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We present TTCF4LAMMPS, a toolkit for performing non-equilibrium molecular dynamics (NEMD) simulations to 
study the fluid behaviour at low shear rates using the LAMMPS software. By combining direct NEMD simulations 
and the transient-time correlation function (TTCF) technique, we study the fluid response to shear rates spanning 
15 orders of magnitude. We present two examples for simple monatomic systems: one consisting of a bulk 
liquid and another with a liquid layer confined between two solid walls. The small bulk system is suitable for 
testing on personal computers, while the larger confined system requires high-performance computing (HPC) 
resources. We demonstrate that the TTCF formalism can successfully detect the system response for arbitrarily 
weak external fields. We provide a brief mathematical explanation for this feature. Although we showcase the 
method for simple monatomic systems, TTCF can be readily extended to study more complex molecular fluids. 
Moreover, in addition to shear flows, the method can be extended to investigate elongational or mixed flows 
as well as thermal or electric fields. The high computational cost needed for the method is offset by the two 
following benefits: i) the cost is independent of the magnitude of the external field, and ii) the simulations can 
be made highly efficient on HPC architectures by exploiting the parallel design of the algorithm. We expect the 
toolkit to be useful for computational researchers striving to study the nonequilibrium behaviour of fluids under 
experimentally-accessible conditions.

Program summary

Program title: TTCF4LAMMPS

CPC Library link to program files: https://doi .org /10 .17632 /hh2rkcxbrf .1
Developer’s repository link: https://github .com /edwardsmith999 /TTCF4LAMMPS
Licensing provisions: GNU General Public License 3
Programming language: Python 3
Nature of problem: Measuring the nonequilibrium behaviour of bulk and confined fluids under experimentally 
accessible strain rates in non-equilibrium molecular dynamics (NEMD) simulations.

Solution method: Creating a Python-based code that utilises the transient-time correlation function method and 
the LAMMPS software to enable the bulk fluid properties (e.g. viscosity) and confined fluid interfacial properties 
(e.g. shear stress and slip velocity) to be computed at low shear rates with NEMD.
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Over the last few decades [1], nonequilibrium molecular dynamics 
(NEMD) simulations have provided atomic-scale insights into impor-

tant fluid behaviour under shear such as turbulence [2], cavitation [3], 
boundary slip [4], and shear thinning [5,6]. One significant limitation 
of these NEMD simulations is that high shear rates are required to ob-

tain satisfactory signal-to-noise ratios [7,8]. In general, the shear rates 
required are higher than those that can be applied experimentally by 
several orders of magnitude, which prevents direct experimental valida-

tion of the simulations [5,6]. Equilibrium molecular dynamics methods 
(EMD) can effectively characterize the transport coefficients in the limit 
of vanishing external field, both in bulk and confined fluids [9–11]. 
However, they are valid only in the linear response regime. While sim-

ple fluids retain a linear response up to relatively strong driving forces, 
complex molecular fluids might exhibit a nonlinear behaviour even at 
weak fields. This problem can be overcome using the transient-time 
correlation function (TTCF) formalism [12,13], which is a non-linear 
generalization of the Green-Kubo formula [9,10]. TTCF utilises the 
time correlation between the so-called dissipation function of the sys-

tem and the transient response of any arbitrary phase variable after 
an external field is activated. Its main advantage is that is it exact, i.e. 
valid at any regime. As such, the method forms a bridge between the 
equilibrium techniques where no external field is applied and direct 
NEMD where strong fields are required [14]. TTCF has been success-

fully applied to study the rheology of bulk monatomic fluids [15–18], 
molecular fluids [19,20], and liquid metals [21,22] at low shear rates. 
In addition to shear flows, TTCF has been used to study elongational 
flows [23] and mixed flows [24]. It has also been applied to investigate 
monatomic [25–27] and molecular fluids [28] confined between sliding 
solid surfaces. TTCF can also be used to investigate other types of ex-

ternal fields such as electric and colour fields [29–32], of strengths that 
are closer to those applied experimentally, compared to direct NEMD 
simulations. Evans et al. [13] derived the theoretical framework for a 
wider range of nonequilibrium phenomena including heat transfer in 
inhomogeneous systems and the relaxation from a nonequilibrium ther-

modynamic state.

Despite their clear benefits over traditional NEMD techniques, TTCF-

based NEMD simulations have only been utilised by a handful of re-

search groups worldwide, arguably due to the complexity of the method 
implementation. Here, we present TTCF4LAMMPS, a toolkit for study-

ing the non-equilibrium behaviour of fluids under weak external fields 
using the open source Large-scale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS) software [33]. The method can be made very ef-

ficient on HPC architectures by using the embarrassingly parallel setup. 
We demonstrate the application of the TTCF method to two example 
systems consisting of simple monatomic fluids under shear: one bulk 
and one confined.

Mathematical framework

Traditional NEMD simulations require the user to monitor the sys-

tem over a single nonequilibrium trajectory from which the response is 
measured. A time average is then performed over the data sampled from 
the steady state. The process can be optimized by running in parallel 
multiple independent copies of the same system, where each one starts 
from a different initial condition. Each system is in the same thermody-

namic state (temperature, density, etc.), is subjected to the same force 
and hence undergoes analogous transient toward the nonequilibrium 
steady state. The time average is then replaced by an ensemble aver-

age, where the signal at time 𝑡 is the average of the response across all 
the systems at time 𝑡. The Transient Time Correlation Function (TTCF) 
technique is instead based on the following result of nonequilibrium 
statistical mechanics [12]:

⟨𝐵(𝑡)⟩ = ⟨𝐵(0)⟩+
𝑡

⟨Ω(0)𝐵(𝑠)⟩d𝑠 (1)
2

∫
0
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where 𝐵(𝑡) is the arbitrary quantity measured from the system. The 
formula states an identity between the phase space average (left hand 
side) of 𝐵(𝑡) and the integral of the time correlation between the same 
variable 𝐵(𝑡) and the so-called dissipation function Ω (right hand side). 
𝑡 = 0 represents the start of the nonequilibrium trajectory, when the 
external field is switched on and the system is driven out of equilib-

rium. Ω is equal to 𝛽𝐻̇𝑎𝑑 , with 𝛽 = 1∕𝑘𝐵𝑇 and 𝐻̇𝑎𝑑 the adiabatic time 
derivative of the internal energy, that is, the derivative of the mechan-

ical energy without accounting for any thermostat term. 𝑘𝐵 and 𝑇 are 
the Boltzmann constant and the temperature set by a thermostat. For 
the application of TTCF, two conditions must be met: first, the initial 
conditions for the nonequilibrium trajectories must be sampled from the 
equilibrium probability distribution of the system. The simplest way to 
get such a sample if to follow the system over an equilibrium mother tra-

jectory, from which the microscopic state 𝚪(𝑡𝑖) is periodically sampled. 
𝚪(𝑡𝑖) is the collection of all positions and momenta of the particles at 
time 𝑡𝑖, and is used as the initial condition for the 𝑖-th nonequilibrium 
run, or daughter trajectory. To get good statistics, many initial states 
and corresponding daughter trajectories must be produced. The mother 
trajectory is hence a simple tool to generate the correct ensemble over 
which to compute the phase space average. In Eq. (1), 𝑡 = 0 corresponds 
to the initial state of the nonequilibrium run, when the system is still 
at equilibrium and the external force is activated. The response 𝐵(𝑡) is 
then monitored over each daughter trajectory, correlated with the dis-

sipation function Ω at 𝑡 = 0, the average is performed at each time step 
across all the trajectories, and integrated as per Eq. (1). The second 
requirement is that the system is mixing, that is, Ω(0) and 𝐵(𝑡) must 
eventually decorrelate, ⟨Ω(0)𝐵(𝑡)⟩ → ⟨Ω(0)⟩⟨𝐵(𝑡)⟩ for 𝑡 → ∞. Since at 
𝑡 = 0 the system is at equilibrium, ⟨Ω(0)⟩ = 0, and the convergence of 
the integral is ensured. The mixing requirement prevents the direct ap-

plication of the TTCF algorithm to systems characterized by long time 
correlations, which is common, for instance, in the solid state. Since 
Ω(0) is null only on average (⟨Ω(0)⟩ = 0 but in general Ω(0)𝑖 ≠ 0), a 
finite sample can hardly guarantee ⟨Ω(0)⟩ = 0 and hence the perfect 
convergence of the integral. The issue can be avoided by generating 
further initial conditions from each sampled state 𝚪𝑖 by using the fol-

lowing transformations:

𝚪𝑖 =
(
x,y,z,p𝑥,p𝑦,p𝑧

)
⟶ 𝚪′

𝑖
=
(
x,y,z,−p𝑥,−p𝑦,−p𝑧

)
𝚪𝑖 =

(
x,y,z,p𝑥,p𝑦,p𝑧

)
⟶ 𝚪′′

𝑖
=
(
−x,y,z,−p𝑥,p𝑦,p𝑧

)
𝚪𝑖 =

(
x,y,z,p𝑥,p𝑦,p𝑧

)
⟶ 𝚪′′′

𝑖
=
(
−x,y,z,p𝑥,−p𝑦,−p𝑧

) (2)

where the first mapping inverts the sign of the momentum for the par-

ticles. The second mapping is an 𝑥-reflection of the entire system, while 
the third is a combination of the first and the second. For a Couette 
flow applied in the 𝑥𝑦 plane, 𝚪′′ and 𝚪′′′ change the sign of Ω(0) and 
hence the average over the four states (original + mappings) is identi-

cally null. It is important to note that these mappings, particularly the 
second and the third, are effective only if the system is subjected to a 
shear in the 𝑥𝑦-plane. Different types of external forces may require 
other mappings. By generating several starting points from the same 
state, the mappings are also effective to optimize the sampling process. 
There are several different choices of transformations: each of the po-

sition and momentum component can be mirrored independently, and 
some authors even employed a permutation of the components [18] (if 
the system is periodic and has the same size along the 𝑥 and 𝑧 dimen-

sion, x and z and the corresponding momenta can be swapped), but any 
combination has to meet the condition ⟨Ω(0)⟩ = 0, and each mapping 
must have the same probability of the original state of being sampled 
from the mother trajectory. A simple alternative to the mapping method 
consists of replacing the integrand function with

⟨Ω(0)𝐵(𝑠)⟩− ⟨Ω(0)⟩⟨𝐵(𝑠)⟩ (3)

which automatically includes the correction for finite sample effects. 

This second expression is redundant if the mappings guarantees ⟨Ω(0) =
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Fig. 1. Schematic representation of the TTCF method. From the equilibrium 
mother trajectories, the microscopic state is sampled every 𝑁𝑠 time units. Four 
daughter nonequilibrium trajectories depart form the initial state.

0⟩, but was successfully applied in a previous work [26], where the 
proper transformations were not used. For completeness, we recall the 
explicit expression for TTCF and traditional NEMD (direct average, or 
DAV) measurements that will be used in the following:

⟨𝐵(𝑡)⟩DAV = 1
𝑁

𝑁∑
𝑖

𝐵(𝑡)𝑖

⟨𝐵(𝑡)⟩TTCF = 1
𝑁

[ 𝑁∑
𝑖

𝐵(0)𝑖 +

𝑡

∫
0

𝑁∑
𝑖

Ω(0)𝑖𝐵(𝑠)𝑖d𝑠
] (4)

were 𝑁 is the total number of nonequilibrium trajectories, including 
the mappings.

The general scheme of the TTCF algorithm is shown in Fig. 1. The 
system is followed along an equilibrium mother trajectory. After a pe-

riod of thermalization, when the system has fully reached the thermo-

dynamic equilibrium, the sampling process starts. Every 𝑇𝑠 time units 
the microstate 𝚪(𝑡) is stored, and used as an initial condition for the 
corresponding daughter trajectories, after being properly modified with 
the mappings selected. It is important to clarify that the dissipation 
function should be computed on the daughter trajectory, after the ex-

ternal filed has been switched on. The delay 𝑇𝑠 between samples should 
be long enough to ensure an independent set of initial states. The au-

tocorrelation function of some benchmark quantities can be used to 
determine the necessary delay. These variables can be the same func-

tion 𝐵 that will be monitored along the nonequilibrium segments, or 
Ω(𝑡)𝐵(𝑡). The class of applicability of the TTCF formalism is very broad. 
Since molecular bonds are conservative forces or ideal constraints, they 
do not bring any contribution to the dissipation function, which is in-

stead completely determined by the external force driving the system 
out of equilibrium. Moreover, the implementation of a TTCF algorithm 
is feasible for several types of external field [13].

Software methodology

The number of daughter trajectories needed is typically in the or-

der of tens of thousands or even millions. A naive implementation of 
the transient time correlation function would run LAMMPS for every 
daughter, storing all required quantities over the trajectory to disk. 
Each trajectory would then be loaded, the correlation with the initial 
dissipation function calculated and the totals summed to give the TTCF 
for that quantity Hence, three major bottlenecks can be found which 
significantly impact the usage of the method on local machines: total 
simulation time (the required time to a reach steady state), total mem-

ory size of the output (the number of variables considered possibly over 
a grid of chunks), and number of output files produced (number of 
3

daughters). While custom built codes can be designed to minimize the 
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size and number of output files, e.g. by including the averaging and 
integration process in the same script, this feature may sometimes be 
cumbersome to implement with molecular dynamics packages such as 
LAMMPS.

In this paper, we provide two different TTCF implementations. The 
first is the naive implementation using Linux shell scripting together 
with LAMMPS input scripts, designed to be run on an HPC clusters. It 
is intuitive but generates a large number of output files and requires 
a large amount of mass storage. The second paradigm is suitable for 
both local and HPC machines, streamlined using the LAMMPS Python 
interface. Its LAMMPS script is designed to generate both mother and 
daughter trajectories in a single run. It does not produce any output files 
except for the final result. It is more compact and optimized, and can 
be faster if the simulation itself is particularly quick, and the process of 
reading and writing on file becomes relatively intensive.

The first scheme works as follows: since the number of nonequilib-

rium runs required for the TTCF calculation is almost certainly much 
larger than the number of available cores, the total number of daugh-

ter trajectories is split into several independent, single-core runs. Each 
run is composed of an equilibrium mother trajectory which generates 
the required number of initial states, after which the corresponding 
nonequilibrium simulations are performed. Since each run is indepen-

dent of the others, it can start as soon as a single core is available on 
the cluster. This scheme is “embarrassingly parallel”, and, as a result, 
the simulation is extremely fast to run, even if the overall amount of re-

sources needed is large. The pseudocode of the corresponding workflow 
for a shell script is the script cycles over the required cores to launch 

Algorithm 1 SHELL SCRIPT.

1: for 𝑖 = 1, … , Ncores do

2: select seed SEED(𝑖) from list of random integers

3: run LAMMPS MOTHER ( SEED(𝑖) )
4: produce Ndaughters initial states (files)
5: for 𝑛 = 1, … , Ndaughters do

6: for 𝑚 = 1, … , Nmaps do

7: run LAMMPS DAUGHTER (𝑛,𝑚)

8: take initial state (file) n, apply mapping m
9: produce OUTPUT_FILE𝑛,𝑚

10: end for

11: end for

12: perform partial average and TTCF integration

13: end for

14: gather total averages, total TTCF integration, statistics.

independent runs, as depicted in Algorithm 1. Each mother trajectory 
is initialized by a random number, accordingly select from a list previ-

ously created. The random number is the seed for the random velocities 
with which the particles are initialized at the start of the run. LAMMPS 
run then generates 𝑁𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟𝑠 files which contain the collection of 
the starting points for the daughter trajectories. The script then cycles 
over each state 𝑛 and each mapping 𝑚. The LAMMPS daughter script 
reads the file 𝑛 and applies the mapping 𝑘, and runs the nonequilibrium 
simulation from which the response is monitored, and stored in the file 
indexed as 𝑛, 𝑚. At the end of the double loop, the data within each core 
are averaged, and a first TTCF integration is performed over the partial 
results. Once the partial results have been produced, a final script cy-

cles across each of them to perform the final average, the final TTCF 
integration, and to estimate the standard error of the results. The pro-

cess of writing and reading the initial states should be performed with 
the LAMMPS command write_restart and read_restart, which ensure the 
whole system’s state is transferred from mother to daughter trajectory 
including the value of the thermostat, if relevant.

The second scheme is designed to maximize the efficiency. Hence, 
we manage and run the LAMMPS simulation via a Python script. The 
outputs are not written on file but directly managed by the Python code, 

which averages the data from all the daughter trajectories and stores 
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them until the end of the simulation, when the output file is eventually 
produced.

From a computational perspective, the only difference between 
mother and daughter trajectory is the action, on the latter, of the ex-

ternal field, and the computation of system’s response. Hence, the same 
LAMMPS script can be employed to generate both mother and daugh-

ter trajectory, without the need to run the daughter trajectories via a 
different script.

The procedure works as follows. After the thermalization, the sam-

pling process starts. The system is followed over the equilibrium ther-

mostatted dynamics (fix nvt command) for the desired number of 
timesteps. The sample 𝚪𝑛 is then produced by storing positions and 
momenta via the command fix store/state. Once a sample is generated, 
the mother trajectory is halted (unfix nvt), and the script cycles over 
the daughters. Each daughter run is characterized by the following se-

quence of operations: set the system to state 𝚪𝑛 via set atom, where 
the target values are the outputs of the fix store/state; modify the ini-

tial state accordingly to the mapping; set the nonequilibrium dynamics, 
call the function for the computation of the desired quantities (fix ave/-
time, fix ave/chunck, etc), and run the simulation. At the end of each 
NEMD trajectory, the nonequilibrium dynamics is halted as well as the 
computation of the response (unfix ave/time, unfix ave/chuck, etc). The 
process is cycled over all the four daughters. After the nonequilibrium 
runs have been generated, the system is set back to the state 𝚪𝑛 and the 
mother trajectory is recovered. The system is then followed over the 
equilibrium dynamics until the next sample 𝚪𝑛+1 overwrites the pre-

vious state 𝚪𝑛, when the cycle starts again. The loop is repeated the 
desired number of times. The scheme is shown in the Algorithm 2 and 

Algorithm 2 LAMMPS SCRIPT.

1: initialize system (null ext. field)

2: run 𝑁𝑡 timestep

3: save state

4: for 𝑛 = 1, … , Ndaughters do

5: load system state

6: run 𝑁𝑠 timestep

7: save system state

8: for 𝑚 = 1, … , Nmaps do

9: load system state

10: apply mapping

11: switch on ext. field

12: set computation of the response

13: run 𝑁𝑑 timestep

14: switch off ext. field

15: end for

16: end for

in Fig. 2. The outputs of the functions fix ave/time, fix ave/chunck are 
not written to file, but passed to the Python interface through which 
the LAMMPS script is launched. The loss in efficiency caused by the 
Python wrapper is abundantly compensated by a easier management 
of the simulations, since only few files are generated, and by avoid-

ing reading/writing on files, which is typically inefficient both on a 
local machine and on a HPC cluster [34] Since fix store/state does not 
save the value of the thermostats, the periodically halted and resumed 
mother trajectory diverges from the one obtained via a single, uninter-

rupted run. The effect occurs at the transition from mother to daughter 
runs as well. The issue is irrelevant for the mother trajectory if the runs 
between samples are sufficiently long to fully regain an equilibrium 
canonical distribution. Moreover, it has an undetectable effect on the 
shear pressure, but it should potentially be accounted for if other quan-

tities, such as the temperature, are monitored. In that case, the initial 
states should be stored and loaded via the commands write_restart and 
read_restart, and daughter and mother trajectories should have identi-

cal fix_nvt commands. However, not every fix is stored in a restart file, 
and hence the transition from mother to daughter trajectory might not 
4

always be totally consistent.
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Fig. 2. Flowchart of the LAMMPS script for TTCF calculation through a single 
uninterrupted run. Note that the sequence of commands save state and load 
state at the end of the thermalization and at the beginning of the outer cycles, as 
well as the first decorrelation (Run 𝑁𝑠 timesteps) are redundant, but necessary 
to preserve the correct structure of the flow.

Since the thermalization is typically very long, both setups can be 
optimized by running a smaller number of independent thermalizations 
over multicore runs. For instance, instead of 1000 thermalizations over 
single core jobs, 100 thermalizations with 10-core independent jobs can 
be performed. After the process is completed, the workflow is switched 
back to single core jobs. Hence, for each original trajectory, 10 further 
mother trajectories must be generated, on which the sampling of the 
initial states takes place. It is easy to generate further initial conditions 
from a single state by adding to the velocities a small random kick. 
Since the system is chaotic, the decorrelation between the trajectories 
is fast, and a small perturbation should not alter the thermodynamic 
state of equilibrium achieved through the thermalization. The precise 
gain in efficiency of this method is rather situational, since it depends, 
among other things, on the specific architecture of the cluster used for 
the simulation.

The key part of the Python code to run the TTCF is shown in Algo-

rithm 3. The ttcf object is loaded from the TTCF module to handle data 
accumulation, integration, normalisation as well as plotting and writ-

ing to file. Each step required data for the TTCF calculation is added 
through ttcf.add_mappings function, which in this example is global 
data (single time averages for the simulations such as temperature) and 
profile data (here the velocity at 100 equally sized chunks spanning the 
y direction). By separation into a module, both ttcf and utils can be 
unit tested by continuous integration system on Github Actions, used to 
validate basic functionality remains correct as the project evolves. The 
TTCF module is independent of LAMMPS so could be used by another 

MD solver. However, a key feature of TTCF4LAMMPS is the extrac-
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tion of data from LAMMPS on the fly, using the utils.get_fix_data which 
can retrieve both global (ave/time) and 1D profile (ave/chunks) us-

ing pylammps interface to LAMMPS extract_fix function. The LAMMPS 
instance, lmp, manages the MD simulation and is run forward by a num-

ber of timesteps as set by the Delay variable, before data is extracted. 
In this way, writing to file is avoided as all collected data can be ex-

tracted directly into Python. This approach works both in serial and 
parallel, where each Message Passing Interface (MPI) process creates its 
own LAMMPS instances, collects its own data and this is reduced at the 
end of the simulation. The embarrassingly parallel nature of the prob-

lem is preserved while totally avoiding the need to write to disk, except 
for occasional checkpoints. Further continuous integration testing en-

sures pylammps can be imported correctly, before an integration test 
verifies the TTCF with LAMMPS collects the expected velocity data for 
a given strain rate, as well as ensures this gives better statistics than 
the DAV approach when strain rate is low. The example script below is 
designed to be easily extensible, with the ttcf and ultis provides as sim-

ple helper functions applicable to any outputs. These save and load the 
LAMMPS state to allow mother/daughter trajectory checkpointing, ap-

ply mapping and simplify the process of turning on applied forcing or 
data collection (e.g. SLLOD or boundary driven as described in the next 
two subsections). However, the LAMMPS input syntax is retained as far 
as possible, making it easy for LAMMPS users to make changes. For ex-

ample, to add addition variables to calculate profiles for by appending 
to setlist e.g. setlist.append (“compute my_compute all [details]”) and 
then add this to profile_variables = [‘vx’, ‘c_my_compute’] to collect 
the TTCF data. The Github page for the project includes an extensive 
README.md file to explain these features in detail.

Both scripts can also be run using graphical processing units (GPUs) 
by exploiting the GPU calculation package available in LAMMPS. The 
lammps scripts, both through the C++ and within the Python inter-

face should be modified by adding the command package gpu at the 
beginning of the script and by modifying the definition of the atomic 
potential from pair_style lj/cut to pair_style lj/cut/gpu. The gain in effi-

ciency depends on several factors but can be substantial for specific 
systems. A comparison of the efficiency of CPU and GPU calculation 
will be included in the next section.

Example 1: shear of bulk systems

The bulk system is based on that used in a previous study by Borzsák 
et al. [17]. It consists of 256 particles placed in a cubic box of fixed vol-

ume. Periodic boundary conditions are applied in all three Cartesian 
directions. The evolution is driven by the SLLOD equations of motion 
[35,1,12,36,7]. In LAMMPS, the dynamics is described by the following 
command: 𝑓𝑖𝑥 𝑑𝑒𝑓𝑜𝑟𝑚 which deforms the simulation box according 
to the selected shear rate, in order to give the fluid a linear Couette 
flow profile. This approach is essentially equivalent to the popular Lees-

Edwards sliding-brick boundary conditions [37]. Finally fix nvt/sllod
produced a thermostatted SLLOD dynamics, where the temperature is 
controlled with a Nosé-Hoover thermostat [38,39], and the equations 
integrated using the velocity-Verlet (or Störmer–Verlet) algorithm [40]

(using the run_style verlet command). The thermostatted SLLOD dynam-

ics is described by the following set of differential equations

ṙ𝑖 =
p𝑖

𝑚𝑖

+ i𝛾̇𝑦𝑖

ṗ𝑖 = −
∑
𝑗

∇𝜙𝑖𝑗 − i𝛾̇𝑝𝑦𝑖 − 𝛼p𝑖

𝛼̇ = 1
𝑄

(∑
𝑖

p2
𝑖
− 3𝑁𝑘𝐵𝑇

) (5)

where 𝛼 is the Nosé-Hoover thermostat multiplier [38,39] and 𝑄 its 
damping factor. The particles interact via the Weeks-Chandler-Andersen 
(WCA) potential [41], which is a truncated and shifted Lennard-Jones 
5

potential [42].
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𝜙
(
𝑟𝑖𝑗

)
=
⎧⎪⎨⎪⎩
4𝜖
[(

𝜎

𝑟𝑖𝑗

)12
−
(

𝜎

𝑟𝑖𝑗

)6]
+ 𝜙𝑐, if 𝑟𝑖𝑗 ≤ 𝑟𝑐

0, if 𝑟𝑖𝑗 > 𝑟𝑐

(6)

with 𝑟𝑖𝑗 , 𝜎, 𝜖 the particles’ distance, particles’ diameter and potential 
well, respectively. The interaction radius 𝑟𝑐 is 21∕6𝜎 and the shift 𝜙𝑐

is the constant required to guarantee the continuity of the potential in 
𝑟𝑐 . The dissipation function associated to the system and the resulting 
TTCF is then

Ω=− 𝛾̇𝑉

𝑘𝐵𝑇
𝑃𝑥𝑦 ⟨𝐵(𝑡)⟩ = ⟨𝐵(0)⟩− 𝛾̇𝑉

𝑘𝐵𝑇

𝑡

∫
0

⟨𝑃𝑥𝑦(0)𝐵(𝑠)⟩d𝑠 (7)

with 𝑉 the volume of the system, 𝛾̇ the shear rate and 𝑃𝑥𝑦 the shear 
pressure. The simulations were carried out at the Lennard-Jones triple 
point (𝜌∗ = 𝜌𝜎3 = 0.8442; 𝑇 ∗ = 𝑘𝐵𝑇 ∕𝜖 = 0.722). We varied the re-

duced strain rate, 𝛾∗ = 𝛾(𝑚∕𝜖)1∕2𝜎 from 1 to 10−7. The shear viscosity 
𝜂 was computed with the following TTCF expression

⟨𝜂(𝑡)⟩ = −
⟨𝑃𝑥𝑦(𝑡)⟩

𝛾̇
= 𝑉

𝑘𝐵𝑇

𝑡

∫
0

⟨𝑃𝑥𝑦(0)𝑃𝑥𝑦(𝑠)⟩d𝑠 (8)

The timestep (Δ𝑡∗ = Δ𝑡(𝑚∕𝜖)1∕2∕𝜎) was 0.0025. Each transient NEMD 
segment was 600 timesteps long, and we generated 4 × 30000 = 
120000 of them, to yield reasonable statistics, with 30000 independent 
initial conditions and the corresponding mappings as described previ-

ously. The delay between samples along the equilibrium trajectory was 
1000 timesteps. We have used reduced units throughout, unless stated 
otherwise. This first example is designed to be run on a local machine. 
As a result, the system is very small, and arguably the simplest system 
from which a realistic fluid response can be obtained. The total simula-

tion time is approximately 4.5 hours on a single core run for each shear 
rate tested. Since the method is fully parallelized, it is expected that a 
four-core run would be completed in approximately an hour.

It is crucial that at the start of the daughter trajectory the cor-

rect velocity profile is superimposed on the momenta. This operation 
is required for the correct transient response, but is not automatically 
implemented in the LAMMPS routines for SLLOD dynamics. The oper-

ation can be performed with the command set atom. velocity ramp must 
be avoided for TTCF computation, since it overwrites the existing mo-

menta with a linear profile, rather than superimposing it.
Fig. 3 displays the shear viscosity computed via direct average 

(DAV) and TTCF. The data are in good agreement at high shear rates, 
where shear thinning occurs. As previously anticipated, the computed 
viscosity shows the feature of TTCF formalism of generating data whose 
accuracy is not affected by the magnitude of the external force. In con-

trast, the direct average (DAV) rapidly loses precision as the shear rate 
decreases. The effect will be explored more extensively in the next sec-

tion. We are aware that the current stable LAMMPS release (August 
2023) contains several issues in the implementations of the SLLOD dy-

namics. These bugs are noticeable in the small discrepancy between 
the DAV and TTCF viscosities displayed, where the TTCF calculation 
is systematically smaller than its direct counterpart. These issues are 
currently being analysed and addressed by Prof Debra Bernhardt (Sear-

les) and her group.1 We tested the efficiency of GPU force calculation 
for both the original LAMMPS script and the corresponding Python in-

terface. Fig. 4 shows the average time per particle spent to compute 
a single timestep. This is measured as a function of the number of 
particles in the system. The data have been obtained from a run of 
3 × 104 timesteps subdivided in 2 × 104 for the mother trajectory and 
104 timesteps for the daughter. In both setups, the GPU force calcula-

tion can speed up the simulation for large systems (> 4000 particles), 
but performs worse in smaller systems. The decrease in performance 
1 Private communications.
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Algorithm 3 Python code in run_TTCF.py which uses pyLAMMPS interface together with the TTCF package.

1 lmp = lammps(comm=MPI.COMM_SELF, cmdargs=args)

2

3 #Run equilibration

4 lmp.file("system_setup.in")

5 lmp.command("timestep " + str(dt))

6 utils.run_mother_trajectory(lmp,Nsteps_Thermalization,Thermo_damp)

7

8 #Save snapshot to use for daughters

9 state = utils.save_state(lmp, "snapshot")

10

11 #Loop over all sets of daughters

12 for Nd in range(Ndaughters):

13

14 #Run mother starting from previous sample to generate the next sample

15 utils.load_state(lmp, state)

16 utils.run_mother_trajectory(lmp,Nsteps_Decorrelation,Thermo_damp)

17 state = utils.save_state(lmp, "snapshot")

18

19 #Branch off daughters for each mapping

20 for Nm in range(Nmappings):

21

22 #Load child state

23 utils.load_state(lmp, state)

24

25 #Apply mapping

26 utils.apply_mapping(lmp, Maps[Nm])

27

28 #Apply forces and setup outputs

29 utils.set_list(lmp, setlist)

30

31 #Run zero to setup case

32 lmp.command("run 0 pre yes post yes")

33

34 #Extract profile and time averaged (global) data from LAMMPS

35 data_profile[0, :, :] = utils.get_fix_data(lmp, "Profile_variables",

36 profile_variables, Nbins)

37 data_global[0, :] = utils.get_fix_data(lmp, "Global_variables",

38 global_variables)

39 omega = data_global[0, -1]

40

41 #Run over time

42 for t in range(1, Nsteps):

43 lmp.command("run " + str(Delay) + " pre yes post no")

44 data_profile[t, :, :] = utils.get_fix_data(lmp, "Profile_variables",

45 profile_variables, Nbins)

46 data_global[t, :] = utils.get_fix_data(lmp, "Global_variables",

47 global_variables)

48

49 #Turn off forces and outputs

50 utils.unset_list(lmp, setlist)

51

52 #Sum the mappings together

53 ttcf.add_mappings(data_profile, data_global, omega)

54

55 #Perform the integration

56 ttcf.integrate(dt*Delay)
of the Python interface is relevant for very small systems, but becomes 
negligible for more common system sizes. The tests have been run on 
local machines (CPU Intel Core i7-11800H and GPU NVIDIA GeForce 
RTX 3035 Ti), where writing/reading on files is more efficient than on 
HPC clusters. The reason for the lower speed is due to the requirement 
of the pylammps package to halt and restart the daughter trajectory 
whenever the output is produced (in the presented results, the pressure 
ic computed every 5 timesteps). The command run pre yes post no is re-

quired to obtain the correct output calculation, whereas run pre no post 
no would results in similar performances for both the original script and 
the Python implementation. The issue can be lessened by decreasing the 
frequency of output generation, as the correlation function can typically 
be integrated with a very large step, up to 50 or more times larger than 
the timestep set for the simulation. This option can also increase the ef-

ficiency of GPU force calculation. Moreover, different LAMMPS output 
6

calculations might not need the option pre yes post no. It is advised these 
options be checked for a specific case, starting with run pre yes post no
and comparing results to see if optimisation is possible.

Example 2: shear of confined systems

The confined system is based on that used in a previous study by 
Maffioli et al. [27], where a narrow three-dimensional channel was 
analysed. The system is composed of Lennard-Jones particles, and the 
walls are kept in position by tethering the particles to lattice sites via 
harmonic springs. The boundary-driven Couette flow is generated by 
moving the lattices in opposite directions at constant velocity 𝑣 [43]. 
The LJ potential is defined as

[(
𝜎
)12 (

𝜎
)6]
𝜙(𝑟)𝑖𝑗 = 4𝜖
𝑟𝑖𝑗

− 𝑐𝑖𝑗
𝑟𝑖𝑗

(9)
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Fig. 3. Shear viscosity for the bulk system at different shear rates (5 × 104-5 ×
1011 in SI units). Both DAV and TTCF signals can detect the reduction in the 
viscosity for high shear rates (shear thinning). The accuracy of the direct aver-

age rapidly decreases for 𝛾̇ → 0. In contrast, the TTCF signal retains the same 
accuracy regardless of the magnitude of the driving force.

Fig. 4. Efficiency (microseconds per particle per timestep) of the CPU and GPU 
setups, for both original LAMMPS script and the Python interface. GPU force 
calculation is more efficient for medium and large systems. The Python interface 
decreases the performances for small systems, but it’s efficiency is comparable 
to the original LAMMPS script for large systems.

where the wetting parameter 𝑐𝑖𝑗 is modulated to promote slip between 
wall and fluid particles, and to enhance cohesion within the fluid. The 
equations of motion describing the dynamics of the system are:

ṙ
𝑓

𝑖
=

p
𝑓

𝑖

𝑚𝑖

ṗ
𝑓

𝑖
= −

∑
𝑗

∇𝜙𝑖𝑗

ṙ𝑤
𝑖
=

p𝑤
𝑖

𝑚𝑖

ṗ𝑤
𝑖
= −

∑
𝑗

∇𝜙𝑖𝑗 − 𝑘(r𝑤
𝑖
− r𝑙

𝑖
) − 𝛼p𝑤

𝑖

𝛼̇ = 1
𝑄

(∑
𝑖

p𝑤2
𝑖

− 3𝑁𝑤𝑘𝐵𝑇

)
ṙ𝑙
𝑖
=
(
±𝑣 , 0 , 0

)
ṗ𝑙
𝑖
=
(
0 , 0 , 0

)

(10)

with superscript 𝑓 , 𝑤 and 𝑙 denoting the fluid, wall, and lattice particles 
7

respectively. r and p are the positions and the momenta of the particles, 
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𝑘 is the stiffness of the harmonic spring tethering the wall particles 
to the lattice sites. 𝛼 is the Nosé-Hoover thermostat multiplier, acting 
on 𝑁𝑤 wall particles, and 𝑇 the target temperature of the walls. The 
associated dissipation function is

Ω=− 1
𝑘𝐵𝑇

∑
𝑖

𝑘(r𝑤
𝑖
− r𝑙

𝑖
)𝑣 (11)

summed over both walls. In our previous work [27], we showed that 
it is also valid for inhomogeneous systems kept at constant pressure by 
means of a barostat [44]. The wall temperature is set to 1. The sys-

tem is composed of 6800 fluid particles and 2600 wall particles with 
diameter 𝜎 = 1 and interaction radius 𝑟𝑐 = 2.5, at the densities of 0.7
and 0.8 respectively in reduced units. The wetting parameter is 0.6325
for the wall-fluid interactions and 1.2 for the fluid-fluid potential [45]. 
The system is approximately 30𝜎 long in the 𝑥 and 𝑧 direction, and the 
channel width is set to 10𝜎. This is expected to be sufficiently large 
in the lateral dimensions to avoid size effects on the liquid-solid fric-

tion [46]. The equations of motion were integrated with the standard 
velocity-Verlet [40] algorithm with integration step equal to 0.005.

We adopted the first scheme described in the previous section, and 
104 independent mother trajectories were generated. Each of them was 
thermalized for 5000 time units (106 timesteps) before the sampling 
took place. The starting points were produced with a lag of 5 time units 
from each other. 102 initial states were generated for each mother, for 
a total of 4 × 106 nonequilibrium daughter trajectories. Each nonequi-

librium system was monitored for 12.5 time units, or 2500 time steps. 
Hence, a total of 2.1 ×1010 timesteps were required for each simulation.

The simulations were performed on the Swinburne University super-

computer OzSTAR, which features Intel Gold 6140 processors. Each run, 
composed of 2.1 × 106 time steps, was performed in approximately 6
hours. Since the resources needed for each single run were very limited, 
the total simulation was performed in a very short time. If a higher effi-

ciency is needed, each mother trajectory can be thermalized for shorter 
than 5000 time units, which is arguably very conservative. The mother 
trajectory was generated via the usual 𝑓𝑖𝑥_𝑛𝑣𝑡 command. The same dy-

namics was applied on the daughter trajectories. The only difference 
in the dynamics between equilibrium and nonequilibrium runs was the 
constant velocity in the 𝑥 direction imposed to the lattice sites in the 
second case. As previously described, write_restart and read_restart com-

mands were used to store and load the initial states. This also allowed 
us to run the mother trajectories one time only, and use the same sam-

ple for all the shear rates we tested. We computed the shear pressure 
𝑃𝑥𝑦 at the wall-fluid interface, using the method of planes [47], and the 
velocity profile. We also compared the calculation of the friction co-

efficient using equilibrium methods with the direct measurement over 
the NEMD trajectories. The equilibrium method is described in previous 
works [48,11], and is based on the following definition:

⟨𝐹𝑥⟩ = 𝜉0𝐴⟨Δ𝑣⟩ (12)

where 𝜉0 is the intrinsic friction coefficient and 𝐴 the interface sur-

face. ⟨𝐹𝑥⟩ and ⟨Δ𝑣⟩ are respectively the instantaneous average force 
between the wall and the fluid particles located in a slab adjacent to 
the wall, and the instantaneous average slip velocity of the slab. The 
data for the calculation were obtained from the window of 500 time 
units along the mother trajectory, over which the starting points for the 
NEMD segments were generated. The DAV and TTCF data were instead 
produced by a direct nonequilibrium computation of ⟨𝐹𝑥⟩ and ⟨Δ𝑣⟩
from the daughter trajectories. We investigated the fluid response to a 
shear rate spanning over 15 order of magnitude, from 10−1 to 10−15 in 
reduced units (5 × 1010 - 5 × 10−4 in SI units). This range is possibly the 
full window over which the system can be examined by numerical simu-

lations. Higher shear rates trigger a resonance with the harmonic bonds 
tethering the wall particles, resulting in wide wall oscillations and mak-

ing the setup inefficient. For weaker fields, the response might become 
hard to detect due to the finite precision of the floating-point represen-
tation, which is approximately 10−15 for double precision numbers.
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Fig. 5. Autocorrelation of the dissipation function Ω, the shear pressure 𝑃𝑥𝑦

and the integrand function Ω𝑃𝑥𝑦. Bottom left is the autocorrelation of Ω for a 
maximum lag of 500 time units. Bottom right, the autocorrelation of 𝑃𝑥𝑦 and 
Ω𝑃𝑥𝑦, magnified with a narrower band of 2 time units.

In Fig. 5, the autocorrelation function for various quantities is dis-

played. The variables have been computed from a single equilibrium 
trajectory. Since at equilibrium the dissipation function is identically 
null, only the total wall-lattice harmonic force is displayed as Ω (cf. 
Eq. (11)). The presence of the harmonic springs combined with a weak 
wall-fluid interaction makes the wall effectively a solid and hence the 
autocorrelation function of Ω persists for a long time, in the order of 200
time units, but does not fully decay. On the other hand, 𝑃𝑥𝑦 and Ω𝑃𝑥𝑦

decorrelate in less than 1 time unit, meaning that the starting points are 
reasonably independent for 𝑇𝑠 ≥ 1. If the samples are correlated, the re-

sulting signal might be both biased and more dispersed. The short range 
decay in the autocorrelation is also possibly an indicator for the success 
of the TTCF method as it prevents the fluid from being in, or close to, 
the solid state, as noted earlier.

Fig. 6 shows the velocity profile at 𝑡 = 12.5 for 𝛾̇ = 10−1 and 10−15
computed via DAV and TTCF. The error bars for the direct average have 
been omitted since the signal is either extremely accurate for the high 
shear, or extremely noisy for the weak field. The sigmoid shape of the 
velocity profile is the result of the small channel width combined with 
the Lennard-Jones interaction parameters chosen, and it persists in the 
steady state. In Fig. 7 the transient of the shear pressure at the wall-fluid 
interface is displayed from 𝑡 = 0. The error bars for the direct average 
have been omitted again. Both the velocity and the pressure show that 
for 𝛾̇ = 10−15 the DAV signal is essentially composed of random noise. In 
Fig. 8 the shear pressure and the slip velocity as a function of the shear 
rate are displayed. The slip velocity is defined as the difference of the 
velocity of the innermost wall layer and the outermost fluid layer. The 
data show that the DAV can produce acceptable results for 𝛾̇ ≥ 10−5. 
For weaker fields, the statistical fluctuations drown out the response, 
and the signal is constant across the different shear rates.

On the other hand, all the phase variables displayed suggest that 
the TTCF method is able to identify the response at any level of the 
shear rate. The accuracy of the TTCF method increases as the shear 
rate decreases and the signal-to-noise ratio (SNR), defined as the ratio 
between the signal and its standard deviation, remains approximately 
constant for any magnitude of the shearing force. The property can be 
proven as follows. For simplicity, the fluctuations of any quantity (e.g. 
𝑃𝑥𝑦) are assumed to be constant for every shear rate. This condition 
is valid for weak shear rates, and it essentially holds across the entire 
range tested in this work. Secondly, the dissipation function at 𝑡 = 0 is 
proportional to the shear rate. This relation is exact and independent 
of the rate itself, and it immediately follows from Eq. (7) and (11), 
where in the expression of the dissipation function two terms are clearly 
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detectable. The first term is a pressure/force contribution (𝑃𝑥𝑦 for the 
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Fig. 6. Velocity profile at 𝑡 = 12.5 for 𝛾̇ = 10−1 (a), and 𝛾̇ = 10−15 (b) (resulting 
wall velocity 𝑣 ≈ ±102 m/s and 𝑣 ≈ ±10−12 m/s). The error bars are four times 
the standard error. The shaded regions indicate the solid walls.

bulk systems, 𝑥 component of the spring forces for the channel), and 
in statistical mechanics is usually denoted as dissipative flux conjugate 
to the generalized external field. For our purpose, we note that this is 
computed at 𝑡 = 0, that is, an equilibrium state, and hence is independent 
of the external field. The second term is the effective external force and 
is equal, or proportional, to 𝛾̇ or 𝑣. As a result, Ω(0) is proportional to 
the magnitude of the external driving force, and we have the following 
set of relations, shown for simplicity only for the shear pressure and the 
dissipation function:

⟨Ω(0)⟩ = 0 𝜎(Ω(0)) = 𝑘1𝛾̇⟨𝑃𝑥𝑦(𝑡)⟩ = 𝑃𝑥𝑦(𝛾̇) 𝜎(𝑃𝑥𝑦(𝑡)) = 𝑘2
(13)

where 𝜎 is the standard deviation, 𝑘𝑖 are arbitrary constants, and 𝑃𝑥𝑦

is the real shear pressure. If we restrict, for convenience, our analysis 
to a steady state, the functions Ω(0) and 𝑃𝑥𝑦 are uncorrelated and the 
variance 𝜎2 of the integrand function in Eq. (7) and (11) is:

𝜎2(Ω(0)𝑃𝑥𝑦(𝑡)) =

(𝜎2(Ω(0)) + ⟨Ω(0)⟩2)(𝜎2(𝑃𝑥𝑦(𝑡))

+⟨𝑃𝑥𝑦(𝑡)⟩2) − ⟨Ω(0)⟩⟨𝑃𝑥𝑦(𝑡)⟩ (14)
=(𝑘21𝛾̇
2)(𝑘22 + 𝑃 2

𝑥𝑦
)
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Fig. 7. Shear pressure as a function of time for 𝛾̇ = 10−1 (a), and 𝛾̇ = 10−15
(b) (5 × 1010s−1 and 5 × 10−4s−1 in SI units). The error bars are four times the 
standard error.

Fig. 8. Shear pressure and velocity profile for DAV and TTCF for every shear 
rate tested spanning from 5 × 1010s−1 to 5 × 10−4s−1 in SI units. Error bars have 
been omitted.

The effect of the integration can hardly be modelled by simple func-

tions, but it depends solely on the time 𝑡, and hence the SNR of the 
shear pressure

⟨𝑃𝑥𝑦(𝑡)⟩

9

SNR =
𝜎(𝑃𝑥𝑦(𝑡))
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is expressed by the following identities:

SNRDAV =
𝑃𝑥𝑦(𝛾̇)
𝑘2

SNRTTCF =𝐾(𝑡)
𝑃𝑥𝑦(𝛾̇)

𝑘1𝛾̇
√

𝑘22 + 𝑃 2
𝑥𝑦
(𝛾̇)

= 𝐾(𝑡)
𝑘1𝛾̇

SNRDAV√
1 + SNR2

DAV

(15)

where 𝐾(𝑡) is a function accounting for the integration process. Since 
𝑃𝑥𝑦 ≃ 𝑐𝛾̇ for 𝛾̇ → 0, we have

lim
𝛾̇→0

SNRDAV = 0

lim
𝛾̇→0

SNRTTCF =
𝐾(𝑡)𝑐
𝑘1

(16)

and

lim
𝛾̇→∞

SNRDAV =∞

lim
𝛾̇→∞

SNRTTCF = 0.
(17)

The last relations suggest that the TTCF methods are eventually out-

performed by a simple direct average, and that they progressively lose 
accuracy as the external field is increased.

Fig. 9 summarizes the various results: the standard error SE of 𝑃𝑥𝑦(𝑡)
and Ω(0)𝑃𝑥𝑦(𝑡) are displayed for all the shear rates (SE = 𝜎∕

√
𝑁 with 

𝑁 = 4 × 106 the total number of daughter trajectories). The latter is 
approximately constant along the NEMD segment, and proportionally 
increases with 𝛾̇ . In the steady states, the DAV fluctuations are indepen-

dent of 𝛾̇ , while they exponentially increase from a null value during 
the transient. This effect occurs because the mappings selected guaran-

tee that ⟨Ω(0)⟩ = 0, but also ⟨𝑃𝑥𝑦(0)⟩ = 0. In other words, the averaging 
over the mappings artificially eliminate the instantaneous fluctuations 
of the pressure, and the accuracy of the direct average at 𝑡 = 0 is vir-

tually infinite. This correlation is retained for the first moments of the 
NEMD trajectory, whose signal is still characterized by low statistical 
uncertainty. The chaotic nature of the system makes the trajectories ex-

ponentially diverge, and, as a result, the standard error increases until 
the trajectories become uncorrelated, and the fluctuations stabilize to a 
steady value. After this, a measure obtained from a sample of 𝑁 initial 
states along with their three mappings is equivalent to a set of 4𝑁 in-

dependent states. Similar features are exploited in previous works [49], 
where, in order to improve the accuracy of traditional NEMD simu-

lations, the nonequilibrium segments are paired with equilibrium ones 
starting from the same initial condition. The quantity of interest is moni-

tored over both trajectories and the final result is the difference between 
the two measures. At the start of the run, where the two trajectories are 
highly correlated, the procedure eliminates from the NEMD signal the 
random fluctuations, obtained from the equilibrium signal. However, 
the systems studied in NEMD simulation are almost invariably chaotic, 
hence the trajectories decorrelate rapidly, and the obtained signal may 
lose most of its accuracy well before the system has reached a steady 
state. The rate of divergence of the trajectories is also driven by the 
magnitude of the shear: strong fields make the system more chaotic. 
This so-called background subtraction technique was demonstrated to be 
unsuitable for practical systems of interest [12].

In Fig. 10 the signal-to-noise ratio is displayed, for the shear pres-

sure, the slip velocity and the friction coefficient for both DAV and 
TTCF. The threshold below which the TTCF outperforms the direct av-

erage is confirmed to be 𝛾̇ = 10−5 for all the quantities. A SNR of the 
order of 1, or below, entails that the magnitude of the statistical fluctu-

ations are comparable or larger than the signal, and no information can 
be obtained from the data.

Fig. 11 displays the friction coefficient, computed using the equilib-

rium and nonequilibrium methods. The black line represents the data 
computed via the equilibrium method. Since the equilibrium calcula-
tion is not associated to a specific shear rate, the line is constant across 
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Fig. 9. Standard error of 𝑃𝑥𝑦(𝑡) and of Ω(0)𝑃𝑥𝑦(𝑡). The inset shows the first 
quantity only, magnified. The different curves are for different shear rates.

Fig. 10. Signal-to-noise ratio for various quantities for DAV and TTCF as a 
function of the reduced shear rate.

Fig. 11. Friction coefficient as a function of the shear rate, computed with DAV 
and TTCF. The black squares indicate the (constant) equilibrium calculation. 
The DAV signal at 𝛾̇ = 10−5 and 𝛾̇ = 10−15 does not appear in the range of the 
plot, and for 𝛾̇ = 10−10 the confidence interval itself is out of scale.

the figure, and displayed for the mere purpose of comparison with the 
NEMD measurements. The data show the same behaviour as previous 
quantities, with DAV being progressively less accurate and the TTCF re-

taining the same precision. In comparison, the equilibrium method is 
10

drastically better at any level. For shear rates beyond 105 the accuracy 
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of the DAV is comparable to the equilibrium method, and the friction 
coefficient starts to deviate from the linear response.

The friction coefficient is particularly hard to estimate via direct 
average because a ratio of two random variables can be highly unstable. 
The effect is severe at low shear rate, where the signal may even be out 
of the numeric range displayed here.

The results confirm the model for the SNR previously derived, with 
the caveat that the numerator of the direct average must be replaced 
by the real response, computed, for instance, with the TTCF method. 
The TTCF signal-to-noise ratio is approximately constant for every shear 
rate, and it is expected to decrease for higher shear rates, when devi-

ations from linear response become relevant. The effect might already 
starts at 𝛾̇ = 10−1, where the SNR slightly decreases. We note that for 
more complex molecular fluids, such as alkanes or polymer melts in 
solutions, nonlinear effects manifest at much weaker shear rates, mak-

ing TTCF the technique of choice for its superior statistical accuracy at 
experimental strain rates.

Conclusion

We applied the TTCF technique in the investigation of an atomic 
fluid confined in a narrow channel undergoing planar Couette flow. 
We have shown that the method is readily implementable in simula-

tion software such as LAMMPS and can be generalized to molecular 
fluids, and we listed the key ingredients for its efficient usage. We 
highlighted the key features and advantages of the TTCF formalism: 
i) TTCF measurements retain the same signal-to-noise ratio for arbitrar-

ily weak fields, to the point that the lower bound is now set by the 
finite precision of the computer arithmetic. We provided a simple proof 
of this phenomenon and, given the generality of the mechanism under 
which it occurs, we expect it to hold for other types of driving fields. 
ii) While equilibrium methods may be computationally more efficient, 
they are limited to the linear response regime, whereas TTCF is valid 
for any magnitude of the external force. iii) The dissipation function is 
exclusively related to the nature of the external field, and not to the in-

teratomic forces. As such, it is immediately extendable to more complex 
systems. Particularly, the scripts we provided can be extended to molec-

ular fluids by simply redefining the atomic interactions and bonds.

The application of the TTCF formalism demands significant com-

putational resources, but it rapidly outperforms the direct average for 
weak driving fields, which correspond to those that can be experimen-

tally probed in the laboratory. As a comparison, the resources needed 
to monitor the system response at 𝛾̇ = 10−15 via DAV could be as much 
as 1020 times larger than those needed for the TTCF algorithm. Addi-

tionally, we have shown that the simulations can be split into a massive 
number of short, independent tasks, hence dramatically increasing their 
efficiency.
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