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Abstract: Holoscopic imaging, which a single aperture to acquire full-colour spatial images like the 1

fly’s eye by gently altering angles between nearby lenses with a micro-lens array. Due to its simple 2

data collection and visualisation method, which provides robust and scalable spatial information, 3

and motion parallax, binocular disparity, and convergence, this technique may be able to overcome 4

traditional 2D imaging issues like depth, scalability, and multi-perspective problems. A novel 5

disparity map-generating method uses angular information in a single Holoscopic image’s micro- 6

images, or Elemental Images (EI), to create a scene’s disparity map. Not much research has used 7

EIs instead of Viewpoint Images VPIs for disparity estimation. This study investigates whether 8

angular perspective data may replace spatial orthographic data. Using noise reduction and contrast 9

enhancement, EIs with low resolution and texture are pre-processed to calculate the disparity. The 10

Semi-Global Block Matching (SGBM) technique is used to calculate the disparity between EIs pixels. 11

A multi-resolution approach overcomes EIs’ resolution constraints, and a content-aware analysis 12

dynamically modifies the SGBM window size settings to generate disparities across different texture 13

and complexity levels. A background mask and nearby EIs with accurate backgrounds detect and 14

rectify EIs with erroneous backgrounds. Our method generated disparity maps that outperformed 15

two state-of-the-art deep learning algorithms and VPIs in real images. 16

Keywords: Holoscopic; Elemental Images; Viewpoint Images, Micro-lenses, Disparity, SGBM 17

1. Introduction 18

Depth estimation from Holoscopic images is a promising technique that has gained 19

interest recently due to its advantage of calculating depth using a single-aperture camera. 20

Holoscopic cameras are based on the same fundamental principles as conventional cameras 21

but with an additional array of micro-lenses (MLA) in front of the image sensor. In 22

traditional cameras, the main lens translates the object plane into the camera’s image plane. 23

The micro-lenses focus light beams from various directions onto a single pixel, thereby 24

capturing the scene in three dimensions. 25

The pixels behind each micro-lens record the same data as traditional cameras but 26

with greater precision by measuring information from different angles, as shown in Fig. 1. 27

The images formed behind each micro-lens, known as the Elemental Images (EIs), represent 28

unique angles of light incidence. Thus, by analysing the EIs, the location and orientation 29

of each light beam can be determined on a pixel-by-pixel basis. A sub-aperture image 30

of a scene, or a Viewpoint Image (VPI), is created by re-sampling pixels from the same 31

locations across the EIs. The EIs provide angular information, whereas VPIs provide spatial 32

information. 33
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Figure 1. Light beams from various perspectives (VPIs) hitting the same EI in the Holoscopic sensor.

Traditionally, disparity estimation is performed on VPIs, which encompass the entire 34

scene from a certain perspective, whereas EIs only include a portion of it. VPIs share visual 35

characteristics with 2D orthographic stereo images, allowing existing stereo image-based 36

disparity estimation methods to be applied with few adjustments. Additionally, VPIs can 37

be up-sampled using shift and integration methods [1]. 38

However, extracting VPIs requires mapping the information gathered on the sensor 39

to reconstruct the scene, which is not always straightforward and can sometimes lead 40

to strong aliasing artefacts [2–4]. Lens error correction and camera calibration must be 41

performed initially, as depicted in Fig. 2 (a) and (b), showing extraction with and without 42

lens correction respectively [5]. The geometry of the scene must also be considered during 43

VPI creation to avoid image artefacts in areas not ’in focus’ [6]. Additionally, some micro- 44

lens array designs feature multiple micro-lens sizes with different focal lengths, making it 45

impractical to extract pixels from the same location across all EIs as seen in Fig. 2 (c) and 46

(d). The convergence of light rays from multiple VPIs might result in overlapping on the 47

image sensor, complicating the separation and extraction of individual rays. Therefore, 48

selecting a ’patch’ of pixels from each EI might be more effective in increasing the resolution 49

and reducing the artefacts. Yet, it is more challenging than choosing a single pixel as 50

these patches depend on the depth level within the scene; thus, using the same patch size 51

throughout the entire scene could result in a distorted VPI. For instance, the ideal patch 52

size for displaying the foreground can be excessively large for the background, leading to 53

the occurrence of artefacts in the background. 54

(a) (b) (c) (d)

Figure 2. VPI (25, 25) extracted (a) without lens distortion correction. (b) with lens distortion
correction. (c) Shows image artefacts in the foreground. (d) Close-up view: artefacts in the foreground
with background corrected. [5]

Extracting VPIs from Holoscopic images is time-consuming and requires significant 55

storage due to the large number of VPIs generated. Estimating depth from video frames 56
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or in real-time scenarios is particularly challenging due to the large number of frames [7]. 57

For these reasons, EIs provide a more straightforward method for estimating disparities, 58

requiring only lens correction as pre-processing. In this paper, disparity estimation using 59

perspective EIs is employed, contrary to conventional methods that use extracted, corrected, 60

and up-sampled VPIs. 61

Perspective and orthographic projection are two types of 3D projection. As seen in 62

Fig. 3, perspective projection is comparable to the human visual system in which parallel 63

lines in an image appear to converge at a single point; the closer the object is to the point 64

of convergence, the smaller it appears (change in scale). The orthographic (orthogonal to 65

the scene) projection assumes parallel lines will continue to be parallel and disregards the 66

scaling impact. 67

Understanding depth via a perspective projection is far more precise than using an 68

orthographic technique because, in perspective depth, every light ray is tracked to the 69

precise pixel of its source, unlike in orthographic depth, where light is considered to be 70

emanating from infinity [8]. Although perspective projection has shown more accurate 71

disparity estimation results [9–11], most depth estimation algorithms are performed on 72

orthographic images due to the simplicity of the capturing mechanisms. 73

(a) (b)

Figure 3. (a) Perspective Projection. (b) Orthographic Projection

As seen in Fig. 1, the EIs in the Holoscopic setup record light from different angles, 74

resulting in perspective images that contain angular information. Conversely, VPIs are 75

obtained from various locations on the primary lens, replicating different viewpoints. 76

These images typically exhibit orthographic projection, predominantly capturing surface 77

characteristics. The differentiation here between EIs and VPIs is linked to their ways of 78

spatial representation [12]. 79

2. Methodology 80

A single Holoscopic image records the scene’s spatial and angular details. Hence, it 81

is possible to compute the scene’s depth map from a single shot. Our proposed method 82

as seen in Fig. 4 begins a Pre-processing is carried out on the EIs, which is crucial before 83

computing the disparity to improve their quality, as they inherently have low resolution 84
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Figure 4. The disparity estimation from EIs pipeline. (a) Input raw Holoscopic image. (b) Disparity
map using Multi-Resolution Content-Aware SGBM matching. (c) Background correction using
background/ foreground mask. (d) Output Disparity image after SGBM and background correction.
(e) Output: two optimisation results. Top: extracted central VPI. Bottom: fusing depth from multiple
EIs

and lack texture. This procedure consists of two primary stages: noise reduction by bilateral 85

filtering and contrast enhancement via histogram equalisation. 86

The disparity among EI pixels is computed via the Semi-Global Block Matching 87

(SGBM) algorithm [13], which is favoured due to its flexibility to adapt to the unique 88

features of EIs and its optimal balance between precision and computing efficiency. The 89

SGBM algorithm is enhanced through a multi-resolution approach to address the limitations 90

of EIs in terms of resolution. This involves creating an upscaled pyramid of EIs to capture 91

details at different scales and performing a content-aware analysis to adaptively adjust 92

the SGBM window size parameters. This ensures optimal estimation of disparities across 93

various texture and complexity levels within the EIs. Ultimately, a weighted least squares 94

(WLS) filter is employed to further enhance the optimisation process. 95

EIs are known to be low in resolution, lack texture, and only capture a portion of 96

the scene. Several deep-learning models have been designed to estimate disparity maps, 97

including many specifically designed for VPIs. Deep learning necessitates a substantial 98

and comprehensive dataset specifically designed for Holoscopic imagery. Pre-existing, 99

pre-trained deep learning stereo-matching solutions would not be compatible with EIs due 100

to differences in training data properties. These solutions are mostly learned using high- 101

quality images, while EIs have low resolution and lack texture. Deep learning algorithms 102

have the potential to be highly effective in stereo vision tasks, but their effectiveness is 103

contingent upon the quality and range of the training data. If the training data lacks 104

sufficient representation of scenarios including low resolution, limited texture, and narrow 105

disparity ranges, the model may exhibit poor generalisation in these settings. Deep learning 106

algorithms may encounter difficulties in generating intricate details in such situations, 107

resulting in unclear outcomes. 108

2.1. Pre-Processing of Elemental Images 109

Before initiating a disparity estimate on the EIs, it is crucial to carry out pre-processing 110

on the EIs to adequately prepare them to achieve an improved outcome. EIs exhibit low 111

resolution and limited texture. Therefore, while implementing pre-processing techniques, 112

it is crucial to eliminate noise while preserving the critical features. 113

2.1.1. Noise Reduction through Bilateral Filtering 114

Applying image blurring is a conventional technique for diminishing image noise. 115

Particularly with images that have minimal texture, such as the background, there may be 116

instances where a stepping effect occurs. This effect is caused by discontinuous disparity 117

levels, resulting in noticeable "steps" in areas with reduced changes in depth as seen in 118

the textured map in Fig. 5. The limited resolution, subtle variations in lighting, limited 119
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bit depth, and lack of texture can cause seamless transitions to look like sudden shifts. 120

However, using image blurring will inevitably cause a loss of fine information such as 121

edges, hence reducing the accuracy of disparity estimation. To address this issue, the 122

application of bilateral filtering [14] is employed. This technique, known for its ability to 123

preserve edges, is considered an advanced way of blurring. 124

Figure 5. EI before and after applying bilateral filtering. As seen in the texture map of the original
image, there is a noticeable stepping effect in the background. Although the filter did not eliminate it,
it did assist reduce the impact while maintaining edge information.

Bilateral blurring is applied to each EI to reduce the noise: 125

Ifiltered (p) =
1

Wp
∑
q∈S

I(q) · fr(∥I(p)− I(q)∥) · fs(∥p − q∥) (1)

Let Ifiltered (p) represent the filtered intensity of pixel p, I(q) denote the intensity of the 126

next pixel, S be the set of pixels surrounding p, and W be the normalised factor. The variable 127

fr represents the spatial range of the kernel, which corresponds to the dimensions of the 128

neighbouring region. On the other hand, fs denotes the minimum magnitude required 129

for an edge to be detected. This procedure ensures that only pixels with similar intensity 130

levels to the core pixel are considered for blurring while maintaining distinct intensity 131

fluctuations. A lower value of fr leads to a more distinct edge. As the value of fs tends 132

towards infinity, the equation approaches convergence to a Gaussian blur. 133

2.1.2. Contrast Enhancement via Histogram Equalisation 134

Due to their low resolution and the settings under which they are captured (tiny 135

micro-lenses), EIs often experience a lack of contrast. Histogram equalisation is commonly 136

employed to enhance image contrast by spreading the intensity levels, hence boosting 137

feature visibility by: 138

Iequalised (p) = H(I(p)) (2)

where I(p) is pixel p original intensity, Iequalised (p) represent the equalised intensity 139

of pixel and H is the is the cumulative distribution function. 140

2.2. Content-aware Multi-resolution Disparity Estimation using Semi-Global Block Matching 141

2.2.1. Overview 142

Deriving disparity from EIs using SGBM presents challenges, mostly attributed to 143

the presence of low texture and low resolution. Upsampling the EIs would lead to data 144

loss, resulting in the introduction of noise and a decrease in image quality. Many studies 145

[15,16] have investigated the computation of disparity at various resolutions to enhance 146

the accuracy of disparity maps, particularly in the context of developing deep learning 147

models. While rescaling EIs may result in a loss of image quality, calculating the disparity 148

at multiple resolutions instead of merely one upsampled resolution still is an effective 149

approach for handling varying levels of details and textures. Lower resolutions may result 150

in the loss of some details in the scene, while higher resolutions may exhibit an inconsistent 151
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overall structure. This indicates a trade-off between maintaining structural consistency and 152

capturing high-frequency details based on the input resolution [16]. 153

Content information can vary across different regions within EIs, particularly at 154

varying resolutions. By utilising a content-aware approach, the disparity window size 155

can be dynamically modified according to the characteristics of each location, resulting in 156

more accurate disparity estimations. When working with areas that have a high level of 157

texture, using a smaller window size would be advantageous in capturing intricate details. 158

Conversely, in areas that lack texture, a larger window size can be used to minimise noise. 159

2.2.2. Multi-resolution Elemental Images Pyramid 160

Typically, when constructing a pyramid with multiple resolutions for any objective, 161

the procedure commences by taking the original image and reducing its size. However, 162

when it comes to EIs, the images are already of low resolution. Creating a pyramid 163

by progressively down-sampling them will result in extremely small images that lack 164

significant information. Thus, in the instance of the EIs, the pyramid is formed by enlarging 165

the EIs into 2 additional layers and downsampling the image by one layer as seen in Fig. 6, 166

enabling the algorithm to encompass characteristics that span from large-scale structures at 167

lower levels to intricate details at higher resolutions. Starting with the EI of the original size 168

as the base level L0. With each level increased by a factor of 2 using bicubic interpolation 169

[17]. A minimum resolution threshold is implemented to prevent further down-sampling of 170

EIs with extremely low resolution. If the value of EI is less than 40× 40, the down-sampling 171

step is omitted. 172

Original scale

Down-sample by 0.5

Up-sample by 1

Up-sample by 2

Figure 6. Multi-resolution pyramid of EIs

2.2.3. Multi-Resolution Content Analysis 173

Content-aware analysis is an essential process for evaluating the visual attributes in 174

the EIs. Its purpose is to optimise the window size parameters used in disparity estimation 175

based on the complexity and textures present at different scales. This analysis is particularly 176

valuable for adjusting window size parameters at both single and multiple scales to enhance 177

the precision and resilience of the disparity. 178

EIs possess a high degree of sensitivity. Consequently, a simpler approach involv- 179

ing edge segmentation and texture analysis is employed. The Sobel filter is utilised for 180

accomplishing edge detection. The filter’s sensitivity is contingent upon the resolution of 181

the images. Low-resolution images necessitate a higher threshold for detecting significant 182
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Figure 7. Examples of extreme edge thresholds show that the sensitivity of the filter depends on the
resolution of the image. High-resolution images need a lower threshold to identify finer structures,
while low-resolution images need a higher threshold to identify significant features.

Figure 8. LBP texture maps across different scales before filtering to show the effect

structures, while high-resolution images require a lower threshold to identify finer details 183

as depicted in Fig. 7. 184

Textures are ideal to identify intensity patterns which is great for identifying regions 185

for disparity estimation. Local Binary Patterns (LBP) are used in this case to identify the 186

textures in the EIs. Here, the focus is on larger patterns at lower resolutions and finer 187

textural details at higher resolutions. 188

LBPn(p) =
P−1

∑
k=0

2k · 1(In(pk) ≥ In(p)) (3)

where LBP is computed for pixel p located at location n within the image used to 189

classify the texture. P represents the total number of pixels neighbouring to p, with the 190

summation ranging from k = 0 to P − 1. 2k represents the weighting factor assigned to 191

each neighbouring element, which is determined by its location. The neighbouring pixel’s 192

(pk) intensity is compared with the central pixel In(p). 1(In(pk) ≥ In(p)) returns 1 if it is 193

true and 0 if false. Texture maps across different scales are shown in Fig. 8. 194

To enhance simplicity and preserve time, the edge map E and texture map T are 195

combined to then form a dynamic adaptive window for the computation of disparities. 196

F(x, y) = α · E(x, y) + (1 − α) · T(x, y) (4)

The combined feature at pixel (x, y) is denoted as F, and it is influenced by a weighted 197

factor, α, which ranges from 0 to 1. This factor determines the appropriate ratio between 198

edge and texture data. The value of α has been cautiously adjusted to achieve the ideal 199

result for each image. 200



Version April 20, 2024 submitted to Journal Not Specified 8 of 23

2.2.4. Multi-Resolution Multi-Window Disparity Estimation using SGBM 201

Dynamic Window: Given that the EI’s resolution varies from 50x50 to around 400x400, 202

it is necessary to select a range of window sizes. The value of Wmin is selected to be around 203

5% of the minimum resolution, resulting in an amount of 5. Similarly, the value of Wmax 204

is chosen to be roughly 20% of the resolution, resulting in a value of 80. The size of the 205

window adjusts according to the value of the feature map F. The dynamic window size W 206

at pixel (x, y) can be calculated by: 207

W(i, j) = Wmin + (Wmax − Wmin) · (1 − Fnorm(i, j)) (5)

Greater values of Fnorm, representing the normalised F values, will result in the selec- 208

tion of smaller windows for more complicated regions, and vice versa. 209

210

Semi-Global Block Matching Disparity: The disparity is calculated by comparing blocks of 211

pixels along the epipolar line and obtaining the associated vertical displacement, as demon- 212

strated in our previous work [18]. This problem can be represented by a comprehensive 213

cost function: 214

E(D) = ∑
d∈D

C(d) + ∑
d′∈N(d)

P1 I{|d−d′ |=1} + ∑
d′′∈N(d)

P2 I{|d−d′′ |>1}

 (6)

where I is a function that indicates whether an input is true or false and returns 1 or 0 215

accordingly. (d) is the chosen disparity’s data term similarity metric. A 3D cost structure is 216

used to hold each similarity cost, and this process is repeated for each pixel block, with a 217

cost of d. The 3D structure stack’s minimal costs stand for possible disparity estimates [18]. 218

C(pi, qi) similarity measure presenting the goodness of p and its potential match q

Base image pixel pi Match image pixel qi

3D cost structure 

Figure 9. The produced minimal costs are not highly distinctive, which could result in incorrect
disparity estimation [18].

Disparity Aggregation: The resulting minimum costs may lack significant distinc- 219

tiveness, thus resulting in an incorrect assessment of disaprity. This issue is addressed by 220

employing cost aggregation within these 3D cost structures. The total cost is determined 221

by aggregating the lowest costs across various image paths. A total of eight paths were 222

utilised in this paper [18]. Potential cost values are pooled, and a weighted summing of 223

these cost possibilities is conducted. The weights are obtained from the normalised feature 224

map Fnorm (x, y), which characterises the contents (texture and edges) at each scale level. 225

The feature map undergoes normalisation: 226
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Fnorm (x, y) =
F(x, y)

∑L FL(x, y)
(7)

The function Fnorm represents the normalised feature for pixels (x, y), whereas L is 227

the scale level. Normalising the feature map guarantees that, throughout the content- 228

aware analysis, disparities from all resolutions contribute proportionally. Thus, the final 229

content-aware disparity map Dfinal can be represented as: 230

Dfinal (x, y) = ∑
i

(
Fi(x, y)

∑j Fj(x, y)

)
· DL(x, y) (8)

where DL is the disparity optimised at each level of resolution. To achieve greater 231

accuracy, a higher weight is assigned to the original scale since this method is still sensitive 232

to multiple scales: 233

Dfinal(x, y) =

(
α · FL0(x, y)

∑j Fj(x, y) + (α − 1) · FL0(x, y)

)
· DL0(x, y)

+ ∑
i ̸=L0

(
Fi(x, y)

∑j Fj(x, y) + (α − 1) · FL0(x, y)

)
· DL(x, y)

(9)

The expression ∑j Fj(x, y) + (α − 1) · FL0(x, y) ensures normalisation for assigning a 234

larger weight to FL0 , where FL0 represents the feature map at the original level and α is the 235

weighting factor. 236

Penalty terms P1 and P2 are introduced, which are based on the difference in neigh- 237

bourhood disparities, where N(d) is the neighbour of d. Accordingly, for each pixel, all its 238

neighbouring pixels along the routes are analysed; the greater the difference between the 239

lateral parallax axis of the pixel and its neighbours, the greater the penalty, resulting in a 240

considerable increase in the source value of the matching costs (Fig. 10). This procedure 241

ensures a smooth surface by forcing the strings along the path to be somewhat continuous. 242

This process is repeated for each path and each correspondence in the image to get the final 243

cost. 244

S(Pi ,qi) 𝑃! = 8×𝑤𝑖𝑛𝑑𝑜𝑤	𝑠𝑖𝑧𝑒×2
𝑃" = 32×𝑤𝑖𝑛𝑑𝑜𝑤	𝑠𝑖𝑧𝑒×2

Figure 10. The ultimate cost is the sum of the least costs along picture routes. 8 pathways were used.
Cost possibilities are pooled and weighted. P1 and P2 are based on neighbourhood disparities, where
N(d) is d’s neighbour [18].

To minimise the noise in the computed disparity image, a weighted least squares 245

(WLS) filter [19] is applied [18]. The WLS filter, a well-known edge-preserving smoothing 246
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technique, has weights that highly depend on the image gradients. The final disparity 247

image can be seen in Fig. 11. 248

(a) (b)

Figure 11. (a) The final disparity image using EIs before background correction. (b) The final disparity
image using EIs after background correction. In this disparity map, the darker the pixel, the closer it
is to the camera for clarity.

2.3. Background’s Disparity Correction 249

EI-based disparity estimation allows for the recovery of angular information. However, 250

as can be seen in Fig. 11 (a), the incorrect disparity may emerge from large texture-less 251

areas such as the background because the EIs only represent segments of the whole scene. 252

Thus, a solution is implemented in which first background extraction is performed to create 253

a background mask, and then the disparity is corrected. 254

Initially, a disparity map D of the same size as the Holoscopic image is filled with 255

zeros. Then the EIs are iterated over in the Holoscopic to select the left and right pairs: 256

EIL = EI(i, j), EIR = EI(i, j + 1); where i ∈ [0, n], j ∈ [0, m) (10)

where i and j are the EIs’ location in the Holoscopic image of size (n, m). The disparity 257

for each left and right pair of EI is computed and the resulting disparity is filtered. D(i, j) 258

is filled with the computed disparity map. 259

To separate background EIs from foreground EIs, the background threshold value 260

bgth, which is in the range [0, 1] based on the disparity map, is defined. The ratio between 261

non-zero disparity values and the total number of values in the disparity map is computed 262

r. If this ratio is greater than bgth, the EI(i, j) is labelled as a foreground EI, otherwise as a 263

background EI. Increasing the value of bgth will add more images to background EIs, and 264

vice versa. 265

EI(i, j)
{

Mbg, r <= bgth
M f r, r > bgth

(11)

Background EIs’ disparity values are corrected using the correct background disparity 266

values in the foreground EIs, as seen in Fig. 12 using colour descriptors [20,21]. To obtain 267

a mask for background regions within foreground EIs (bgr f g), the mean and standard 268

deviation of each channel (RGB) of foreground EIs are generated. A pixel in the foreground 269

of an EI is considered to be part of the background if its value is less than one standard 270

deviation from the mean (across all three RGB channels). This presupposes that the majority 271

of foreground image pixels are part of the background region. This implies that the average 272

pixel value should be within 1 standard deviation of the intensity of the background pixels 273

at the very least. Finally, calculate the mode of the disparity values for bgr f g. 274
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Incorrect 

Disparity

Correct foreground EIs' 

background disparity values

Background Portion 

of the Elemental 

Image 

Object (dice) disparity

Corrected by

Background EIs Background EIs

Foreground  EIs Foreground EIs

Figure 12. Background EIs’ disparity values are corrected using the foreground EIs’ background
disparity values. Left: Holoscopic image showing background and foreground EIs. Right: Holoscopic
disparity map showing incorrect background EIs being corrected by the background information of
the correct disparity of the foreground EIs

Finally, the mode (mean or median) of the disparity values for bgr f g is substituted for 275

the disparity values (in D) of all background EIs. This acts as a disparity correction step for 276

EIs that only contain background images since the stereo SGBM will fail to work for such 277

pairs. Instead, the background disparity is corrected by replacing it with disparity from 278

background regions in foreground EIs. The output result can be seen in Fig. 11 (b), where 279

the background disparity information is fixed. 280

3. Evaluation 281

3.1. Dataset: 282

The methodology underwent three evaluations: one comparing the method on VPIs 283

against EIs, another evaluating the method across multiple resolutions, and a third evalu- 284

ating the method on the same dataset but against two other deep learning methods. The 285

study utilised two Holoscopic datasets to determine the effectiveness of the methodology. 286

The first is a synthetic dataset [22], that was specifically created to replicate the features of 287

Brunel’s Holoscopic full-frame camera sensor (Fig.13), which has a sensor size of 35 × 24 288

mm and a resolution of 40 megapixels, resulting in image dimensions of 7900 × 5300 pixels. 289

The dataset has five EIs resolutions: 20 × 20, 40 × 40, 60 × 60, 80 × 80, and 100 × 100 pixels. 290

The simulated images were used to evaluate different resolutions and compare them with 291

deep learning techniques. The second dataset was acquired using Brunel’s Holoscopic 292

camera. This dataset is utilised because the synthetic one provides flawless VPI and EI pixel 293

mapping, resulting in perfect VPIs that are free from lens effects, distortion, and artefacts. 294

Hence, it is not feasible to directly compare the disparity outcomes between EIs and VPIs 295

derived from the synthetic images. 296
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Figure 13. Brunel Holoscopic camera that includes a prime lens, a microlens array, a relay lens to
focus light beams onto the sensor, and a CMOS imaging sensor.

3.2. Metrics: 297

Two types of metrics were used to assess the accuracy of the disparity estimation 298

methodology: non-ground-truth metrics and ground-truth metrics. Ground truth-based 299

metrics provide dependable evaluation outcomes, but real images from the Brunel camera 300

lack ground truth disparity, necessitating alternative measurements. 301

Non-ground-truth Metrics: The consistency check metric, or left-right disparity con- 302

sistency, evaluates disparity uniformity between left and right images, ensuring pixel 303

correspondence. It’s used for refining disparities by scanning both disparities to identify 304

errors at the pixel level, with the error value indicating precision in the disparity map: 305

E = | dl(x, y)− dr(x − dl(x, y), y) | ≤ θ (12)

The average error, Eavg, calculates the mean disparity error for each pixel: 306

Eavg =
1
N ∑

x,y
|dl(x, y)− dr(x − dl(x, y), y)| (13)

Edge alignment evaluates disparity near edges using the Sobel operator for edge 307

detection. The Mean Absolute Error (MAE) and its normalised version assess disparity 308

accuracy: 309

MAE =
1
N ∑

(x,y)
|Ie(x, y)− de(x, y)| (14)

310

MAEnorm = 1 − MAE
MAEmax

(15)

Non-ground-truth metrics, though less reliable, provide insight into disparity errors. 311

Ground-truth Metrics: For synthetic datasets, ground-truth metrics include the Mean 312

Absolute Error (MAE) for the average absolute difference between predicted and actual 313

disparities, and the Percentage of Bad Pixels (PBP) for recognising significantly incorrect 314

disparity pixels: 315

MAE =
1
N

W

∑
x=1

H

∑
y=1

|de(x, y)− dgr(x, y)| (16)
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316

PBP =
1

NP
∑
(x,y)

(|d(x, y)− dT(x, y)| > δ) · 100 (17)

Both MAE and PBP metrics are utilised for evaluation, with values normalised for 317

simplicity. 318

3.3. Elemental Image Compared to Viewpoint Image 319

VPI and EI are two image structures that can be obtained from Holoscopic images. 320

Previous research has shown significant results in estimating disparity maps utilising 321

VPIs. VPIs can be created by extracting a single pixel from each EI and arranging them 322

in a tiled manner. However, the process of extracting VPIs does not consistently provide 323

ideal images, unlike the VPIs found in synthetic datasets and those obtained from Lytro 324

(The camera’s performance was hindered by extensive pre-processing, resulting in slow 325

performance.). The production of these images involves a significant amount of pre- 326

processing. Occasionally, these procedures may require choosing a group of pixels instead 327

of just one, employing shift and integration techniques, and utilising other methodologies 328

to remove artefacts. 329

As depicted in Fig. 14, the Holoscopic images used have undergone calibration and 330

rectification, ensuring that the grid of the EIs aligns perfectly to extract the VPI images 331

accurately. VPI images are extracted using traditional methods, obtaining one pixel per 332

EIs. Fig.15 displays three extracted VPIs from different locations. These images exhibit 333

lower clarity, higher noise, and reduced resolution when compared to the images typically 334

obtained from publicly available VPI datasets that have undergone extensive pre-processing. 335

The difference in clarity between the EIs and VPIs can be seen in Fig. 14 and Fig. 15. 336

Figure 14. The Holoscopic image was calibrated and rectified, resulting in a total of 68 × 45 EIs, with
each EI measuring 74 × 74 in size
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(50, 20)(0, 0) (68, 45)

Figure 15. VPIs extracted from three different positions (0, 0), (50, 20), (68, 45)

Utilising pixel patches instead of single pixels to extract VPIs during pre-processing 337

might lead to better outcomes, as demonstrated in Fig. 16. However, increasing the size 338

of the extracted patch leads to a decrease in angular information, as the number of VPIs 339

obtained is dramatically reduced. The number of VPIs is directly related to the resolution 340

of the EI, which represents the amount of angular information captured. Moreover, while 341

examining Fig. 16, it is apparent that the images require additional pre-processing to 342

enhance the outcome. The process of obtaining VPIs also results in a substantial rise in the 343

image generation time. This process can become particularly cumbersome when dealing 344

with Holoscopic videos. 345

Figure 16. Holoscopic image, Spiderman: (64x34 MLA) 5160 × 2743 and sample images from different
VPIs retrieved using patch sizes ranging from 5x5 pixels to 21x21 pixels (p). As seen in the extracted
VPIs, they still exhibit some artefacts.

The disparity map was obtained from the EIs of the dataset captured by the Brunel 346

Holoscopic camera using our approach, and subsequently obtained from the extracted VPIs. 347

The disparity maps obtained from VPIs are then transformed to generate EIs, enabling a 348

comparison between EIs with direct disparity estimates and EIs with disparity estimations 349

derived from VPIs as seen in Fig. 17. The closeup crops from the Holoscopic image reveal 350

that the disparity calculated by the EIs is distinct and clear, whereas the EIs obtained from 351

the disparity generated by the VPIs are distorted and ambiguous As depicted in Fig. 18. 352

The disparity map, evaluated by the consistency check metric, utilises the entire 353

raw Holoscopic image to optimise efficiency and minimise the amount of time and effort 354

required. However, the evaluation of disparity using an edge-preserving approach is 355

conducted between individual EIs. This metric is capable of detecting both the grid of EIs 356

and the edges of the features within them. By utilising individual EIs, more reliable results 357

can be obtained. 358

The edge alignment bar graph in Fig.19 (top) illustrates the MAE values for 12 distinct 359

raw real Holoscopic images, which range between approximately 0.352 and 0.781. The 360

changes seen can be attributed to disparities in scene, texture, colour, and complexity 361

throughout the images. The results generally show lower values (better) in comparison to 362

the edge-alignment metric results derived using VPIs disparity where the range of values 363
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Calibrated and rectified holoscopic image Estimated disparity using EIs VPIs disparities extracted 
from the raw disparity 

extracted from EIs

The associate VPIs

Calibrated and rectified holoscopic image 

(22, 34)(22, 34)

(0, 0) (0, 0)

(45, 68) (45, 68)

Sample of 3 VPIs 
from 3 different 

locations

(22, 34)

(0, 0)

(45, 68)

(22, 34)

(0, 0)

(45, 68)

The associate 
VPIs disparities

Raw Holoscopic disparity 
image created from the 

disparities extracted from VPI

(a)

(b)

Disparity  estimation 
using EIs

VPIs extraction
Disparity  

estimation 
using VPIs

Remapping 
VPIs 

disparities to 
raw 

holoscopic
disparities

Figure 17. Disparity map derived from EIs and VPIs. (a) The disparity is calculated directly from
the EIs using the raw Holoscopic image. Within the red-coloured box, there are a few extracted VPI
disparities from the EI-based disparity. Their clarity is compromised by the low resolution. (b) VPIs
are extracted from calibrated and rectified Holoscopic images, and the disparity map is obtained
from them. These VPI disparities are then mapped back to EIs, allowing for a comparison between
VPI-based and EI-based disparity maps.

for different images is approximately 0.498 to 0.797. Overall, EIs demonstrate better results 364

in comparison to VPIs, with an average MAE of approximately 0.523, whereas VPIs have 365

an average MAE of approximately 0.681, which can be viewed in the averaged bar "All". 366

The bar graph depicted in Fig.19 (bottom) illustrates the range of values for the 367

consistency check metric derived from the disparity of EIs and VPIs. The values vary 368

between approximately 0.334 and 0.756. The results exhibit lower values when compared 369

to the consistency check metric results generated using VPIs disparity where the values 370

range between approximately 0.548 and 0.881 for different images. Overall, EIs yield 371

better results compared to VPIs, exhibiting average values of roughly 0.520, while VPIs 372

demonstrate an average value of around 0.731. A selection of 4 raw Holoscopic images 373

is shown in Fig. 20. Simple scenes were captured to compare the disparity of EIs vs VPIs 374

directly rather than assessing the algorithm in a complicated scene configuration. 375
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Cropped EIs grid Disparity map 
estimated from the EIs

Disparity map 
calculated from the 

VPIs after its pixels are 
transformed to EIs

Raw holoscopic image

Figure 18. This is a close-up view of a raw Holoscopic image, along with the disparity maps derived
from EIs and VPIs. The disparity map created from EIs has greater clarity compared to the one
derived from VPIs.

Wizard

Keyboard

Truck

Truck

Raw holoscopic image Disparity from EIs Disparity from VPIs Raw holoscopic image Disparity from EIs Disparity from VPIs

Cropped grid Close ups

Figure 20. The algorithm was tested on a total of 12 real Holoscopic images. This is a collection of
four images showcasing close-up sections to illustrate the disparity between EIs and VPIs.

3.4. Elemental Image Compared to Viewpoint Image Resolution 376

The algorithm’s performance was assessed by utilising 24 synthetic Holoscopic images 377

with five distinct EI resolutions: 20 × 20, 40 × 40, 60 × 60, 80 × 80, and 100 × 100 as shown 378

in Fig. 21. MAE and PBP were calculated for all resolutions. As depicted in Fig.22, an 379

increase in EI’s resolution does not consistently result in improved accuracy. EIs with a 380

high resolution are expected to lead to a high score. Yet, the clarity of the EIs relies on 381

the clarity of the produced VPIs. Smaller EIs typically originate from VPIs with higher 382

resolutions compared to those larger EIs (trade-off in resolution), which allows for more 383

information to be presented in the EIs. This ultimately leads to a sharper image, as seen 384

in Table 1. This table displays a single EI from various scales. Although the EI with a 385

resolution of 100x100 is larger, it is noticeable that the circles on the dice in the EI with a 386

resolution 60 × 60 are more defined and sharper. As the scale increases, the EI loses more 387

information, resulting in the presence of noisy features. Future research can employ this 388
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Figure 19. The bar graphs display the edge-alignment matrices (top) and consistency check matrices
(bottom) calculated from 12 raw Holoscopic images captured by the Brunel Holoscopic camera. The
averaged result is labelled as "All". EIs generally outperform VPIs, as seen by their lower average
MAE and consistency check metric.

dataset with many resolutions to construct the multi-resolution pyramid, thereby capturing 389

all the accessible information at each level of resolution. 390

EI Slice
Resolution 20x20 40x40 60x60 80x80 100x100

Original Resolution

Scaled-Down (20x20)

Scaled-Up (100x100)

Table 1. EIs of three different scales, original, down-sampled, and up-sampled.
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Disparity from raw 
holoscopic image

Extracted VPI

Extracted VPI from raw 
holoscopic disparity

Closeup from raw 
holoscopic image

Disparity from raw 
holoscopic image

Extracted VPI from raw 
holoscopic disparity

Closeup from raw 
holoscopic image

Disparity from raw 
holoscopic image

Extracted VPI from raw 
holoscopic disparity

Closeup from raw 
holoscopic image

20x20 40x40 60x60 80x80 100x100Resolutions

Figure 21. Example of three Holoscopic images alongside their calculated disparities at various
resolutions. Observing the disparity from the low-resolution images is difficult. Consequently,
close-up views are offered.

As seen in Fig. 22, the MAE values for the methodology across different resolutions 391

reveal varying degrees of accuracy. The MAE for the 20 × 20 resolution ranges between 392

0.673 and 0.804, suggesting a significant amount of errors. For the 40 × 40 resolution, the 393

MAE ranges between 0.613 and 0.755, indicating significantly enhanced performance in 394

comparison to the 20 × 20 resolution. The 60 × 60 resolution’s MAE ranges from 0.430 395

to 0.650, demonstrating a significant improvement in accuracy compared to the lesser 396

resolutions. The MAE for the 80 × 80 resolution varies between 0.419 and 0.625, indicating 397

a higher level of precision. At a resolution of 100 × 100, the MAE varies between 0.462 and 398

0.640, suggesting a somewhat lower level of precision compared to the 80 × 80 resolution. 399

The PBP for the 20× 20 resolution ranges from 68.8% to 86.1%, suggesting a significant 400

presence of bad pixels. The PBP of the 40 × 40 resolution falls within the range of 72.7% 401

to 87.0%, indicating comparable performance to that of the 20 × 20 resolution. Moving to 402

60 × 60 resolution, the range is from 49.4% to 66.9%, suggesting a significant reduction in 403

bad pixels compared to the lower levels. With an 80 × 80 resolution, the PBP falls between 404

39.6% and 64.1%, indicating a significant enhancement in performance and a reduction in 405

the number of bad pixels. Finally, at 100 × 100 resolution, the range is from 44.7% to 64.3%, 406

exhibiting accuracy that is slightly lower than 80 × 80 in accuracy. 407
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Figure 22. The bar graph illustrates the performance of disparity calculating at 5 different resolutions.
The graph shows that the EIs achieve the highest level of precision at a resolution of 80 × 80, followed
by 100 × 100.

Images with low resolution, such as 20x20 and 40x40, still have noticeably reduced 408

accuracy. This is because achieving accurate disparity typically requires a combination of a 409

wide baseline and a high-resolution image. Since larger EIs demonstrate a greater baseline 410

and a reduced number of texture-less EIs, as depicted in Fig. 23 the result in high-resolution 411

EIs re better than the accuracy in low-resolution images. 412

[20x20

EIs]

20x20  Elemental Image

[100x100

EIs]

100x100  Elemental Image

Figure 23. (a) shows the output of 20x20 pixel EIs with a significant texture-less area, leading to an
incorrect disparity computation. In (b), the outcome of 100x100 EIs taken from the same point with a
wider baseline and a larger portion of the objects presented leads to a more accurate disparity
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Multi-resolution SGBM Zhang et al.[9] Chang and Chen [10]Raw Holoscopic image

Figure 24. The result from bother deep learning algorithms result in blurry and undefined EIs
compared to our result

3.5. Comparative Analysis of Stereo-Matching Networks 413

The results from raw Holoscopic images (EIs) were also compared against two state- 414

of-the-art deep learning stereo matching algorithms: Zhang et al. [23] and Chang and 415

Chen [24]. Zhang et al. [23] proposed a technique to enhance the generalisation abilities 416

of stereo-matching networks. Their main objective was to maintain the consistency of 417

features between corresponding pixels. Their methodology combines pixel-level contrastive 418

learning with a stereo-selective whitening loss to enhance the consistency of features across 419

various domains. This technique is highly versatile and may be easily integrated into 420

pre-existing networks without any disruptions. 421

Chang and Chen [24] employ supervised learning and convolutional neural networks 422

(CNNs) to address the task of estimating disparities from stereo image pairs. They proposed 423

a Pyramid Stereo Matching Network (PSMNet) as an alternative to the patch-based Siamese 424

networks commonly employed in current architectures. The PSMNet overcomes the 425

limitation of incorporating contextual information in uncertain regions by incorporating 426

spatial pyramid pooling and a 3D CNN. 427

Both of the pre-trained models were used to extract disparity from all 24 raw Holo- 428

scopic images in the dataset choosing 80x80 resolution based on the accuracy level from 429

the previous section. These results were then compared with those obtained from this 430

paper’s method applied to the same dataset. The disparity outcome of a basic EI of both 431

deep-learning models resulted in highly blurred and undefined results as seen in Fig. 24. 432

These outcomes can be attributed to various factors including the dissimilar characteristics 433

of the higher-resolution stereo images utilised for training the models developed by Zhang 434

et al. [23] and Chang and Chen [24] compared to the low-resolution and low-texture EIs. 435

Therefore, when these models are employed on the EIs, they struggle with accurately 436

capturing intricate details. Furthermore, the efficacy of these models is greatly influenced 437

by their specific architecture, particularly Chang and Chen [24]’s PSMNet, which further 438

reduces the resolution of low-resolution EIs, resulting in unsatisfactory outcomes. 439

As depicted in Fig. 25, MAE values for this paper’s method ranged from 0.419 to 0.625, 440

which were considerably lower than the MAE values reported by Zhang et al. [23] ranging 441

from 0.637 to 0.801 and Chang and Chen [24] ranging from 0.686 to 0.798. Regarding the 442

PBP, this chapter’s method achieved percentages ranging from 39.6% to 64.1%, which 443

indicates superior performance. In comparison, Zhang et al. [23] and Chang and Chen 444



Version April 20, 2024 submitted to Journal Not Specified 21 of 23

[24] obtained greater percentages, with ranges of 63.3% to 78.7% and 65.7% to 77.9%, 445

respectively. 446
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Figure 25. The bar graph depicts the comparative performance of the extracted disparity to Zhang
et al. [23] and Chang and Chen [24], demonstrating that our method outperforms both methods
algorithms

4. Conclusions 447

The critical component of Holoscopic technology is MLA, which mimics the effect of 448

multiple cameras while requiring only a single lens and a single sensor design. For this 449

reason, the micro-image, or EI, formed behind each micro-lens retains unique details about 450

the scene’s lighting, including its direction, colour, and intensity. Contrary to conventional 451

methods for estimating disparity maps by employing extracted and up-sampled viewpoint 452

images (VPIs) with spatial information, a novel method for generating a disparity map 453

using EIs angular information is introduced. The utilisation of EIs for disparity estimates, as 454

opposed to VPIs, has not undergone thorough investigation. The objective of this study is to 455

investigate the practicality of using angular perspective data instead of spatial orthographic 456

data to estimate disparity. Using VPIs requires extracting images, which can be a time- 457

consuming task. Moreover, there is a potential for distortion to arise post-extraction due to 458

lens aberrations, the convergence of light rays, and out-of-focus objects. 459

To compute disparity from the EIs, a semi-global block-based matching technique is 460

utilised due to its flexibility. A pre-processing phase is conducted to improve the quality of 461

EIs, which frequently exhibit low resolution and a lack of texture. The approach consists 462

of two primary stages: noise reduction by bilateral filtering and contrast enhancement 463

via histogram equalisation. The disparity between EI pixels is computed utilising the 464

Semi-Global Block Matching (SGBM) technique, which is enhanced by implementing a 465

multi-resolution approach to overcome the limitations in EI resolution. This procedure 466

involves creating a multi-scale pyramid of EIs to accurately capture intricate details at 467

different scales, while also utilising a content-aware analysis to adaptively adjust the SGBM 468

window size configurations. This ensures a thorough evaluation of variations in texture 469

and complexity at many levels within the EIs. Ultimately, a weighted least squares (WLS) 470

filter is employed to further enhance the optimisation process. Furthermore, the presence 471

of incorrect background EIs is identified and rectified by employing a background mask 472

and adjacent EIs that include precise background data. 473
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The investigation has determined that the proposed technique has effectively pro- 474

duced disparity maps that exceed the accuracy of VPIs in real images and outperform 475

two advanced deep-learning algorithms. The approach was analysed using various EI 476

resolutions to determine the optimal resolution. 477
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