even with the same data set 

[220][221][222]. Each ML model has its unique structure with underlying mathematical concepts 

and relevant libraries. Therefore, it is essential to identify the best-fit model by critically 

analyzing performance parameters before applying it to real-world scenarios. Such an approach 

in ML model selection is a promising methodology with minimal effort to discover novel alloy 

compositions compared to conventional alloy development procedures. 

Results of the published papers show that the accuracy of ML models can differ even with the 

same data set. So, different accuracies are reported in a single article. Table 2 shows the pros and 

cons of using some of the ML models. Researchers are encouraged to make informed ML model 

selections by weighing these factors. Highlighting models that outperform their counterparts, this 

paper recommends top ML models for alloy development, with further discussion in the 'ML 

Models and Accuracy' section. 

 

4.10 High throughput approach 

In total, 28 of the studied papers used high throughput methods, e.g., [102] used High 

Throughput CALPHAD approach, [187] and [189] used high throughput ab initio method, and 

[69] used high throughput molecular dynamics, the rest of the papers studied experimental High 

Throughput methods. While USA and China are the frontiers in using High Throughput, Carrete, 

et al. in France are using the method to predict the physical properties of Half-Heusler 

[187][188][189]. It is important to highlight that in High Throughput studies, RF, SVM, and 
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XGBoost have consistently emerged as the ML models with the highest reported accuracy. 

Interestingly, even though the high throughput approach is employed to generate extensive data 

in materials science, NN have not been widely utilized for modeling this type of data. This stands 

in contrast to the broader field of alloy development, where, on average, NNs have been the 

researchers' preferred choice for ML applications. 

 

4.11 Computer vision in image processing 

Computer vision and Convolutional neural networks (CNNs) emerged to solve problems related 

to visual tasks. Power image search services, self-driving cars, and automatic video classification 

systems are among their applications and more [209]. 

By using image processing techniques, researchers can analyze the microstructure of alloys at 

various scales, from the atomic to the macroscopic levels. A small portion of the studied 

publications used image processing in alloy exploration and development [29][58][125] 

[184][223]. Image processing is mainly used for microstructure evaluation, such as identifying 

stress hot spots [184].  

 

4.12 The challenge to find the best ML approach 

The Pie chart of Figure 7 reveals that the majority of publications (68%) rely on a single ML 

model for their research while others used more than one ML model to predict parameters. It is 

notable that one publication authored by C. Wen et al. [79]stands out as an exception, employing 

an extensive array of 12 ML models in a single research paper. The remaining publications 

utilize a varying number of ML models, ranging from 2 to 11, demonstrating diversity in the 

approaches taken by researchers in selecting and applying ML models to their work. This is 

showing at least 32% of the researchers may have encountered uncertainty or difficulty in 

determining one ML model as the most appropriate model for their specific application.  

Following uncertainty for the best ML model for the application, researchers compare the results 

from every ML model to find the best. Figure 7 shows the frequency of using other ML models 
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in every publication. This statistical result reflects the popularity of the ML models and not 

necessarily the accuracy of the predictions or the advantage of using two or more ML models. 

Those researchers who used more than 1 ML model compared the accuracy of the models and 

presented their best ML model. A review of the best suggested ML models presented earlier in 

4.7, ML models and accuracy. 

As previously discussed, some researchers adopted a multi-model approach to identify the most 

accurate solution for their specific applications within the realm of ML. They conducted 

assessments of accuracy and reported their findings, while others chose not to share accuracy 

information [110]. Figure 8 shows predicted parameters and their correspondent best-reported 

ML models. The connections between the predicted properties and ML models reveal which ML 

model was reported as the best performer for predicting a particular alloy property. For instance, 

if mechanical property is connected to RF, it suggests that RF was found to be the best ML 

model for predicting mechanical properties. The suggested model was selected the best in 

comparison with the other models that used in the same paper. The graph is extracted only from 

the papers that used more than one ML model, compared those models and reported the best. RF, 

SVM, XGBoost, and SVR are introduced as the best ML models for all the predicted parameters. 

It is interesting to learn that while NN is the most used ML model (section 4.1 Predicted 

Parameters), however among more than 200 studied papers, just two researchers reported NN as 

the best ML model [18][140]. Furthermore, it is noteworthy that 12 distinct ML models were 

reported as the best for predicting mechanical properties, and 7 ML models excelled in 

predicting physical properties. With one exception, the ML models ideal for predicting 

mechanical properties were not the same as those for predicting physical properties. 

 

5. ML deployment 

Suppose a model is launched into production, but unfortunately, it does not perform as well as 

expected and produces large errors. The problem lies in the fact that the generalization error was 

measured multiple times on the test set, and the model and hyperparameters were adapted to 

yield the best model for that dataset. This means the model is unlikely to perform as well on new 

data. Therefore, ML deployment task is often missed or ignored in the journey of building the 
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model in the vast majority of the ML publications. Figure 9 illustrates how data flow is used to 

improve alloy development. The data flow begins with data collection and concludes with data 

re-examination and re-assessment. This data flow aids researchers in enhancing their processes 

by reviewing the steps. 

To deploy ML algorithms, it is possible to use a cloud-based environment (e.g., AWS , Google 

Cloud and Microsoft Azure ) to train, deploy, automate, manage, and track ML models. It is 

often used with cloud storage where potentially large amounts of data are also considered in the 

ML process. Using cloud-base environment is not expanded in this research because it is not 

used by majority of the researchers in field of alloy development. 

 

6. Data and code availability 

It is crucial to present the primary data used to construct ML models as it enables other 

researchers to reproduce the results and validate the findings. This practice also ensures that the 

data utilized in the model is precise and impartial. Moreover, it allows other researchers to 

reproduce the results, build upon the work, and develop novel models based on the same data. 

Figure 10a shows the availability of the primary dataset in the studied publications. In some 

cases, the dataset was presented in the text [180], some in a supplementary file [7], in some 

cases, an external link [166] was given; some said it would be available on request [67], some 

said they could not share the data [57] and some referred to their github.com repository [21]. 

This is while most of the researchers did not present the primary dataset at all. This research 

shows that recent publications have more tendency to share their dataset. It should be mentioned 

that sharing the dataset and code in some journals is mandatory.     

Sharing the code of ML models is crucial as it enables other researchers to reproduce the results 

and validate the findings. This practice also ensures that the code utilized in the model is precise 

and impartial. Moreover, it allows other researchers to build upon the work and develop novel 

models based on the same code. Figure 10b shows abundance of publications that shared the 

code of their ML model. Surprisingly, 81% of the researchers did not share their code while 14% 

said the code will be available on request. 
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7. Conclusion and outlook 

In recent years, ML approaches have gained significant attention in alloy development. This 

statistical literature review highlighted advanced ML methods used in alloy design worldwide, 

where the USA and China are the leading countries in the selected publications.  

It is found that steel, HEA, and aluminum were the most extensively studied alloys in the field. 

Investigators from the USA have extensively examined a range of alloys, while researchers of 

other nations mostly focused on a single alloy system in one publication. 

Computational Materials Science is the journal with the highest publication rate in the field, with 

10% of the published papers. 

The use of ML approaches in predicting physical, mechanical, and catalytic properties in several 

alloys ranging from light and HEA to amorphous, Ni-based alloys and steels were thoroughly. 

The fact that researchers explored and utilized a wide spectrum of ML tools and approaches to 

improve and advance the development of alloys is indicating the versatility and 

comprehensiveness of their approach. This research indicates that the USA leads in diverse alloy 

property prediction using ML compared to other countries.  

This comprehensive analysis underscores the diverse ML models adopted in property prediction 

and reveals a desire of researchers for NN, RF, and SVM that collectively representing 20% of 

all models employed. These models are used to predict parameters across a diverse array of 

alloys. This suggests that researchers do not limit their research to a specific ML model when 

studying a particular alloy. So, the models distributed equally for the alloys. 

Researchers display a wide range of preferences when it comes to ML models, and while some 

models are tailored for specific tasks, others, such as Linear Regression, are seen as having 

distinct applications by researchers. 

This research shows most publications neglect feature selection, hyperparameter tuning, or both. 

Only a few studies address both aspects, primarily employing grid or random search methods 
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with cross-validation. The materials’ research community could benefit from more 

comprehensive and systematic approaches to model refinement. 

The dataset size and structure essential to the model accuracy were discussed. Most used ML 

approaches, such as ensemble techniques, NNs, and computer image processing, were also 

revisited. Those which underwent careful feature selection and hyperparameter tuning and 

reported the best optimal models were highlighted. Often available data useful for alloy property 

prediction is too small, with few features. This creates a challenge of generating the extra 

necessary data from other resources, such as first-principles calculations and thermodynamic 

approaches, which can benefit some studies. 

It is worth noting that 68% of the publications used only one ML model, 9% used two ML 

models, and the maximum number of ML models used in a single paper was 12. Most used ML 

models were in the following order: NN, RF, SVM, SVR, Gaussian process, and Linear 

Regression. 

While NN is the most used ML model, only 2 papers presented NN as the best model, in 

comparison with the other models. Notably, the ML models that had been the best for predicting 

mechanical properties were not the same as those for predicting physical properties. 

Linear regression and XGBoost were the most frequently used models for predicting mechanical 

properties, while the Gaussian process and Bayesian optimizations were the preferred models for 

predicting physical properties. Steel, aluminum, and titanium were the most studied alloys in 

terms of their mechanical properties, whereas in the case of HEA and metallic glasses, the focus 

of the studies was on their physical properties. 

Researchers reported that ensemble techniques with SVM provided the highest accuracy in 

predicting the properties of alloys, while NN was the most used model. High Throughput 

methods were used in 12% of the publications. It is alarming that 53% of the publications did not 

share their datasets, and 81% did not share the code used to build their ML models. So, sharing 

datasets and codes used to build and deploy ML models should be encouraged to promote 

reproducibility and facilitate future research in this field. Also, only 2% of the publications used 

image-processing techniques for alloy development. 
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Overcoming obstacles requires standardization, enhanced collaboration, and innovative 

algorithms that can handle the complexities of alloy systems. Continuous interdisciplinary 

collaboration will be vital in pushing the boundaries of what is possible, ensuring that the 

insights gained from computational methods are effectively translated into real-world 

applications. 

This research demonstrated how standardization is the lost part of using ML in alloy 

development research. Standardized formats and protocols for data collection, storage, and 

sharing make it easier to combine datasets from various sources including experiment and 

CALPHAD results. Standardization can help ensure data quality and consistency. It provides 

guidelines for data validation, calibration, and error correction, reducing the chances of 

erroneous results. This statistical literature review has aimed to compare models, but it becomes 

evident that the best benchmarking can only be achieved through the use of standardized datasets 

and evaluation metrics, enabling equitable model comparisons and performance assessments 

among peers. 
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List of Tables 
 

Table 1- Known data repositories of metals and used in the collected papers 

Data repository Refs 

Open Quantum Materials Database 
(OQMD) 

[6][163][174][175] 
[190][207]  
 

NIST ICSD [39][113][198][200][207]  
Materials Project database [43][59][205][214] 
NIST MATERIALS DATA 
REPOSITORY [43][196] 

MatNavi materials database by the 
National Institute for Materials 
Science, Japan 

[108] 

NOMAD [178] 
Pauling File Not used 
Cambridge Structural Database (CSD), Not used 
MatWeb Not used 
Total Metals Not used 
INTERGLAD Not used 
FIZ Karlsruhe ICSD Not used 
SpringerMaterials Databases Not used 
AFLOWLIB consortium Not used 
Material Go (MG) Not used 
CMR (COMPUTATIONAL 
MATERIALS REPOSITORY) Not used 

 
 

Table 2- Pros and cons of some of ML models [85][112][148][209][221]  

ML model Pros Cons 
Linear regression Simple but efficient model Linearity assumption and outlier 

effect 
Polynomial regression Less impact from the size of the 

database 
Polynomial degree optimisation 

Support vector regression with 
linear kernel 

Efficient in high dimensional spaces, 
Memory efficient 

High impact of noisy data- not 
suitable for large database 

K-nearest neighbouring No assumptions and simple model K value optimisation cannot deal 
with missing values  

Artificial neural network Ability to work with incomplete data Need higher processing capacity, 
complex behaviour. 

Random Forest Handles large number of training 
examples and high dimensional 

Can overfit if there are noisy data, 
Difficult to interpret 
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spaces well, No pre-processing 
required, Robust to outliers 

Support Vector Machine Works well in high dimensional 
spaces, Fast prediction, Memory 
efficient 
 

Not suitable for large datasets, 
Sensitive to noisy data with 
overlapping classes, Requires 
feature vectors  

XGBoost Highly customizable, Works well 
with large datasets, Handles missing 
values efficiently 

Cannot handle categorical features, 
More memory-hungry than some 
other models, Can be slower than 
some other models 
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Statement of novelty 
 
Through statistical analysis of 200+ papers, this research identifies trends, patterns and gaps 
to highlight areas for further exploration in using machine learning for alloy development. 
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