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A B S T R A C T

This paper presents an investigation of brittle rock failure by the quaternion-based bonded-particle model in
discrete element method (DEM). Unlike traditional approaches that utilize Euler angles or rotation matrices, this
model employs unit quaternions to represent the spatial rotations of particles. This method simplifies the rep-
resentation of 3D rotations, providing a more intuitive framework for modelling complex interactions in granular
materials. The numerical model was validated by the uniaxial compression tests on rock, with good agreement
with well-documented experimental data in terms of the rock uniaxial compression strength (UCS) and failure
mode. During loading, the rock sample demonstrated a linear-elastic response at an axial strain of smaller than
0.45%. However, as internal bond breakage accumulated, this linear relationship weakened, and the stress-strain
curve began to deviate from its initial linear trajectory. The bond breakage and the overall deformation of the rock
were primarily controlled by the shear bonding force. The UCS was achieved at an axial strain of 0.625%, at
which point the internal shear bonding force chains were predominantly aligned vertically. The brittle failure
occurred when the internal damage of solids nucleated to form an interconnected failure plane, accompanied by a
sharp rise in the internal damage ratio. The area of failure plane increased with the loading strain rate, gradually
transforming the failure pattern from the local damage to a complete fragmentation.
1. Introduction

Brittle failure in rock masses is a critical phenomenon in geotechnical
engineering and earth sciences (Carl�a et al., 2017; Keneti and Sainsbury,
2018; Zou and Li, 2021; Xu et al., 2023). It refers to the abrupt and often
unforeseeable fracturing of rock under stress levels exceeding its ultimate
strength. This failure pattern is typically characterized by a rapid prop-
agation of internal damage without significant plastic deformation
(Hajiabdolmajid et al., 2002). It can pose significant risks, especially in
the context of construction, mining, and natural disasters (Xu et al., 2006;
Barton and Shen, 2017). Events such as landslides, rockfalls, and mine
collapses, which are direct consequences of brittle rock failure, can have
devastating impacts, endangering human lives and inflicting severe
property damage (Sun et al., 2023). In natural settings, brittle rock failure
can also contribute to seismic processes, notably in fault zones (Ohnaka,
2013; Lv et al., 2022). Therefore, understanding the mechanics of brittle
rock failure is essential for predicting and mitigating these hazards.

Research in this area typically involves a combination of experi-
mental, analytical, and computational approaches (Wang and Cai, 2018).
Laboratory experiments, such as uniaxial and triaxial compression tests,
).

m 5 March 2024; Accepted 6 Ma

anics & Engineering. Publishing s
mons.org/licenses/by-nc-nd/4.0
are conducted to understand the failure characteristics under controlled
conditions (Ma et al., 2023; Malachi Ozoji et al., 2024). For computa-
tional methods, the discrete element method (DEM) has been widely
used to analyze the brittle failure of solid materials, e.g. rock fragmen-
tation (Potyondy and Cundall, 2004; Duan and Kwok, 2016; Shen et al.,
2017; Xu et al., 2020), particle crushing (de Bono et al., 2015; Shen et al.,
2016; Manso et al., 2018) and damage of cemented geomaterials
(Thornton et al., 1999; Nova et al., 2003; Rait et al., 2012), due to its
ability to model the complex brittle responses of solid mass under
external loading, such as crack initiation and propagation (Alassi and
Holt, 2012; Zhao and Crosta, 2018). At failure, the internal solid damage
propagates and nucleates quickly within the solid mass due to the
breakage of inter-particle cementations (i.e. bonds). It can be induced by
excessive compressive, tensile or shear loading, together with the
transmission and reflection of stress waves at impact (Thornton et al.,
1999; Crosta et al., 2007). The characteristics and energy dissipation
mechanisms of solid fragmentation (e.g. fracturing stress, size and
number of fragments) depend primarily on the material shear strength
and loading strain rate (Grady, 1981).

In numerical analyses of solid fragmentation by DEM, the complex
rch 2024
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three-dimensional particle spatial rotations should be considered in
detail, so that the stretching, bending and twisting deformations of inter-
particle bonds can be evaluated correctly (Wang, 2009). Attempts to
represent rotations of a rigid body by Euler angles have been proved
complicated and suffer from the gimbal lock problem (i.e. inherent sin-
gularity) (Wang, 2009; Seelen et al., 2016). Alternatively, the incre-
mental displacement method and rotation matrices have been widely
used in DEM to compute particle interaction forces in a 3D space (Jiang
et al., 2005; Modenese, 2013). However, this approach involves
complicated vector manipulations and it is only valid when the relative
displacement between two particles is extremely small during each
integration step. To overcome these problems, the unit quaternions, a
generalization of complex numbers in mathematics, have been employed
to represent the rotations of rigid objects in a 3D space (Obermayr et al.,
2013), from which the interaction forces and moments can be conve-
niently and accurately determined. In this approach, the breakage cri-
terion of the inter-particle bond is described as a combined contribution
of normal and shear bonding forces, and the rolling and twisting mo-
ments (Shen et al., 2016; Zhao et al., 2018).

The quaternion was first proposed by Hamilton (1844) as a number
system that extends the complex numbers. It can be used to represent the
spatial rotation of a rigid object in a concise and elegant form (Wang
et al., 2013). The quaternions have been widely applied in various
research fields, such as computer graphics (Ling et al., 2022), robotics
(Graells Rovira andMirats Tur, 2009), aerospace (Zhang et al., 2015) and
molecular dynamics (Walmsley, 1988). In this study, a quaternion-based
bonded-particle DEM model was employed to analyze the brittle failure
of solids following the pioneering work by Wang (2009). Specifically, the
unit quaternions were used to represent rigid particle rotations in a 3D
space and calculate the relative displacements between the two bonded
particles at a specified time. Then, the particle interactions, e.g. normal
and shear bonding forces, bending and twisting moments, can be eval-
uated accordingly. In the calculation, multiple transformations of particle
properties (e.g. position and contact forces) between the local and global
coordinate frames by quaternion algebra are needed. This approach can
effectively capture the complex interactions of a granular system
involved in spatial rotations in a more realistic and reliable way. By
modelling the uniaxial compression of solids with this model, the nature
of brittle failure can be thoroughly understood. With proper calibrations,
the proposed numerical model can significantly extend the applicability
of DEM modelling in solid mechanics.

2. Methodology

The DEM is an effective technique for analyzing the mechanical
behavior of granular materials, and it can also be used to simulate the
brittle failure of rock masses. This approach decomposes a material
system into numerous individual particles, each considered as a separate
entity. The interactions among these particles, including collisions, fric-
tion, and bonding, are simulated through a set of established physical and
empirical principles. According to Newton's second law of motion, the
equations governing the translational and rotational motions of a single
particle i can be expressed as,

mi
d2

dt2
xi ¼migþ

X
ðFi;c þFi;bÞ (1)

Ii
d
dt
ωi ¼

X
c

Mi (2)

where mi is the mass of particle i; xi is the position of its centroid; g is the
gravitational acceleration; Fi,c and Fi,b are the inter–particle contact and
bonding forces exerted by the neighboring particles on particle i. The
summation of the inter–particle interaction forces is over all contacts and
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bonds with particle i; Ii is the moment of inertia about the particle
centroid; ωi is the angular velocity;Mi is the moment acting on particle i,
includingmoments induced by the tangential contact and bonding forces,
bending and twisting moments between bonded particles.

The contact forces and moments between any two particles in contact
can be calculated by well-defined constitutive models, e.g. linear elastic
spring-dashpot model or Hertz-Mindlin model (Modenese, 2013; Utili
et al., 2015). Here, the governing equations of a linear spring-dashpot
model are expressed as follows,

F
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where Fn, kn, un and Δv are the normal contact force, stiffness, over-
lapping distance and relative velocity between two particles in contact; β
is the damping coefficient; Fi

s and Fi�1
s are the shear forces calculated at

the current and previous iteration time steps, respectively; ks and Δus are
the shear stiffness and incremental shear displacement; M is the shear
induced moment; r is the vector linking the particle center and contact
point. In this study, the viscous damping force (i.e. proportional to the
relative velocity between two particles in contact,Δv) has been employed
in the normal direction of particle contact to replicate the energy dissi-
pation by shearing off particle asperities and plastic deformations of the
contacts.

The inter-particle bonding forces are calculated according to the
relative translational and rotational displacements between the two
bonded particles (Wang, 2009), which requires a sophisticated method to
evaluate the translational and rotational motions of individual particles
in a 3D space. For any two bonded spherical particles (i.e. particle 1 and
2), in a global space-fixed frame, the initial positions of particle centers at
time T¼ 0 are defined as r10

�!¼ x10iþ y10jþ z10k and r20
�!¼ x20iþ y20jþ

z20k, with i, j, k are unit vectors that define the direction along the x, y,
and z-axes, respectively. Their orientations can be represented by unit
quaternions p and q, respectively, with the initial values as 〈1;ð0;0;0Þ〉. p
and q are dynamically updated through quaternion integration as the
simulation progresses. For detailed information on this process, refer to
Appendix A. The initial distance vector (r0

!) between the two particles is,

r0!¼ r20�!� r10�! (6)

At T ¼ t, the distance vector becomes rb
! in the local coordinate

system.
The calculation of interaction forces requires the evaluation of rela-

tive particle displacement components in the normal, shear, bending and
twisting directions during the time interval from T ¼ 0 to t. The stiffness
of bonding force components in the normal, shear, bending and twisting
directions are defined as kbn, kbs, kb and kt, respectively, and can be
computed according to the particle radius, Young's modulus (Eb) and
Poisson ratio (υ) of a particle bond (see Zhao et al. (2017)). The following
algorithm will illustrate the calculation of particle interaction forces
through the decomposition of relative particle displacements into the
translational and rotational components in the local coordinate system
O1 – X1Y1Z1.

The normal bonding force acting on particle 1 in O1 – X1Y1Z1 is
expressed as,

Fbnt
��!¼ kbn �ðjrb!j � jr0!jÞ � rb!= jrb!j (7)



Fig. 1. (a) Translational displacement of particle 2 relative to particle 1; (b) Rotational displacement of particle 2 relative to particle 1 in the local body-fixed co-
ordinate frame O1 – X1Y1Z1. The dashed circle represents the initial position of particle 2 at T ¼ 0. The position of particle 2 relative to particle 1 is represented by the
vectors r0

! and rf
! in O – XYZ, while it is rb

! in O1 – X1Y1Z1 at T ¼ t.
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To calculate the shear bonding force, the shear displacement (δs) is
first computed at the contact point between the two particles (see Fig. 1
(a)), as,

δs ¼ 1
2
� jr0!j � cos-1ðrb!� r0!= ðjrb!jjr0!jÞÞ (8)

Here, the shear displacement is assumed to be very small during the
time interval T ¼ 0 to t. Then, the shear bonding force can be computed
as,

Fbst
�!¼ kbs � δs � ns! (9)

where the orientation of shear force is computed as ns! ¼ rb
! � ðrb! �

r0
!Þ =jrb!jjrb! � r0

!j,
The shear force induced moment is then computed as,

Mst
�!¼ 0:5�Fbst

�!� rb! (10)

According to Wang (2009), the rotational displacement of Particle 2
relative to Particle 1 can be decomposed into twisting and bending
components, which are sequence-independent. Fig. 1(b) depicts Particle
2 bending around the unit orientation vector m! relative to Particle 1,
followed by a twisting motion around another unit orientation vector n!.
In the local coordinate system O1 – X1Y1Z1, the bending (φ) and twisting
(ψ) angles can be evaluated using to the algorithm outlined in Wang
(2009).

The bending moment can be computed as,

Mbr
��!¼ kb �φ� m! (11)

The bending induced shear force and moment can be calculated as:

Fbsr
��!¼ 0:5� kbs �φ� jr0!j � nsp�! (12)

Msr
�!¼ � 0:5�Fbsr

��!�jr0!j � m! (13)

where nsp
�! ¼ ð0;0; 1Þ � m! is the orientation of shear force.

Thus, the twisting moment can be computed as,

Mtr
�!¼ kt �ψ � n! (14)

Finally, all the forces and moments acting on Particle 1 should be
transposed back to the global space-fixed frame O – XYZ. This is achieved
by conjugation of these vectors with Particle 1's orientation quaternion p
(see Appendix A for an in-depth theoretical explanation) as,
3
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(15)

Here, it is assumed that the two spherical particles have the same

radius. For particles of different radii, Mst
�!

and Msr
�!

should be scaled
proportionally to the radius of each particle.

The criterion for bond breakage is expressed as,

��Fbn
�!��

FbnMax
þ

��Fbs
�!��
FbsMax

þ
��Mb
�!��
MbMax

þ
��Mt
�!��
MtMax

� 1 (16)

where FbnbMax, FbsMax, MbMax and MtMax are the normal, shear, bending
and twisting bonding strengths of a specific bond, respectively. Their
values can be determined by the cohesion of bond (c) (see (Zhao et al.,
2017)).

3. Numerical model validations

In this study, the well-developed open-source DEM code ESyS-Particle
(Weatherley et al., 2021) has been employed to explore the phenomena
of brittle failure in solids during uniaxial compression experiments. This
code incorporates comprehensive algorithms for a quaternion-based
particle bonding model, as detailed in Section 2.

3.1. Model configuration

The DEM model is employed to simulate the standard uniaxial
compression test on a cubic rock sample, which is assumed to be
completely dry. The uniaxial compression test has been widely used to
evaluate the uniaxial compression strength (UCS) of rock mass in labo-
ratory (Yesiloglu-Gultekin et al., 2013). During the test, a model rock
sample is generated by packing a dense assembly of spherical particles
with radii ranging from 0.75 to 1.5 mm in a cube of dimensions 50 mm�
50mm� 100mm (see the inset plot in Fig. 2). These particles are bonded
together by the quaternion-based bonded-particle model. Notably, the
DEM model exhibits a high void ratio, mirroring the characteristics of
highly porous materials such as sandstones. Then, the sample is com-
pressed by vertical loading plates at both ends under a constant loading
strain rate. The strain rate is defined as the ratio of the velocity at which
the loading plate moves to the height of the sample. The loading strain
rate (_ε) ranges from 0.05 s�1 to 10 s�1 for a series of tests, so that its



Fig. 2. The stress-strain relationship of uniaxial compression test on solid
samples. The DEM model configuration is shown in the inset plot. The
compression of constant loading strain rate is applied on loading plates at both
ends of the sample. “Exp.(P)” and “Exp.(N)” stand for experimental data of
uniaxial compression test on coal rock with parallel and normal beddings to the
loading direction, respectively (the strain rate is 0.01 s�1).
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influence on the micro- and macro-responses of solids can be analyzed.
The input parameters of the simulations were selected by trial and error
(see Table 1), to ensure that the shear strength and stiffness of the solid
specimen can match the available experimental data of uniaxial
compression tests on coal rock samples as reported in Liu et al. (2015).
3.2. Results

Fig. 2 illustrates the stress-strain relationships of rock responses
during the uniaxial compression tests in DEM and the comparison with
the experimental data on coal rock samples by Liu et al. (2015). In the
cited experimental data, the effect of stratigraphic layer orientation in
coal rock was assessed using specimens oriented both parallel and
perpendicular to the horizontal plane. These orientations are denoted in
Fig. 2 as Exp. (P) for parallel bedding and Exp. (V) for vertical bedding,
respectively. According to the figure, the numerical results can match
well the experimental data for the strain rate smaller than 0.1 s�1 with
respect of the bulk Young's modulus (E) and the uniaxial compression
strength (UCS). At relatively large loading strain rate (e.g. � 1 s�1), E
remained approximately constant, while UCS increased quickly with the
loading strain rate, showing a strong rate dependent behavior. Addi-
tionally, when the strain rate exceeded 5 s�1, the stress-strain curve
displayed noticeable oscillations during the initial loading phase. This is
attributed to the frequent transmission and reflection of stress waves at
both ends of the loading plates, coupled with the high inertia associated
with solid deformation. These oscillations intensified in tests with very
Table 1
Input parameters of the DEM model for the uniaxial compression tests.

DEM Parameters Value DEM Parameters Value

Particle radius, r (mm) [0.75,
1.5]

DEM time step, Δt (s) 10–7

No. of particles, N 31,361 Packing porosity, n 0.48
Density, ρ (kg/m3) 2650 Young's modulus of particle,

E (GPa)
8.2

Particle friction angle, φ(�) 30 Young's modulus of bond, Eb
(GPa)

2

Particle Poisson ratio, υ 0.25 Cohesion of bond, c (MPa) 20.6
Gravitational acceleration, g
(m/s2)

0.0 Viscous damping coefficient,
β

0.01

4

high loading strain rates (for instance, 10 s�1), characterized by larger
magnitudes and longer periods. However, as the loading stress nears the
peak values (i.e. UCS), these oscillations gradually diminished. This
reduction occurred as the formation of strong force chains starts to pre-
dominate within the solid sample (Zhao and Crosta, 2018). The numer-
ical results demonstrate that stress oscillation is a consistent feature
across all tests, and it is heavily influenced by the loading strain rate. This
particular aspect of solid response, especially in the context of dynamic
tests on rock, has been thoroughly examined and discussed in detail in
the literature Zhang and Zhao (2014). To minimize this effect, adopting a
quasi-static loading condition with a very low strain rate is advisable.
This approach can significantly reduce themagnitude and period of stress
oscillation, leading to negligibly small values and resulting in smoother
stress-strain curves.

To investigate the rate dependent behavior, the relationship between
the uniaxial compression strength of the bonded solid mass and loading
strain rate (_ε) is presented in Fig. 3. According to the figure, the UCS
exhibited a gradual increase with the loading strain rate when _ε was
smaller than 1. However, there was a sharp increase in UCS when _ε
became greater than or equal to 1. This trend appears to follow an
exponential relationship, aligning closely with the findings reported in
references Zhao et al. (2017) and Zhang and Zhao (2014). These studies
indicate that the strength of solids can significantly increase under dy-
namic loading conditions, particularly at high loading strain rates typical
of impact scenarios. The fitting curve of the DEM results in this study is,

UCS¼ � 1:09e�0:2_ε þ 11:18
�
R2 ¼ 0:986

�
(17)

The corresponding distribution of internal rock damages at the failure
state can also be visualized for different tests, as shown in Fig. 4. In the
analyses, once a bond breaks, two red spheres are plotted at the centers of
particles linked by that bond, with the diameter proportional to the ratio
of broken bonds relative to each particle. This is especially relevant in
scenarios where a single particle is concurrently bonded with multiple
other particles. At the failure state, the internal damage nucleated to form
an interconnect plane (i.e. failure plane), such that the solid sample broke
into several major fragments. The failure plane was relatively small and
located at the upper edge of the sample for tests of low loading strain rate
(e.g. 0.05 s�1, 0.1 s�1), exhibiting a sudden brittle failure mode (see also
the sudden drop of stress in Fig. 2). This mode of rock failure could pose
significant risks due to the minimal damage information that can be
obtained from surface deformations of the sample. As the strain rate of
the load increased, the internal damage progressively spread to the lower
regions, encompassing a considerably extensive area. This results in a
Fig. 3. The uniaxial compression strength (UCS) of rock samples tested under
different loading strain rates.



Fig. 4. Distribution of internal rock damages for tests under different loading strain rate presented as red dots. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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thorough fragmentation of the solid structure, indicating severe internal
rock damages.

Fig. 5 illustrates the evolution of uniaxial compression stress (σ) and
internal rock damage ratio (D) with the axial strain (εa) for a test at
loading strain rate of 0.1 s�1. Here, the internal damage ratio (D) is
defined as the percentage of broken bonds occurring during the uniaxial
compression test over the initial number of bonds in the intact rock mass
before the test. In addition, the bonding force chains are also plotted in
Fig. 6 as a network of straight lines connecting the particle centers, with
the thickness proportional to the magnitude of particle bonding force. On
the plot, the normal and shear bonding force chains are colored black and
green, respectively. According to the figure, prior to any internal bond
breakage (εa < εa0 ¼ 0.45%), the loading stress increased linearly with
the strain, exhibiting a linear-elastic response of solids under compres-
sion. As compression progressed, further bond breakages occurred and
the material's linear elasticity was weakened, causing the stress-strain
curve to deviate from its initial linear trajectory. As σ gradually
approached the peak value at εa ¼ 0.51%~0.625%, the rate of stress
increase slowed down and the internal bonding force chains became
predominantly aligned in a vertical orientation (see green lines Fig. 6 (a),
εa ¼ 0.625%). After reaching UCS of 10.1 MPa at εa ¼ 0.625%, σ
decreased slightly due to the accumulation of internal rock damages.
After εa ¼ 0.63%, D started to increase sharply, and the internal damage
of solids nucleated to form an interconnected failure plane (see Fig. 6 (b,
c)). This process led to a sudden drop of σ from the peak to the minimum
value of 0.03 MPa, showing apparent brittle failure response of solids. D
reached a relatively stable value of 10% at εa¼ 0.64%when the detached
Fig. 5. Evolution of compressive loading stress (σ) and internal solid damage (D) wit
of σ and D; εa0 ¼ 0.45% marks the point at which the first internal bond breaks.
0.615%–0.635%.

5

solid fragments had quite few contacts with each other. At this stage, the
internal bonding force chains became negligibly small and the distribu-
tion of internal damage remained stable (see Fig. 6 (d), εa ¼ 0.64%).
Further compression of the solid fragments could slightly increase the
internal damages (see Fig. 6 (e), εa¼ 0.645%), with little change of stress.
The final stable value of D was 11.86%.

The spatial distribution of the final stable internal damage zone is
depicted through 3D visualization from multiple angles in Fig. 7. The
figure reveals that the internal failure plane intersected with the upper
edge of the solid sample, inclining at an angle of approximately 60�. This
failure mode is consistent with the principles defined in the Mohr-
Coulomb failure criteria, and matches the experimental observation
(Fig. 7(e)) presented in Liu et al. (2015). As a result of this failure, the
solid sample fragmented into two distinct parts: a smaller, upper
wedge-shaped block and a larger, solid block at the bottom.

During the simulation, the maximum force components at all contacts
(i.e. the normal (Fbn) and shear (Fbs) bonding forces, the normal (Fn) and
shear (Fs) contact forces) have been recorded. Fig. 8 illustrates the evo-
lution of internal force components and damage ratio with the axial
strain (εa) of the rock sample for test under the loading strain rate of 0.1
s�1. Among all the force components, the shear bonding force (blue
curve) was the largest, indicating that the brittle failure of solids was
induced dominantly by shear deformations. The contact forces were
negligibly small when compared to the bonding forces because the in-
teractions between particles were mainly via bonds and few particles are
in direct contact with each other before the intense fragmentations took
place. Since the linear elastic constitutive models were employed, the
h the axial strain for test of loading rate 0.1 s�1. (a) The general evolution curves
(b) An enlarged view of the evolution curves for axial strain in the range of



Fig. 6. The distribution of internal bonding force chains and solid damage (red dots) at different compression stages. (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. Different views of the distribution of internal damage zone of the solids (red dots represent the internal damage zone). (a) front view; (b) back view; (c) left
view; (d) right view. (e): the fractured coal rock sample after the uniaxial compression test (cited from Liu et al. (2015)). (For interpretation of the references to color
in this figure legend, the reader is referred to the Web version of this article.)
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force components all increased linearly with the axial strain, εa, at the
initial compression stage before εa1 ¼ 0.62. As εa approached εa1, the rate
of internal rock damage started to rise, and D increased apparently. For εa
> εa1, the normalized maximum shear force exhibited a sudden increase
to the peak value of 0.008, while Fbn, Fn and Fs correspondingly all
showed slight increases. When Fbs was close the peak value, the whole
solid mass cannot resist the external compressive loading and the internal
solid damage started to nucleate quickly to form an interconnected fail-
ure plane (see Fig. 6 (b). The increasing rate of Fbs slowed down after εa¼
6

0.63% when the internal solid damage ratio started to rise rapidly (see
Fig. 8 (b)). After reaching the peak value, Fbs dropped quickly as D
increased. When D reached a relatively large and stable value of 10% at
εa ¼ 0.64%, the decreasing rate of Fbs reduced gradually (see Fig. 8 (b))
due to the persistent particle contacts between detached fragments. The
subsequent interactions between detached fragments leads to a slight
increase of D and variations of Fbn and Fbs, while Fn and Fs remained
negligibly small.
Fig. 8. Evolution of maximum particle interaction
forces at contact and internal damage ratio (D) with
the axial strain for test under loading strain rate of 0.1
s�1. The force components are normalized by the peak
force acting on the loading plates (Fpeak). Fbn: normal
bonding force; Fbs: shear bonding force; Fn: normal
contact force; Fs: shear contact force. (a) The evolu-
tion curves of bonding and contact forces, and D; (b)
An enlarged view of the evolution curves for axial
strain in the range of 0.615%–0.635%.
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4. Conclusions

In this study, the phenomenon of brittle failure in rock masses was
explored using the Discrete Element Method (DEM), implemented
through a quaternion-based bonded-particle model. The application of
unit quaternions was chosen for its potential to more effectively handle
the complex spatial rotations and interactions among bonded particles in
3D, as suggested by existing literature. The DEM model was calibrated
from standard uniaxial compression tests on cubic rock samples by a
good agreement in the stress-strain behavior and failure mode between
the numerical and experimental testing results. The key research findings
are summarized as follows.

(1) The numerical simulations of the uniaxial compression tests of
rock sample revealed that the stress oscillation, uniaxial
compression strength (UCS) and size of internal damage zone all
increased with the loading strain rate, exhibiting strong rate-
dependent mechanical behaviors. As the loading strain rate
increased from 0.05 to 10 s�1, the UCS increased from 10.06 to
11.06 MPa, following an exponential relationship.

(2) During the initial loading stage, stress increased linearly with
strain. However, this linear relationship began to weaken after the
strain exceeded 0.45%, marking the start of internal bond
breakage accumulation. As axial strain continued to increase, the
stress-strain curve progressively deviated further from its initial
linear trajectory. The UCS was reached at an axial strain of
0.625%, by which time the internal shear bonding force chains
had primarily aligned in a vertical orientation.

(3) The bond breakage and overall deformation of the rock were
controlled primarily by the microscopic shear bonding force. The
rock mass failed brittlely when the internal damage nucleated
rapidly to form an interconnected failure plane. The ultimate
failure of the rock distinctly presented a shear failure mode,
7

characterized by a failure plane inclined at an approximate angle
of 60�.

This research investigated into the microscopic mechanical behaviors
of bonded particles, providing new insights into the nature of brittle
failure in rock masses. It enhances the comprehension of the interplay
between rock strength and internal damage, revealing crucial aspects of
their co-variation and implications for structural integrity.
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Appendix A. Unit quaternion and spatial rotation

According to Hamilton (1844), the unit quaternion is a quaternion with a unit length. It can be expressed as,

q¼ q0 þ qxiþ qyjþ qzk (A.1)

where i, j, k are the fundamental quaternion units (i.e. basis elements) and can be interpreted as unit-vectors pointing along the three Cartesian spatial
axes. They have the properties as, i2 ¼ j2 ¼ k2 ¼ ijk ¼ � 1, ij ¼ � ji ¼ k, jk ¼ �kj ¼ i and ki ¼ � ik ¼ j.

The conjugate, norm and reciprocal of a unit quaternion q are defined as,

q* ¼ q0 � qxi� qyj� qzk (A.2)

kqk¼
ffiffiffiffiffiffiffi
qq*

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 þ q2x þ q2y þ q2z

q
¼ 1 (A.3)

q�1 ¼ q*

kqk2 ¼ q* (A.4)

The rotation of a rigid object counterclockwise (view in the same direction as the axis vector) about a unit axis vector u by an angle of θ can be
rewritten as a unit quaternion,

q¼ 〈cos
θ

2
; sin

θ

2
u〉 (A.5)

The multiplication of any two quaternions of generic forms q1 ¼ 〈a;u〉 and q2 ¼ 〈b; v〉 can be evaluated as,

q1q2 ¼ðab� u � vÞ þ ðavþ buþ u� vÞ (A.6)

A quaternion can also represent a vector by setting the scaler part to 0, e.g. u ¼ 〈0; u〉. In the following sections, quaternions relating to spatial
rotational operations are defined as units, and vectors are represented in quaternion forms, unless specified otherwise. For a vector a ¼ ðax;ay ;azÞ, its
rotation by a quaternion q ¼ 〈cos θ

2; sin
θ
2u〉 (i.e. rotation over the unit axis vector u by an angle of θ) can be evaluated by quaternion conjugation of a by q

as,
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a
0 ¼ qaq�1 (A.7)
For successive finite rotations of a by unit quaternions q1, q2, …, qn, the resultant quaternion a0 can be expressed as,

a
0 ¼ ðqn:::q2q1Þa

�
q1

�1q2
�1:::qn

�1
�

(A.8)

In numerical analyses, the unit quaternion of a single particle is a function of time, q(t), which describes how particle orientation varies relative to a
fixed coordinate frame. Let ω(t) be the angular velocity of the particle evaluated in the same fixed coordinate frame. The derivative of q(t) can be
calculated as,

_qðtÞ¼ 1
2
ωqðtÞ (A.9)

To solve this differential equation, the forward Euler method of a first-order accuracy can be used as,

qðtþΔtÞ¼ qðtÞþΔt _qþ O
�
Δt2

�
(A.10)

or

qðtþΔtÞ¼ qðtÞþ 1
2
ΔtωqðtÞ þ O

�
Δt2

�
(A.11)
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