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ABSTRACT Heterogeneous information networks provide abundant structural and semantic information.
Two main strategies for leveraging this data include meta-path-based and meta-path-free methods. The
effectiveness of the former heavily depends on the quality of manually defined meta-paths, which may lead
to the instability of the model. However, the existing meta-path-free methods lack of neighbor screening
during aggregating, and there is also an overemphasis on attribute information. To address these issues,
we propose the Heterogeneous Graph Neural Network model by incorporating Quantitative Sampling and
Structure-aware Attention. We introduce a Quantitative Sampling Module that calculates the similarity
between neighbors of the target nodes and target nodes, enabling us to select the top k nodes with the
strongest relevance to the target node based on this measure, and incorporate a Structure-aware Attention
Module during the aggregation of neighbor information. This module combines both structural and attribute
information to aggregate the neighbor information effectively. By implementing these improvements, our
proposed model exhibits superior performance compared to several state-of-the-art methods on two real-
world datasets.

INDEX TERMS Heterogeneous information network, community detection, quantitative sampling,
structure-aware attention.

I. INTRODUCTION
Community detection is a fundamental and crucial technique
in complex network analysis, used to reveal the relational
structure among network nodes. This process involves
evaluating the connections between nodes in a social network.
This evaluation results in the categorization of the social
network. The categorization is based on these metrics, divid-
ing the social network into different community structures.
Community detection finds application in various domains,
including social recommendation algorithms [1] that rely on
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community detection. It is worth noting that entities within
the same community tend to have higher similarity and con-
nectivity. Conversely, those between different communities
typically exhibit weaker connections. Numerous algorithms
have been proposed for community detection [2], [3], [4],
[5], with most of them focusing on homogeneous graphs
which are graphs composed of nodes and edges of the same
type. However, these methods do not yield satisfactory results
when applied to community detection tasks in heterogeneous
information networks, which consist of nodes or edges of
multiple types, while heterogeneous networks are prevalent
in real-world scenarios. For instance, Fig. 1 illustrates a
heterogeneous academic network featuring four types of
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FIGURE 1. Example for heterogeneous academic network.

nodes: author, paper, term, and conference, along with three
distinct types of edges, which are write, include, publish in.
Heterogeneous information networks offer a wealth of

information, and by taking into account multiple types
of edges and nodes, we can enhance the semantic and
structural understanding of the network. When it comes
to pattern-rich heterogeneous information networks, incor-
porating high-order relationships and multiple kinds of
nodes poses an additional challenge for researchers, but
considering high-order relationships can uncover implicit
information. For instance, in Fig. 1, paper p1 and p2 are
not directly connected. If we only consider the node type
paper, it becomes difficult to classify them as belonging to
the same community. However, by considering the high-order
relationships of the nodes, it becomes possible to classify
p1 and p2 into the same community. This is because both
papers are authored by author a1 and contain the same term t1.
Taking these high-order relationships into account allows for
a more accurate classification of nodes within the network.

To address the limitations of community detection on
homogeneous graphs, several approaches based on het-
erogeneous graph neural networks are being developed.
These approaches include the heterogeneous graph attention
network (HAN) [6], which applies attention mechanisms
at different levels to capture hierarchical structure and
key features in data. Layer-aware heterogeneous graph
information network embedding (HAHE) [7], which lever-
ages attention mechanisms to embed heterogeneous graph
structures, capturing diverse node relationships and enhanc-
ing representation learning and metapath aggregated graph
neural network (MAGNN) [8]. They use artificially defined
meta-paths to reveal high-order potential relationships among
nodes. These models construct homogeneous graphs through
meta-paths and learn node representations using traditional
GNN (Graph Neural Network) models. HMSN [9] extracts
potential relationships between similar node types by
utilizing meta-paths and similarity. Although these meta-
path-based methods achieve some level of success, it is not
possible to explore all meta-paths, and the quality of the pre-
defined meta-paths significantly influences the algorithm’s
performance. Therefore, researchers explore meta-path-free
methods which aggregate neighbor information by projecting
different types of neighbor nodes into the same vector

space, such as HGT [10], Simple-HGN [11], HetGNN [12],
SeHGNN [13]. They employ attention mechanism to deter-
mine the importance of different neighbors. HSim [14]
considers both the attributes and structure between nodes to
more accurately compute the similarity between two nodes.
SemAttNet [15] proposes a multimodal attention-based
fusion module based on semantic perception to integrate
features. Pa-mvsnet [16] introduces self-attention layers for
hierarchical features extraction, which is able to capture
multi-scalematching clues for the subsequent depth inference
task. Hence, the quality of the selected neighbors directly
affects the algorithm’s performance. This is because the
information from neighboring nodes is used to compute and
predict the attributes or state of the target node. If the selected
neighboring nodes are of high quality, the prediction results
of the algorithm are more likely to be accurate. Conversely,
if the selected neighboring nodes are of low quality, the
prediction results of the algorithm may be biased. However,
many meta-path-free approaches select all neighbors within
a neighborhood without considering their relevance to the
target node. These methods typically select all neighboring
nodes within a neighborhood, regardless of whether these
nodes are relevant to the target node. Consequently, the target
node may not be able to focus on more valuable neighbor
information. While some methods consider selecting neigh-
borhood nodes that contain more valuable information for
aggregation, they overlook the structural correlation between
nodes. The structural correlation between nodes refers to the
fact that the attributes or state of a node may be related to the
attributes or state of its neighboring nodes. These approaches
primarily rely on attribute correlation between nodes to
assign attention weights, without adequately exploring the
effect of structural correlation on neighbor importance. This
approach may limit the model’s expressiveness and lead
to oversmoothing after multiple iterations. Since attributes
and structure represent different heterogeneous spaces, it is
crucial to strike a balance between attribute and structural
correlation when calculating attention values. In this way,
we can get more accurately attributes of the target node,
thereby improving the performance of the algorithm.

To better address the first problemmentioned above, which
involves utilizing all nodes in the neighborhood without
selection, we propose the Quantitative Sampling Module
(QSM). The goal of this module is to select the top k nodes
that are most relevant to the target node. First, random walk
is performed on the target node’s subgraph to determine the
sampling frequency for neighboring nodes. The structural
relevance score between the target node and its neighboring
nodes is calculated using this sample frequency. The feature
relevance score between the target node and its neighboring
nodes is then calculated as the cosine similarity between
the target node and its neighboring nodes. Zhao et al. [17]
assess node similarity by determining whether they contain
the same keywords. They introduce semantic similarity when
measuring node similarity in [18]. The structural relevance
score and featural relevance score are thenmultiplied together
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FIGURE 2. Example for heterogeneous academic network.

to rank the nodes, allowing us to select the top k nodes
with the highest relevance to the target node for information
aggregation. This approach enables us to focusmore attention
on nodes that are most relevant to the target node, leading
to more efficient and accurate capture of the target node’s
representation. Regarding the second issue, previous studies
have proposed incorporating structural information into the
calculation of attention coefficients. However, these methods
designed for homogeneous networks cannot be directly
applied to heterogeneous information networks. Therefore,
in this paper, we introduce the Structure-aware Attention
Module (SAM). In social networks, social influence often
leads individuals and their friends to exhibit similar behav-
iors [19]. Taking inspiration from this, we assume the
existence of social influence among homogeneous nodes
that share similar network topology. For example, in Fig. 2,
authors a1 and a2 co-authored paper p1 and p3, possibly
indicating a social relationship such as a teacher-student or
colleague relationship. Building upon this idea, we calculate
the topological correlation between nodes to determine
the structural attention scores. Additionally, to prevent
oversmoothing caused by layer stacking, we incorporate a
residual structure into our model.

The major contributions of this paper are summarized as
follows:

• We propose the Quantitative Sampling Module (QSM)
to better select neighboring nodes with a high relevance
to the target node. The module is constructed by
calculating the strctural and attribute relavance scores
between target node and its neighboring nodes.

• We present the Structure-aware Attention Module
(SAM), which combines both structural and attribute
information to determine the contribution of nodes in
the neighborhood to the target node. To address the issue
of oversmoothing caused by layer stacking, we adopt a
residual structure in the final representation layer. This
helps mitigate the potential negative impact of excessive
layer stacking and improves the overall performance of
the model.

• To validate the rationality and effectiveness of the
proposed model, we conduct comparative experiments

on two real-world datasets. The experimental results
demonstrate the superiority of the algorithm proposed
in this paper. The proposed model outperforms other
algorithms in terms of Micro-F1 and Macro-F1. Fur-
thermore, we perform ablation experiments to verify the
effectiveness of the two modules within the proposed
algorithm. The parameter analysis is conducted to
investigate the impact of the hyperparameters on the
algorithm performance.

The rest of the paper is organized as follows. Section II
describes some related work about community detection.
Section III introduces the symbols and concepts used in
this paper. In Section IV, we propose our model HGNN-
QSSA. The experimental results and the influencing factors
are discussed in Section V. Finally, conclusions are described
in Section VI.

II. RELATED WORK
In this section, we will review the relevant work that pri-
marily focuses on community detection tasks: 1) Traditional
community detection algorithms; 2) GNNs for community
detection; and 3) HGNNs for community detection.

A. TRADITIONAL COMMUNITY DETECTION ALGORITHMS
Due to the importance of community structure in social
networks, various algorithms for community detection are
developed [20], [21], [22], [23], [24], including both tradi-
tional and deep learning approaches. We direct our attention
towards the algorithms associated with graph partitioning and
label propagation [25] from the traditional approach. The
problem of graph partitioning involves dividing nodes into
groups of a predefined size, aiming to minimize the number
of edges between the groups. Graph partitioning is the
distribution of data to different nodes in a cluster in distributed
computing, and the design of many serial algorithms. There
are two ways to partition a graph: by nodes and by
edges [26], each with its own advantages and disadvantages.
Most variants of the graph partitioning problem are known
to be NP-hard [27]. A representative method for solving
this problem is the Kernighan-Lin algorithm [28], which
optimizes a benefit function called Q [29]. The algorithm
initially partitions the social network graph into several
communities of a predetermined size at random and evaluates
the gain in Q by changing the composition of nodes within
the communities. The Label Propagation Algorithm (LPA)
is a local (bottom-up) partitioning algorithm inspired by the
spread of epidemics [30]. In this algorithm, the input graph
is first preprocessed, and during the initialization phase,
each node is assigned a usually unique label. Iterative label
propagation follows, where in each iteration, the label of each
node is updated. Variants of the algorithm allow more than
one label to be assigned to each node, enabling the definition
of overlapping communities. These traditional algorithms
provide valuable insights and techniques for community
detection tasks in social networks. However, traditional
methods have certain limitations in terms of performance,
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such as the label propagation algorithm having a degree of
randomness.

B. GNNS FOR COMMUNITY DETECTION
Several deep learning-based algorithms have been investi-
gated for community detection. Among them, GNN [31]
is a widely recognized algorithm that exhibits strong
performance. GCN [32] also used to detect community, which
efficiently captures intricate features from network topology
and node attributes by employing a series of convolutional
operations, similar to how CNN (Convolutional Neural
Network) [33] operates. Thus, some methods employ it to
represent the node information [34]. Zhao et al. employGraph
AttentionNetwork to aggregate neighborhood information by
computing attention coefficients for neighboring nodes [35],
[36], which allowing the algorithm selectively emphasize the
most relevant nodes during information aggregation. Graph-
SAGE [37] performs a neural network-based aggregator on a
fixed-size neighborhood of nodes. It is an inductive represen-
tation learning type which can gengrate node representations
effectively. Zhang et al. [38] propose randomly permuting
training data as a simple data augmentation strategy, which
not only enhances the model’s robustness to variations
in the input data but also aids in preventing overfitting.
MRFasGCN [39] is an extension to GCN, which leverages
Markov random walks to enhance the performance of graph
neural networks in node classification tasks.

These deep learning-based algorithms provide promising
approaches to community detection by leveraging the power
of neural networks and effectively incorporating network
structure and node attributes into the learning process.

C. HGNNS FOR COMMUNITY DETECTION
Given the suboptimal performance of GNNs on heteroge-
neous networks, significant efforts have been devoted to
exploring HGNNs. HAN [6] utilizes meta-paths to capture
high-order information of nodes. It computes attention scores
on subgraphs generated based on thesemeta-paths and further
incorporates inter-type attention for information aggregation.
Another approach, HAHE [7] computes attention weights for
meta-paths and subsequently calculates node-level attention
scores. MAGNN [8] builds upon HAN by enhancing the
information of intermediate nodes during meta-path aggrega-
tion. HetGNN [12] proposes a technique that utilizes random
walk with restart to sample nodes and aggregates information
from similar neighbors. It employs an attention mechanism
between different types of neighbors for information aggrega-
tion. HetSANN [40] formulates the transformations between
diverse nodes by projecting them into a lower-dimensional
entity space. Subsequently, it employs a graph neural network
to aggregate multi-relational information within the projected
neighborhoods, leveraging attention mechanisms.

However, the aforementioned approaches either rely
solely on meta-paths for information aggregation, potentially
underutilizing the network topology, or they overlook the

importance of structural attention and fail to fully exploit the
structural information present in the network.

III. NOTATIONS AND DEFINITIONS
In this section, we will introduce the notations used in
this paper and subsequently provide the problem definition
addressed in this study.

A. NOTATIONS
The heterogeneous information network is described as
G = (V ,E,A,R) with a node-type mapping function
φ : V → A, and an edge-type mapping function ψ : E → R,
where V and E represent the set of nodes and edges,
respectively, and A and R are set of node types and edge types,
respectively. The heterogeneous information network should
have different types of nodes or edges such that |A| + |R| > 2,
and we use φi to denote the type of node i.

B. DEFINITIONS
A heterogeneous network is a complex network of several
relationships, which contains multiple types of nodes and
edges. These nodes represent different entities in the specific
domain, such as paper, author, conference, term, etc.,
while edges represent the associative relationships between
different entities, such as paper citations, author collabo-
rations, etc. Heterogeneous academic networks are rich in
information, in which semantic and structural information
can be enhanced by considering different types of edges and
nodes.
Definition 1 (Primary Type): Due to the presence of mul-

tiple node types, it is necessary to designate one node type as
the primary type for this study. In this paper, the paper node
is selected as the primary type. However, it is important to
note that theoretically any node type could be chosen as the
primary type.
Definition 2 (Target node): To generate a subgraph gi for

each target node i, we select the node from the primary type
as the target node and then choose its n-hop neighbors as the
subgraph.
Definition 3 (Node Embedding): Given the heterogeneous

graph G = (V ,E,A,R) and the primary node type, the
node embedding is obtained by aggregating the neighbor
information of the target node and then projecting the target
node into a low-dimensional space. Our primary objective is
to learn a mapping function f : V → Rd that projects each
primary type node to Rd in which d ≪ the number of target
nodes.

IV. METHODOLOGY
In this section, we formally introduce the HGNN-QSSA
model to address the two issues described in the previ-
ous section. Aggregating all neighbor information without
selection may result in the aggregation of less valuable
neighbor information, while calculating attention coefficients
based solely on attribute information can limit the model’s
expressiveness. Hence, we proposed our model to address
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the issues mentioned above, which consists of two main
components: 1) Quantitative Sampling Module. This module
selects the k neighborsmost strongly related to the target node
for information aggregation, allowing for the aggregation of
more valuable neighbor node information. 2) Structure-aware
Attention Module. This module simultaneously considers
attribute similarity and structural similarity, computing their
joint attention coefficients for final information aggregation,
thus achieving a balance between attributes and structure. The
framework of HGNN-QSSA is illustrated in Fig. 3.

A. QUANTITATIVE SAMPLING MODULE
Quantitative Sampling Module (QSM) involves conducting
a random walk within the subgraph of the target node to
obtain sampling probabilities for its neighboring nodes. The
sampling probabilities are employed asmeasures of structural
relevance between the target node and its adjacent nodes.
In addition, they assess the similarity in attributes between the
target node and its neighbors. The comprehensive relevance
of nodes within the sensory domain to the target node is
calculated by the product of the structural relevance score
and attribute similarity. Subsequently, top k neighbors of each
type are selected.

We perform a random walk in subgraph gi of the target
node i, which can determine the structural correlation
between the target node i and the neighboring nodes, based
on the sampling frequency. The walker iteratively travels to
each neighbor with a probability to edge weight. The iterative
formula can be expressed as follows:

−→ri = W̃i
−→ri +

−→ei , (1)

where −→ri represents the structural relevance scores (i.e.,
steady-state probabilities) of all the neighbors in the subgraph
gi with respect to target node i, and W̃i is derived as a
transition probability matrix by normalizing the columns
of the adjacency matrix Wi, where W̃i[i, j] represents the
probability of walking from j to i. Additionally−→ei is an initial
vector with its ith element is 1, and the rest of the elements
are 0. Now that we have obtained the structural relevance
scores, the next step is to calculate the attribute relevance
score between the target node and its neighboring nodes in
the perceptual field. However, before proceeding with this
calculation, it is necessary to transfer the representations of
different types of nodes to the same space. This ensures that
the node representations are compatible and can be effectively
compared and aggregated for further analysis.

hl+1
φi,j = wl+1

φi,φj
hlj, (2)

where hlj denotes the representation of node j at layer l. The
transformation matrixWl+1

φi,φj
is used to transfer node j to the

node representation space of node i. The representation of
node j in the φi space is denoted as hl+1

φi,j . This transformation
ensures that the representations of nodes from different types
are aligned in the same feature space, facilitating subsequent
attribute correlation calculation and information aggregation.

Then we can calculate the cosine similarity between target
node and its neighbors in the perceptual field, in which cosine
similarity denotes the attribute correlation:

f φ
iφj

ij = cos(θ ) =
hφi,i · hφi,j

||hφi,i|| · ||hφi,j||
, (3)

where f φ
iφj

ij denotes the cosine similarity between node i and
node j, and hφi,i and hφi,j denote the feature representations of
node i and node j in feature space node of i, respectively. The
cosine similarity calculation measures the similarity between
the attribute-level of two nodes, providing a quantitative
measure of their similarity in the feature space. Then, the
structural correlation and attribute correlation between the
target node and its neighboring nodes have been obtained.
The next step involves calculating the combined correlation
between the target node and its neighboring nodes to
determine which neighbors to sample. This process can be
described as follows:

corrφ
iφj

i,j = f φ
iφj

ij · rφ
iφj

ij , (4)

where corrφ
iφj

i,j represents the combined correlation of node
i and node j. The top-k neighbours of each type are selected
as the neighbours of the target node based on the ranking of
corrφ

iφj

i,j . Fig. 4 displays this calculation process. Note that
when k exceeds the total count of a particular type of neighbor
within the neighborhood of the target node, we opt to fill
it using the mean of representation of the existing neighbor.
For example, consider a paper p1, with two terms, but when
k is set to 3. We initially select these two terms, and then
calculate the average representation of these two terms as
the representation for the third term, which is subsequently
aggregated.

After that, we have successfully selected the set of
neighboring nodes of the target node i, which will be utilized
to aggregate information, and the set is denoted as Ai.

B. STRUCTURE-AWARE ATTENTION MODEL
In this section, we propose SAM to balance the relationship
between attribute and structure when calculating the attention
coefficient between nodes. SAM have two steps, including
node-level attention and type-level attention. We employ
a dual-level attention mechanism because heterogeneous
networks encompass diverse node types and multiple rela-
tionships. The utilization of type-level attention serves to
facilitate the model in distinguishing the relative importance
of different node types, thereby enhancing the quality of
information aggregation. Simultaneously, node-level atten-
tion helps the model in the selective aggregation of important
neighboring nodes within the same node type, thus avoiding
indiscriminate aggregation of all neighbors. Next, we will
provide a detailed explanation of these two components.

1) NODE-LEVEL ATTENTION
Node-level attention allows us to learn the importance
weights of neighbors belonging to the same type. We first
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FIGURE 3. Overall architecture of the HGNN-QSSA model.

FIGURE 4. The top-k node selection process.

compute feature-based attention scores for the target node i
and its neighboring nodes. For j ∈ Ai, of type φj, the attention
coefficient eij can be calculated as

el+1
ij = leakyReLU

(
aTr [h

l+1
φi,i ||h

l+1
φj,j ]

)
, (5)

where el+1
ij projects the splice of node i and node j onto a

real number. aTr is a trainable parameter and r represents the
relationship of edges. By normalizing the el+1

ij ,the feature-
based attention coefficient al+1

ij can be obtained by softmax
normalization of el+1

ij :

αl+1
ij =

exp(el+1
ij )∑

v∈φi exp(e
l+1
iv )

. (6)

However, this attention score only considers feature
information and does not incorporate structural information.
Based on the structural relevance score rφ

iφj

ij and feature

relevance score f φ
iφj

ij of target node and its neighboring nodes
calculated in the previous section, we calculate the structural
similarity Sij of node i and node j. First, we need to calculate
the structural similarity in the neighborhood of node i and
node j for each type of neighbor:

S
φp
ij =

∑
u∈N (vj)

(
f φ

jφu

ju · rφ
jφu

ju

)
∑

v∈N (vi)

(
f φ

iφv

iv · rφ
iφv

iv

) , (7)

where S
φp
ij denotes the structural similarity between node i

and node j in type p. u and v represent the neighbors of
node j and node i of type p, respectively. The final structural
correlation between node i and node j can be represented as:

Sij =

∑
p∈A

S
φp
ij . (8)

Now that we have obtained the structural similar-
ity between nodes, the next step is to calculate the
structure-aware attention coefficient. The attention coeffi-
cients of neighbors from different types compared to the
target node are calculated using rφ

iφj

ij , and the attention
coefficients of neighbors from same type compared to the
target node are calculated using Sij:

β l+1
ij =

exp
(
rφiφ

j

ij

)
∑

v∈Aφ
v

i
exp

(
rφiφ

v

iv

) , (9)

β l+1
ij =

exp(Sij)∑
v∈Ai exp(Siv)

. (10)
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So far, we have obtained the feature-based and structure-
based attention coefficients for node i and node j respectively.
Now, we need to combine these two attention coefficients to
obtain the node-level importance coefficients γ l+1

ij , which are
combined in the following way:

γ l+1
ij = tαl+1

ij + (1 − t)β l+1
ij , (11)

where t is a hyperparameter to control the proportion of
feature and structural importance. According to the impor-
tance coefficient obtained γ l+1

ij can be used to aggregate the
neighbors of node Ai in the same type of neighbourhood
information:

Hl+1
i,φp

= σ

 ∑
j∈A

φp
i

γ l+1
ij ·hl+1

φij

 , (12)

where Aiφp denotes p type nodes in neighborhood of node
i, and Hl+1

i,φp denotes the aggregation of all neighbors of
the target node i in the p-type. In this step, we obtain the
representations of all nodes of all types in the neighborhood
of node i denoted as {Hl+1

i,φ1
,Hl+1

i,φ2
, . . . ,Hl+1

i,φN
} by combining

information of all neighbors from different types in the
neighborhood of node i.

2) TYPE-LEVEL ATTENTION
In the previous step, we calculate the importance values
between neighbors of node i and its neighbors in neighbor-
hood and aggregate them between neighbors of the same type.
Now, we move on to calculate the type-level attention values,
which is based on the node representation of all types in the
neighborhood of node i obtained in the previous step. This
process involves capturing the significance of each neighbor
type in contributing to the overall representation of node i.
We proceed with the following step to obtain the type-level
attention values:

ω
φp
i =

exp
(
Sigmod

(
α

[
WHl+1

i,φi
,WHl+1

i,φp

]))
∑P

P=1 exp
(
Sigmod

(
α

[
WHl+1

i,φi
,WHl+1

i,φp

])) , (13)

where ω
φp
i represents the importance of p type neighbors.

After obtaining the attention coefficients between node types,
the next crucial step is type-level neighbor aggregation.
To address the issue of gradient disappearance as the
network layers deepen, we introduce a residual unit in this
process. The residual unit allows us to preseave importance
information from the previous layers while aggregating
information from type-level neighbors. The representation of
node i after type-level neighbor aggregation can be described
as follow:

hl+1
i =

P∑
P=1

ω
φp
i ·Hl+1

i,φP
+ hli, (14)

where hj represents the final representation of node i which
encapsulates both the information from the node-level and

TABLE 1. The statistics of the public datasets.

type-level neighbors. Finally, we connect all the primary type
nodes’ final representations with a fully connected layer to
achieve the community detection task.

The incorporation of the residual unit enhances themodel’s
ability to learn complex hierarchical features from hetero-
geneous neighborhoods and helps capture more meaningful
patterns in the data. By considering both node-level and
type-level attention mechanisms, and effectively addressing
the vanishing gradient problem, the proposed HGNN-QSSA
framework exhibits improved performance within the hetero-
geneous information networks.

V. EXPERIMENT
A. DATASETS
We utilized two real-world heterogeneous academic network
datasets, namely DBLP and ACM. Next, we will introduce
the detailed information about these two datasets.

1) DBLP
The dataset utilized in our study is a subset extracted from
the DBLP database, consisting of a diverse set of academic
resources. Specifically, it includes 14,328 research papers,
contributed by 4,057 authors, across 20 different academic
conferences. The dataset also encompasses 8,789 unique
terms, each representing essential concepts discussed within
the papers [6].

2) ACM
This dataset is a subset extracted from ACM [6], consisting
of a diverse collection of academic resources. It comprises
4,019 research papers, authored by 7,167 scholars, and covers
60 distinct subjects of study. To provide a comprehensive
representation of the papers and authors, various attributes
have been incorporated into the dataset.

Table 1 demonstrates the number of nodes, edges, node
types and edge types of the two datasets.

B. BASELINES
We compared some classical methods used in graph neural
networks, as well as advanced graph neural network methods
designed for heterogeneous graphs. Below is a brief introduc-
tion to these methods.

1) GRAPHSAGE [37]
GraphSAGE is an algorithm for inductive node embedding
in graphs. It addresses the problem of learning embeddings
for nodes that are not seen during training, making it highly
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scalable. GraphSAGE samples and aggregates features from
the neighborhood of each node to learn its representation.
This approach enables the algorithm to capture both structural
and semantic information, making it effective for various
graph-based tasks.

2) GCN [32]
GCN is a revolutionary neural network architecture for
learning node embeddings in graphs. It leverages graph
convolutional layers to efficiently capture and propagate
information through a graph’s neighborhood. GCN has
demonstrated remarkable performance in tasks such as node
classification and link prediction by effectively modeling
node relationships and graph structures.

3) GAT [41]
GAT is an innovative neural network architecture designed
for graph-based learning tasks. It employs attention mech-
anisms to adaptively weigh the importance of neighboring
nodes when aggregating information. GAT’s ability to cap-
ture fine-grained dependencies in graphs and its self-attention
mechanism make it a powerful tool for various applications,
including node classification and graph classification.

4) METAPATH2VEC [42]
metapath2vec is a pioneering algorithm for learning embed-
dings in heterogeneous information networks. It introduces
the concept of metapaths, which are paths composed of
multiple node types, to capture both structural and semantic
information. By leveraging metapaths, metapath2vec can
generate rich and context-aware embeddings for various
types of nodes in heterogeneous networks.

5) HAN [6]
HAN is a cutting-edge model designed for heterogeneous
graph-based learning. It combines both node-level and meta-
path-level attention mechanisms to effectively capture local
and global information in heterogeneous graphs. HAN
has shown superior performance in various applications,
including node classification, due to its ability to handle the
complexity and diversity of heterogeneous graph data.

6) MAGNN [8]
MAGNN consists of three primary components: Node
Content Transformation, Intra-Metapath Aggregation, and
Inter-Metapath Aggregation. To elaborate, MAGNN initiates
by mapping the attribute information of nodes from various
types, which may possess varying dimensions, into a shared
latent vector space via type-specific linear transformations.
Following this, it employs metapath-specific aggregation
methods with attention mechanisms for each metapath.
During the intra-metapath aggregation phase, each target
node extracts and amalgamates information from metapath
instances connecting it to its metapath-based neighbors.
Through this process, MAGNN effectively captures both
the structural and semantic information present in the

heterogeneous graph, encompassing details from neighboring
nodes and the metapath-based relationships that connect
them.

After the intra-aggregation, MAGNN further performs
inter-metapath aggregation using attention mechanisms to
fuse latent vectors obtained from multiple metapaths into
the final node embeddings. It introduces a novel metapath
aggregation graph neural network for heterogeneous graph
embeddings.

7) HETGNN [12]
HetGNN addresses challenges in heterogeneous networks:
how to sample strongly correlated neighboring nodes in a
heterogeneous graph, how to design encoders for hetero-
geneous node content to address consistency issues, and
how to consider the influence of nodes of different types
during neighbor information aggregation. These challenges
are tackled in three parts. First, it introduces a random walk
method with a restart mechanism to effectively select relevant
nodes in the heterogeneous graph. Second, to resolve the
consistency issue arising from nodes with different content
in a heterogeneous graph, HetGNN designs various encoding
approaches for nodes of different types based on their
attribute information. Finally, during the process of neigh-
bor information aggregation, HetGNN employs Bi-LSTM
for nodes of the same type and introduces an attention
mechanism to jointly learn the impact of different types of
neighbors. These strategies collectively enable HetGNN to
effectively address the complexity of heterogeneous graph
data, enhancing its performance and applicability.

8) SAHNE [43]
SAHNE designs a structure-aware heterogeneous network
embedding model to simultaneously detect each node’s
community and organizational distribution and learn the
embeddings of nodes, communities, and organizations.

C. EVALUATION
Our ultimate goal is to carry out community division. Here,
we use Micro− F1 and Macro− F1 as evaluation metrics
to synthesize the performance of the proposed method and
the method mentioned in baseline. These two metrics can be
formulated as:

Precisionmicro =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi
,

Recallmicro =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FNi
,

F1micro = 2 ·
Precisionmicro · Recallmicro

Precisionmicro + Recallmicro
. (15)

Precisionmacro =

∑n
i=1

TPi
TPi+FPi

n
,

Recallmacro =

∑n
i=1

TPi
TPi+FNi

n
,
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F1macro = 2 ·
Precisionmacro · Recallmacro

Precisionmacro + Recallmacro
, (16)

where TP (True Positives) are the correctly predicted positive
values, and FP (False Positives) are the negative values
incorrectly predicted as positive. FN (False Negatives) are the
positive values incorrectly predicted as negative. Precision is
the ratio of correctly predicted positive observations to the
total predicted positive observations. Recall is the ratio of
correctly predicted positive observations to all observations
in actual class. F1 score is the weighted average of Precision
and Recall, also known as the harmonic mean of Precision
and Recall.

D. EXPERIMENTAL SETTINGS
Among the eight algorithms mentioned, GraphSAGE, GCN,
and GAT are algorithms designed for homogeneous graphs.
In homogeneous networks, they utilize the network’s topol-
ogy and node attributes to detect community structures
within the network. On the other hand, Metapath2vec,
HAN, MAGNN, and HetGNN are algorithms developed for
heterogeneous graphs. The first three models employ meta-
path-based methods, while HetGNN takes a unique approach
by using a random walk strategy with restart to sample the
neighborhood of target nodes, without utilizing metapaths.

This paper introduces an approach for heterogeneous
neural networks, which is a community detection algorithm
based on quantitative sampling and structure-aware attention.
The method consists of twomain steps: quantitative sampling
and structure-aware based aggregation. The second part
involves fusion mechanisms at both the node-level and type-
level.

In our experimental setup, we established a learning rate
of 0.01, a common choice that ensures stability during the
model’s training process. During the random walk process,
our walk length is determined by the number of neighbors
of the node, thereby enabling the adaptive acquisition of
the walk sequence. We utilized the following versions of
software packages: We employed PyTorch 1.2.0 as our deep
learning framework, which offers robust tensor computation
and deep neural network support. We used DGL 0.3.1 to
handle data with graph structures. We utilized NetworkX
2.3 to create, manipulate, and study the structure and
functions of complex networks. We applied scikit-learn
0.21.3 for training and evaluating machine learning models.
We used NumPy 1.17.2 for efficient multi-dimensional array
operations. Lastly, we used SciPy 1.3.1 for scientific and
technical computing. These software packages and their
versions were chosen based on the requirements of our
experiments.

E. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conduct a series of simulation experiments
using two citation network datasets. The primary objective
of these experiments is to comprehensively assess the
performance of the HGNN-QSSA algorithm introduced in
this paper. This assessment is achieved through a meticulous

TABLE 2. Comparison of different algorithms on two public networks.

FIGURE 5. Performance of HGNN-QSSA and its variants.

comparison of overall experimental outcomes and a detailed
analysis of the algorithm’s parameter settings.

To shed light on the effectiveness of selecting strongly
correlated neighbors, we carefully analyze and compare
the experimental results of two critical components of
our algorithm: Quantitative Sampling and Structure-aware
Attention mechanisms. By doing so, we gain valuable
insights into the impact of these elements on the algorithm’s
performance and validate the necessity of incorporating
Structure-aware Attention in neural networks.

Our experiments and subsequent discussions not only pro-
vide empirical evidence of the algorithm’s effectiveness but
also contribute to a deeper understanding of the significance
of structure-aware attention in enhancing the performance of
graph-based neural networks.

1) ANALYSIS OF THE OVERALL EXPERIMENTAL RESULTS
First, we will conduct experiments and compare them with
some advanced methods. As shown in Table 2, HGNN-QSSA
performs best compared with current provides a comparison
of Mirco-F1 and Macro-F1 on two real datasets. Meanwhile,
for a clearer visualization of the experimental results, we have
presented them in graphical form to better illustrate the
effectiveness of our approach, as shown in the Fig. 5. Here
are some key observations:

1. Apart from the Metapath2vec method, models designed
based on heterogeneous networks demonstrate superior
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overall performance compared to traditional models based
on homogeneous networks, and this outcome is evident.
The relatively lower performance of Metapath2vec compared
to GCN, GAT, and others may be attributed to factors
such as potential information loss, improper selection of
metapaths during Metapath2vec sampling, and issues related
to imbalanced node types.

2. The performance improvement of this model exhibits
a notable discrepancy between the two datasets, with a
more substantial performance boost observed on the ACM
dataset compared to DBLP. This disparity arises from the
inherent scarcity of node attribute information in the DBLP
dataset. In the design process of the Quantitative Sampling
Module, the selected nodes demonstrate a strong correlation
with the target node. Therefore, through the development of
more valuable neighbor selection and aggregation methods
on the ACM dataset, the model’s performance is effectively
enhanced. This enhancement significantly bolsters its effec-
tiveness, further confirming the efficiency of our QSM.

3. It is evident that MAGNN and HAN achieve subop-
timal results on the DBLP dataset, while HetGNN attains
suboptimal results on the ACM dataset. Notably, HetGNN is
meta-path-free method. Both MAGNN and HAN are meta-
path-based models and can directly provide task-specific
meta-paths (e.g., paper classification). To elaborate, papers
can be categorized into the relevant field using the PCP
meta-path based on the submitted conference, which facilitate
paper classification.

2) ABLATION EXPERIMENT
In order to assess the impact of various key components
within the HGNN-QSSA model on overall performance,
we conduct ablation studies by sequentially removing
individual components on the DBLP and ACM datasets. The
experimental results are presented in Fig. 6.

In the first step, we removed the Quantitative Sampling
module (QSM) by aggregating neighborhood nodes indis-
criminately instead of selecting the top k most relevant
neighboring nodes. Denoted as ‘‘w/o QS,’’ the results show
a significant drop in model performance when this module is
removed. In the second step, we removed the Structure-aware
Attention module (SAM) by omitting the computation of
structural similarity between nodes and solely using attribute
similarity for aggregation through attention mechanisms.
Denoted as ‘‘w/o SA,’’ the experimental results demon-
strate a more pronounced decrease in model performance,
emphasizing the effectiveness of appropriately calculating
structural similarity between nodes during the process of
node information aggregation.

3) ANALYSIS OF PARAMETER
In this section we examined the sensitivity of hyperparam-
eters in HGNN-QSSA on the DBLP and ACM datasets.
Specifically, K represents the number of neighbors for
quantitative sampling, and Embedding Size indicates the
dimension of node embeddings.

FIGURE 6. Performance of HGNN-QSSA and its variants.

FIGURE 7. Parameters analysis over DBLP and ACM on sampling
neighbors number K.

a: ANALYSIS OF K
We test the performance of HGNN-QSSA with different
values of K . The range of K values tested is from 1
to 6. As shown in Fig. 7, it can be observed that as
K increases, the model’s expressiveness initially improves
and then declines. This suggests that as K increases, more
information from neighbors can be captured, leading to an
initial improvement. However, as K continues to increase,
information from less relevant neighbors is also incorporated,
negatively affecting the model’s performance. The model
achieves its best performance when K is set to 4.

b: ANALYSIS OF EMBEDDING SIZE
In order to assess the impact of the embedding dimension
parameter in the model, we investigate the sensitivity of the
model to the embedding dimension in Figures. 8. The x-axis
represents the embedding dimension, which we set to 8, 16,
32, 64, 128, and 256. The y-axis represents the F1 score for
multi-class classification tasks.

As shown in Fig. 8, the performance of HGNN-QSSA
improves as the embedding dimension increases. The model
achieves its best performancewhen the embedding dimension
is around 128. However, when the embedding dimension
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FIGURE 8. Parameters analysis over DBLP and ACM on Embedding
dimensions.

FIGURE 9. Visualization embeddingon DBLP. Each point indicates one
paper.

increases to 256, the model’s performance decreases. This
could occur because a very high embedding dimension may
include some irrelevant information, and the aggregation of
these features may introduce noise. Therefore, we chose
128 as the embedding dimension.

F. VISUALIZATION
To validate the effectiveness of the node embeddings gener-
ated by our proposed HGNN-QSSA model, we conducted
visualization of these embeddings. In the DBLP dataset,
we utilized t-SNE [44] to reduce the dimensionality of
the 128-dimensional node representation to a 2-dimensional
space. Visualization is performed for the paper nodes
(DBLP-P). Fig. 9 displays the visualization for DBLP-P.
We label the nodes in the visualization and used different
colors to distinguish between different labels. In the DBLP
dataset, authors and papers are categorized into four domains.
As shown in Fig. 9, we group papers into four clusters in
the 2D space, corresponding to the four domains of papers.
Furthermore, each cluster is distinctly separated from the
others, with clear boundaries between them, providing further
evidence of the effectiveness of the HGNN-QSSAmodel and
the methodology we have proposed.

VI. CONCLUSION
This article introduces an advanced method for hetero-
geneous graph neural networks. The method is primarily
divided into two modules: one is the Quantitative Sampling
Module, which selects more representative neighbors to
better express node features and reduce noise interference.
The second module is the Structure-aware Attention Module.
Unlike the traditional approach that only considers attributes,
we choose to incorporate structural relevance into the
network, enabling a more comprehensive embedding of
node information. The experimental data indicates that the
algorithm proposed in this paper significantly outperforms
other compared algorithms on the DBLP and ACM datasets.
However, it’s important to acknowledge certain limitations
of our model. For instance, its capacity to generalize
across dynamic network datasets might be limited due
to the potential fluctuation in attributes and relationships
among nodes over time. This dynamism inherent in dynamic
networks presents a challenge for our model’s robustness and
adaptability.

Our future work involves tackling large-scale problems,
such as scenarios where graphs comprise a significant
number of nodes. Furthermore, we will also strive to enhance
the model’s generalization capability, enabling it to be
applied to other heterogeneous information networks. Addi-
tionally, we plan to explore novel techniques for optimizing
the model’s performance on dynamic network datasets,
considering the evolving nature of network attributes and
relationships. Moreover, we aim to conduct extensive empir-
ical studies to validate the scalability and effectiveness of our
approach across diverse real-world applications.
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