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Abstract
Linear viscoelasticity can be characterized by a stress relax-

ation function. We consider a power-law type stress relax-

ation to yield a fractional order viscoelasticity model. The

governing equation is a Volterra integral problem of the

second kind with a weakly singular kernel. We employ

spatially discontinuous Galerkin methods, symmetric inte-
rior penalty Galerkin method (SIPG) for spatial discretiza-

tion, and the implicit finite difference schemes in time,

Crank–Nicolson method. Further, in order to manage the

weak singularity in the Volterra kernel, we use a linear

interpolation technique. We present a priori stability and

error analyses without relying on Grönwall’s inequality, and

so provide high quality bounds that do not increase expo-

nentially in time. This indicates that our numerical scheme

is well-suited for long-time simulations. Despite the limited

regularity in time, we establish suboptimal fractional order

accuracy in time as well as optimal convergence of SIPG.

We carry out numerical experiments with varying regular-

ity of exact solutions to validate our error estimates. Finally,

we present numerical simulations based on real material

data.
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1 INTRODUCTION

Viscoelasticity is a fundamental property exhibited by a wide range of materials, including polymers,

gels, biological tissues, and even certain metals, for example, see [9]. This property indicates the mate-

rials’ capacity to display combined elastic and viscous behavior. Unlike purely elastic materials, which

deform instantaneously and fully recover their original shape upon removal of the load, viscoelas-

tic materials exhibit time-dependent deformation and dissipate energy during loading and unloading.

Various models have been proposed to describe the viscoelastic behavior of materials, including the

Maxwell, Kelvin-Voigt, and Zener models. These rheological models employ different combinations

of springs and dashpots to represent the elastic and viscous elements of the material, providing a frame-

work to capture the viscoelastic response. For more details, we refer to [4–6, 27] and the references

therein.

We begin with the momentum balance for a linear homogeneous and isotropic compressible

viscoelastic solid material (see e.g., [6, 27]), given by

𝜌ü(t) − ∇ ⋅ 𝝈(t) = f(t) on Ω × (0,T], (1.1)

where Ω ⊂ R𝑑
is an open bounded polytopic domain, T > 0, u is displacement, 𝝈 is stress and f is an

external body force. Here overdots denote time differentiation so that u̇ is velocity and ü is acceleration,

and it is assumed that 𝜌 is the constant mass density of the material. In addition, we suppose a mix of

essential and natural boundary conditions so that

u(t) = 0 on ΓD × [0,T], (1.2)

𝝈(t) ⋅ n = gN(t) on ΓN × [0,T], (1.3)

where ΓD is the Dirichlet boundary (assumed to have positive surface measure), ΓN is the Neumann
boundary given by ΓN = 𝜕Ω ⧵ ΓD, n is the outward unit normal vector defined a.e. on ΓN , and gN pre-

scribes surface traction on ΓN . Furthermore, for initial conditions on the displacement and the velocity

we take,

u(0) = u0 and u̇(0) = w0 (1.4)

for given vector-fields u0 and w0.

The constitutive relation between stress 𝝈 and strain 𝜺 characterizes the viscoelasticity model. In

this article, we focus on a power-law type constitutive model which is motivated by the intermediate

concept of an elastic solid and viscous liquid in continuum mechanics such that the stress is propor-

tional to the strain in solid, for example, 𝝈 ∝ 𝜺, and the stress is proportional to the rate of the strain in

Newtonian fluid, for example, 𝝈 ∝ �̇�. Hence the power-law type constitutive law would follow 𝝈 ∝ 𝜕𝛼t 𝜺
where 𝜕

𝛼

t is a fractional order time differential operator of order 𝛼 with 0 < 𝛼 < 1. For example, in

[29], the constitutive relation in elastomer 3M–467 exhibits 𝝈 ∝ 𝜕
0.56
t 𝜺. In this setting we formulate

the constitutive equation by

𝝈(t) = D̂𝜺(t) +0 D𝛼

t D̃𝜺(t), (1.5)

where D̂ and D̃ are fourth-order tensors, and 0D𝛼

t is a left Riemann–Liouville differential operator of

order 𝛼 in time (see e.g., [4, 5, 27]). For simplicity, we suppose D̂ and D̃ are piecewise constants, and

defined by

D̂ijkl = 2�̂�𝛿ik𝛿jl + �̂�𝛿ij𝛿kl and D̃ijkl = 2�̃�𝛿ik𝛿jl + �̃�𝛿ij𝛿kl for i, j, k, l = 1, … , 𝑑,
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where (�̂�, �̂�) and (�̃�, �̃�) are Lamé parameters, respectively. Using the notation of Cauchy’s infinitesimal

tensor,

𝜀ij(v) =
1

2

(
𝜕vi
𝜕xj

+
𝜕vj

𝜕xi

)
, for i, j = 1, … , 𝑑,

we define the strain by 𝜺(t) = 𝜺(u(t)) in (1.5) for convenience. For other choice of stress relaxation

models, we refer to [27], in particular, we refer to [12, 13, 25] for Prony series type constitutive relation

with internal variables.

Solving time fractional order integro-differential equations numerically is challenging due to

the non-locality and memory effects introduced by the fractional derivatives. The presence of inte-

grals adds computational complexity, while singularities and discontinuities require special treatment.

Selecting suitable numerical methods and proving stability and error estimates are additional difficul-

ties. McLean and Thomée [19–21] made significant contributions to the field by developing numerical

analysis techniques for a fractional order evolution equation corresponding to a scalar analogue to a

power-law type fractional order viscoelasticity problem. In their work, they specifically focused on

investigating the error analysis associated with the homogeneous Dirichlet boundary condition. Their

research provides valuable insights and advancements in understanding the numerical aspects of frac-

tional order evolution problems. However, since their analyses are based on spectral methods, the

analyses are limited to the purely homogeneous Dirichlet boundary condition. In the works of [10, 11],

the well-posedness and error estimates for the vector-valued fractional order viscoelasticity problem

with a mixed boundary condition were established using duality arguments and an L∞ approach in time,

without relying on Grönwall’s inequality and a spectral approach. Additionally, for a Mittag-Leffler
type fractional order viscoelasticity problem, the works of [14, 15, 26] provide relevant contributions

to the analysis of such problems.

In this article, we approximate the dynamic fractional order viscoelasticity model of a power-law

type with discontinuous Galerkin finite element method (DGFEM), specifically symmetric interior
penalty Galerkin method (SIPG), for spatial discretization and Crank–Nicolson type finite differ-

ence method for temporal discretization. Due to the presence of the singularity in the fractional

order Volterra kernel, particularly in the presence of non-smooth initial or boundary conditions, they

require special treatment to ensure accuracy and stability. Classical numerical schemes such as stan-

dard quadrature rules developed for integer-order integral problems may not be directly applicable or

may lose accuracy when applied to fractional order equations. To address this, we incorporate the lin-

ear interpolation technique [16, 17] to handle the weak singularity and to improve accuracy. Stability

bounds and spatially optimal error bounds for discrete problems are demonstrated without relying on

Grönwall’s inequality to avoid exponential growth in time of the so-called generic constants. Further-

more, the regularity of solutions is analyzed to address weak singularities and derive suboptimal and

optimal orders of convergence with respect to time.

We would like to highlight that the stability estimates of the fractional order integro-differential

equation with a mixed boundary condition can be demonstrated without the use of Grönwall’s inequal-

ity. Instead, we employ the positivity property in fractional order integration and Markov’s inequality

to prove stability bounds for semi-discrete and fully discrete problems, respectively. Despite the pres-

ence of a weak singularity in the power-law type model and the limited regularity of solutions in

time, the fully discrete solutions achieve a higher order of accuracy compared to first-order schemes.

This enhanced accuracy is verified through duality arguments and an L∞ approach in time without

Grönwall’s inequality and spectral methods. To our knowledge, our study presents, for the first time,

stability and a priori error analyses of SIPG for the dynamic viscoelasticity model of power-law type

with a mixed boundary condition including the purely elastic response. We can only find certain
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research works with further assumptions such as imposing ΓD = 𝜕Ω, vanishing D̂ or problems of

Mittag-Leffler type, where the Mittag-Leffler type kernel is asymptotically equivalent to the power-law

type as t → 0. The actual computational costs in Mittag-Leffler type simulations are more expensive

than the power-law type since the Mittag-Leffler type kernel involves an infinite series. Moreover,

the numerical scheme in [14] exhibits only first order accuracy in time and [26] shows optimal spa-

tial error estimates using Grönwall’s inequality without temporal error analysis. Therefore, the novelty

of our work is the improved analyses of stability and a priori bounds for more generalized dynamic

fractional order viscoelasticity problems where the bounds are non-exponentially increasing in time to

give confidence in the long time simulation of viscoelastic response.

This article is structured as follows: In Section 2, we introduce the fundamental definitions of

fractional calculus, the frameworks of DGFEM, and our notation. Section 3 defines a semi-discrete for-

mulation along with its stability analysis, as well as a fully discrete formulation. The stability analysis

and a priori error bounds for the fully discrete problem are stated and proved in Section 4. Numeri-

cal experiments using FEniCS (https://fenicsproject.org/) are presented in Section 5. Finally, Section 6

concludes the article.

2 PRELIMINARY

We use standard notation so that Lp(Ω), Hs(Ω) and Ws
p(Ω) (with s and p nonnegative) denote the usual

Lebesgue, Hilbert and Sobolev spaces. For any normed space X, || ⋅ ||X represents the X norm which,

for inner product spaces, is always the norm induced by the inner product. For example, || ⋅ ||L
2
(Ω) is

the L2(Ω) norm, as induced by the L2(Ω) inner product denoted—for brevity—by (⋅, ⋅), but for S ⊂ Ω,

we use (⋅, ⋅)L
2
(S) for the L2(S) inner product. When we denote the Bochner space by Lp(0,T;X), for a

time-dependent function f ∈ Lp(0,T;X), the corresponding norm is defined by

||f ||Lp(0,T;X) =
(
∫

T

0

||f (t)||pX 𝑑t
)1∕p

,

for 1 ≤ p < ∞. When p = ∞ this becomes the essential supremum norm:

||f ||L∞(0,T;X) = ess sup

0≤t≤T
||f (t)||X .

When convenient, we shall often replace the upper limit T in these expressions by some other value

t ∈ [0,T].
For inner products of vector-valued and tensor-valued functions we use the same notation as for

the scalar cases. For instance, we have

(v,w) = ∫Ω v ⋅ w 𝑑Ω, (v,w) = ∫Ω v ∶ w 𝑑Ω =
𝑑∑

i,j=1
∫Ω vijwij 𝑑Ω,

for vector-valued functions v and w, and second order tensors v and w.

We follow the framework of the DGFEM in [23] and refer to it for a detailed explanation. Assume

that the closure of Ω is subdivided by h, where E ∈ h is a triangle in 2D or a tetrahedron in 3D,

and the intersection of any pair of elements is either a vertex, an edge, a face, or empty. We suppose

that the subdivision is quasi-uniform, which means that there exists a positive constant C such that

h ≤ ChE for any E where hE is the diameter of E ∈ h and h is the maximum diameter. Let Γh be the

set of interior edges (in 2D) or faces (in 3D) contained in the subdivision h. Then for each edge or
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face element e, we can define a unit normal vector, ne. If e ⊂ 𝜕Ω, ne is the outward unit normal vector.

For an interior edge e such that e ⊂ Ei ∩ Ej with i < j, the normal vector ne is oriented from Ei to Ej.

With the subdivision, we can introduce the broken Sobolev space

Hs(h) = {v ∈ L2(Ω) | ∀E ∈ h, v|E ∈ Hs(E)} ,

and endow it with the broken Sobolev norm, ||| ⋅ |||Hs(h), defined by

|||v|||Hs(h) =

(∑
E∈h

||v||2Hs(E)

)1∕2

.

These definitions and notations are extended in an obvious way to the the vector field analogue Hs(h).
We can also define the space of polynomials of degree less than or equal to k over E such that

k(E) = span

{
xi

1

1
· · · xi

𝑑

𝑑
|

𝑑∑
m=1

im ≤ k, x ∈ E, im ∈ N ∪ {0} for each m

}
,

and then define our DG finite element space as

k(h) =
{

v ∈ H1(h)
||| v|E ∈ k(E) for each E ∈ h

}
.

The analogous vector field is given by k(h) ∶= [k(h)]𝑑 .

Next, we want to define an average and a jump for a vector valued function v and a second order

tensor v between two elements Ee
i and Ee

j sharing the common edge e with i < j by

{v} =
(v|Ee

i
)|e + (v|Ee

j
)|e

2
, {v} =

(v|Ee
i
)|e + (v|Ee

j
)|e

2
, [v] = (v|Ee

i
)|e − (v|Ee

j
)|e,

[v⊗ ne] = (v|Ee
i
)|e ⊗ ne − (v|Ee

j
)|e ⊗ ne,

where the normal vector ne is oriented from Ee
i to Ee

j and ⊗ is the outer product defined, for vectors a
and b, by (a⊗ b)mn = ambn for m, n = 1, … , 𝑑. On the other hand, if e ⊂ 𝜕Ω and e ⊂ 𝜕E

{v} = v|e, {v} = v|e, [v] = v|e ⋅ ne, and [v⊗ ne] = v|e ⊗ ne.

We can now introduce the jump penalty operator,

J𝛾0
,𝛾

1

0
(v,w) =

∑
e⊂Γh∪ΓD

𝛾0|e|𝛾1 ∫e
[v] ⋅ [w] 𝑑e,

where 𝛾0 and 𝛾1 are positive constants.

Useful inequalities

We now provide the following inequalities for use later in the a priori analysis.

• Inverse polynomial trace inequalities [31]: For any v ∈ k(E), ∀e ⊂ 𝜕E,

||v||L
2
(e) ≤ Ch−1∕2

E ||v||L
2
(E), and ||∇v ⋅ ne||L

2
(e) ≤ Ch−1∕2

E ||∇v||L
2
(E), (2.1)

where C is a positive constant and is independent of hE but depends on the polynomial degree k.

• Poincaré’s inequality [2, 23]: If 𝛾1(𝑑 − 1) ≥ 1 and |e| ≤ 1 for every e ⊂ Γh ∪ ΓD, then,

||v||L
2
(Ω) ≤ C

(
|||∇v|||2H0(h)

+
∑

e⊂Γh∪ΓD

1

|e|𝛾1

||[v]||2L
2
(e)

)1∕2

, (2.2)

for any v ∈ H1(h).
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• Inverse inequality (or Markov inequality) [22, 23]: For any E ∈ h, there is a positive constant

C such that

∀v ∈ k(E), ||∇jv||L
2
(E) ≤ Ch−j

E ||v||L
2
(E), ∀j ∈ {0, 1, … , k}, (2.3)

where

∇jv =

{
∇ ⋅ ∇j−1v for even j,
∇(∇j−1v) for odd j,

and ∇0v = v.

Note that (2.1)–(2.3) can also be applied to vector-valued functions, componentwisely.

Next, we present the definition of the (left) Riemann–Liouville fractional derivative as well as its

properties.

Definition 2.1 (Riemann–Liouville fractional derivative and integral). Let f be a func-

tion defined on [a, b] and 𝛼 ∈ (0, 1). A left Riemann–Liouville derivative of order 𝛼 and

a left fractional integral of order 𝛼 are defined by for t > a

aD𝛼

t f (t) = 1

Γ(1 − 𝛼)
𝑑

𝑑t∫
t

a
f (t′)(t − t′)−𝛼𝑑t′ and aI𝛼t f (t) = 1

Γ(𝛼)∫
t

a
f (t′)(t − t′)𝛼−1

𝑑t′,

where Γ is the gamma function. We can observe that

aD𝛼

t f (t) = 𝑑

𝑑t a
I1−𝛼
t f (t), and aD𝛼

t f (t) = f (a)(t − a)−𝛼
Γ(1 − 𝛼)

+a I1−𝛼
t ḟ (t) if f is differentiable.

Furthermore, we have the positive definiteness [19] of the fractional integral of order 𝛼 ∈
(0, 1) such that

∫
T

0 0

I1−𝛼
t 𝜙(t)𝜙(t)𝑑t = 1

Γ(1 − 𝛼)∫
T

0
∫

t

0

(t − t′)−𝛼𝜙(t′)𝜙(t)𝑑t′𝑑t ≥ 0. (2.4)

3 SPACE AND TIME DISCRETIZATION

In this section, we first introduce the SIPG formulation for the momentum Equation (1.1) to derive a

semi-discrete problem. Then, using a Crank–Nicolson type finite difference scheme, we can formulate

a fully discrete problem. For this, we additionally consider a numerical scheme for the fractional order

derivative using the linear interpolation technique in [16].

With the use of the power-law type stress relaxation in [11, 28], we can derive the power-law type

constitutive Equation (1.5) as

𝝈(t) = 𝜑0D𝜺(t) + 𝜑1t−𝛼D𝜺(0) + 𝜑1Γ(1 − 𝛼)0I1−𝛼
t D�̇�(t), (3.1)

where 𝜑0 is nonnegative, 𝜑1 is positive and D is a symmetric positive definite piecewise constant

fourth order tensor. By substitution of the constitutive law (3.1) into the momentum Equation (1.1),

the model problem becomes:

𝜌ü(t) − ∇ ⋅
(
𝜑0D𝜺(t) + 𝜑1Γ(1 − 𝛼)0I1−𝛼

t D�̇�(t)
)
= f(t) + t−𝛼𝝍

0
on Ω × (0,T], (3.2)

where𝝍
0
∶= 𝜑1∇ ⋅D𝜺(0), with the boundary conditions (1.2) and (1.3), and the initial condition (1.4).

If we set 𝜑1 = 0 in the constitutive equation, the stress relaxation will disappear. Hence, the corre-

sponding constitutive relation implies linear elasticity. For the purpose of our study in viscoelasticity,
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we shall assume a positive value for𝜑1. On the other hand, in the absence of elastic response by𝜑0 = 0,

the model problem exhibits only stress relaxation. Furthermore, the momentum equation can be sim-

plified to a parabolic type integro-differential equation, not a hyperbolic type. For more details on the

reduced problem, refer to [11].

3.1 A semi-discrete problem

To formulate a spatially discrete approximation of (3.2), we first present the SIPG form in the context

of our model problem. We define a symmetric DG bilinear form a ∶ Hs(h)×Hs(h) → R for s > 3∕2

by

a(v,w) =
∑
E∈h
∫E

D𝜺(v) ∶ 𝜺(w) 𝑑E −
∑

e⊂Γh∪ΓD
∫e
{D𝜺(v)} ∶ [w⊗ ne] 𝑑e

−
∑

e⊂Γh∪ΓD
∫e
{D𝜺(w)} ∶ [v⊗ ne] 𝑑e + J𝛾0

,𝛾
1

0
(v,w),

(3.3)

for any v,w ∈ Hs(h). We also define our DG energy norm by

||v||V =
(∑

E∈h
∫E

D𝜺(v) ∶ 𝜺(v) 𝑑E + J𝛾0
,𝛾

1

0
(v, v)

)1∕2

, for v ∈ Hs(h).

Comparing these we can observe that

a(v, v) = ||v||2V − 2

∑
e⊂Γh∪ΓD

∫e
{D𝜺(v)} ∶ [v⊗ ne] 𝑑e. (3.4)

In the DG bilinear form, the third term is called the “interior penalty” term, while the last term is

referred to as the “jump penalty.” Depending on the sign of the interior penalty, the bilinear form is

either symmetric or nonsymmetric. In this article, we consider only the symmetric DG method and refer

to [10, 25] for an application of the nonsymmetric method for viscoelasticity. The choice to employ

SIPG is motivated by the fact that it only requires the standard penalization parameter 𝛾1(𝑑 −1) ≥ 1 to

achieve optimal spatial error estimates. In contrast, the nonsymmetric interior penalty Galerkin method

(NIPG) demands a super penalization parameter 𝛾1(𝑑 − 1) ≥ 3 for optimal error estimates. It is worth

noting that using super penalization can result in a more ill-conditioned linear system, potentially

leading to difficulties when solving the system with iterative solvers. For more comprehensive details,

we refer to [10].

Remark (Korn’s inequality for piecewise H1
vector fields [3, 23]). If we have 𝛾1(𝑑−1) ≥

1, then since D is symmetric positive definite and the jump penalty is defined not only

on the interior edges but also on the positive measured Dirichlet boundary ΓD, Korn’s

inequality yields, for any v ∈ H1(h),∑
E∈h

||∇v||2L
2
(E) ≤ C||v||2V , (3.5)

for some positive C independent of v.

Proposition 3.1 (DG elliptic projection). The DG elliptic projector, R, is defined for
u ∈ Hs(h) and s > 3∕2 by,

R ∶ Hs(h) → k(h) such that a(u, v) = a(Ru, v), ∀v ∈ k(h).
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8 of 33 JANG and SHAW

Note that we have the Galerkin orthogonality such that a(u − Ru, v) = 0 for any v ∈
k(h). Referring to [8, 23, 24, 32], for example, we recall the following elliptic-error
estimates,

||u − Ru||V ≤ Chmin(k+1,s)−1|||u|||Hs(h) and

||u − Ru||L
2
(Ω) ≤ Chmin(k+1,s)|||u|||Hs(h),

(3.6)

for u ∈ Hs(h)with s > 3∕2 and for sufficiently large penalty parameters 𝛾0 > 0 and 𝛾1 ≥
(𝑑 − 1)−1

. Here, the positive constant C is independent of u but dependent on the domain,
its boundary, and the polynomial degree k.

Proposition 3.2 (Bounds for interior penalty term [10, 13]). Suppose 𝛾0 > 0 and 𝛾1(𝑑 −
1) ≥ 1. For any v,w ∈ k(h), we have

∑
e⊂Γh∪ΓD

∫e
|{D𝜺(v)} ∶ [w⊗ ne]|𝑑e ≤ C√

𝛾0

(|v|2V + J𝛾0
,𝛾

1

0
(w,w)

)
, (3.7)

where C is a positive constant independent of v and w but dependent on the inverse
polynomial trace inequality’s constants and the domain.

Proposition 3.3 (Coercivity and continuity [10, 13]). Suppose 𝛾0 > 0 is sufficiently large
and 𝛾1(𝑑 − 1) ≥ 1. Then there exist positive constants 𝜅 and K such that

𝜅||v||2V ≤ a(v, v), and |a(v,w)| ≤ K||v||V ||w||V , ∀v,w ∈ k(h), (3.8)

where 𝜅 and K are independent of v and w.

Hereafter, we assume s ≥ 2, 𝛾0 > 0 and 𝛾1(𝑑−1) ≥ 1 in our article to fulfill Proposition 3.1 to 3.3.

Remark. On account of using the inverse polynomial trace inequality to prove the coerciv-

ity and continuity, the DG bilinear form will not be coercive and continuous on the broken

Sobolev space. In other words, (3.8) holds only on the finite element space. For the choice

of the penalty parameter 𝛾0, we refer to [7, 32]. For instance, we will take 𝛾0 ∈ [10,100]
in the numerical experiments Section 5.

In the usual way for DGFEM, we follow the standard method of multiplying (3.2) by a test function

in Hs(h) for each E ∈ h, integrating by parts over the element, summing overall E and then imposing

additional penalty terms. This produces a weak formulation of (3.2). Under the assumption that the

strong solution to the momentum equation has spatial continuity, the interior penalty and jump penalty

terms can be included in our DG formulation. We refer to [10] for more details of the DG formulation

for the viscoelasticity model problems. Therefore, we can obtain the following semi-discrete problem:

find uh ∶ [0,T] → k(h) satisfying for any v ∈ k(h),

𝜌(üh(t), v) + 𝜑0a(uh(t), v) + 𝜑𝛼a
(

0I1−𝛼
t u̇h(t), v

)
= F(t; v) for t > 0, (3.9)

a(uh(0), v) = a(u0, v), (3.10)

a(u̇h(0), v) = a(w0, v), (3.11)

where 𝜑𝛼 ∶= 𝜑1Γ(1 − 𝛼) for convenience and the linear form F(⋅) is defined by

F(t; v) = (f(t), v) +
(
gN(t), v

)
L

2
(ΓN )

+
(
t−𝛼𝝍

0
, v
)
.
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JANG and SHAW 9 of 33

Note that the bilinear form is only associated with spatial variables so that the Leibniz integral rule

leads to

a
(

0I1−𝛼
t u̇h(t), v

)
=0 I1−𝛼

t a(u̇h(t), v) and t−𝛼a(u0, v) = a(t−𝛼u0, v),

for any v ∈ k(h). The above arguments are used to obtain (3.9). It is easy to show the linear form

F(⋅) is continuous if f ∈ C(0,T;L2(Ω)), gN ∈ C(0,T;L2(ΓN)), and 𝝍
0
∈ L2(Ω). Indeed, we can

observe that if u0 ∈ H2(Ω), it implies 𝝍
0
∈ L2(Ω). Hereafter, we assume the data terms are bounded

and smooth enough to satisfy the continuity condition of the linear form. In addition to the initial data,

we suppose u0 ∈ H2(Ω) ∩ C(Ω) and w0 ∈ H2(Ω) ∩ C(Ω). For the existence and uniqueness of the

solution, we refer to [26].

Theorem 3.1. Let uh be a solution of the semi-discrete problem (3.9)–(3.11). Suppose
u̇h ∈ L∞(0,T;L2(Ω)) and uh ∈ L∞(0,T;Hs(h)). If 𝛾0 is large enough and 𝛾1(𝑑−1) ≥ 1,

there exists a positive constant C such that

‖u̇h‖2

L∞(0,T;L2
(Ω)) + ‖uh‖2

L∞(0,T;V) ≤ C
(‖w0‖2

H2(Ω) + ‖u0‖2

H2(Ω) + T||f||2L
2
(0,T;L

2
(Ω))

+ Th−1‖‖gN
‖‖2

L
2
(0,T;L

2
(ΓN ))

+ T2(1−𝛼)||𝝍
0
||2L

2
(Ω)

)
.

Here, the constant C is independent of the semi-discrete solution, T and h but dependent
on the polynomial degree k, the fractional order 𝛼, the domain Ω, its boundary, and the
material properties.

Proof. Let v = u̇h(t) for t ∈ (0,T] in (3.9) to get,

𝜌

2

𝑑

𝑑t
||u̇h(t)||2L

2
(Ω) +

𝜑0

2

𝑑

𝑑t
||uh(t)||2V − 𝜑0

∑
e⊂Γh∪ΓD

∫e
{D𝜺(uh(t))} ∶ [u̇h(t)⊗ ne] 𝑑e

− 𝜑0

∑
e⊂Γh∪ΓD

∫e
{D𝜺(u̇h(t))} ∶ [uh(t)⊗ ne] 𝑑e + 𝜑𝛼a

(
0I1−𝛼

t u̇h(t), u̇h(t)
)
= F(u̇h(t)).

(3.12)

For 0 < 𝜏 ≤ T , time integration yields

𝜌

2
||u̇h(𝜏)||2L

2
(Ω) +

𝜑0

2
||uh(𝜏)||2V + 𝜑𝛼∫

𝜏

0

a
(

0I1−𝛼
t u̇h(t), u̇h(t)

)
𝑑t

= ∫
𝜏

0

F(u̇h(t))𝑑t + 𝜌

2
||u̇h(0)||2L

2
(Ω) +

𝜑0

2
||uh(0)||2V

+ 𝜑0

∑
e⊂Γh∪ΓD

∫e
({D𝜺(uh(𝜏))} ∶ [uh(𝜏)⊗ ne] − {D𝜺(uh(0))} ∶ [uh(0)⊗ ne]) 𝑑e,

(3.13)

by the definition of the bilinear form and integration by parts in time. Since we have

∫
𝜏

0

a
(

0I1−𝛼
t u̇h(t), u̇h(t)

)
𝑑t = 1

Γ(1 − 𝛼)∫
𝜏

0
∫

t

0

(t − s)−𝛼a
(
u̇h(t′), u̇h(t)

)
𝑑t′𝑑t,

and the bilinear form a(⋅, ⋅) is symmetric positive definite, (2.4) implies

∫
𝜏

0

a
(

0I1−𝛼
t u̇h(t), u̇h(t)

)
𝑑t ≥ 0.
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10 of 33 JANG and SHAW

Hence, we can get

𝜌

2
||u̇h(𝜏)||2L

2
(Ω) +

𝜑0

2
||uh(𝜏)||2V ≤ ∫

𝜏

0

F(u̇h(t)) 𝑑t + 𝜌

2
||u̇h(0)||2L

2
(Ω) +

𝜑0

2
||uh(0)||2V

+ 𝜑0

∑
e⊂Γh∪ΓD

∫e
({D𝜺(uh(𝜏))} ∶ [uh(𝜏)⊗ ne]

−{D𝜺(uh(0))} ∶ [uh(0)⊗ ne]) 𝑑e.

(3.14)

Next, we shall show that the right-hand side of (3.14) is bounded. Consider the first

term of the right-hand side. By the definition of the linear form,

∫
𝜏

0

F(u̇h(t))𝑑t = ∫
𝜏

0

(f(t), u̇h(t)) 𝑑t + ∫
𝜏

0

(
gN(t), u̇h(t)

)
L

2
(ΓN )

𝑑t + ∫
𝜏

0

(
t−𝛼𝝍

0
, u̇h(t)

)
𝑑t.

Using Cauchy–Schwarz inequality, we have

∫
𝜏

0

F(u̇h(t))𝑑t ≤ ∫
𝜏

0

||f(t)||L
2
(Ω)||u̇h(t)||L

2
(Ω) 𝑑t + ∫

𝜏

0

||gN(t)||L2
(ΓN )||u̇h(t)||L

2
(ΓN ) 𝑑t

+ ∫
𝜏

0

t−𝛼||𝝍
0
||L

2
(Ω)||u̇h(t)||L

2
(Ω) 𝑑t

≤ ∫
𝜏

0

||f(t)||L
2
(Ω)||u̇h(t)||L

2
(Ω) 𝑑t + Ch−1∕2∫

𝜏

0

||gN(t)||L2
(ΓN )||u̇h(t)||L

2
(Ω) 𝑑t

+ ∫
𝜏

0

t−𝛼||𝝍
0
||L

2
(Ω)||u̇h(t)||L

2
(Ω) 𝑑t,

with the inverse polynomial trace inequality (2.1) on the second term. An L∞ norm

argument over time for ||u̇h(t)||L
2
(Ω) implies that

∫
𝜏

0

F(u̇h(t))𝑑t ≤ ‖u̇h‖L∞(0,T;L2
(Ω))

(
∫

𝜏

0

||f(t)||L
2
(Ω) + Ch−1∕2||gN(t)||L2

(ΓN ) + t−𝛼||𝝍
0
||L

2
(Ω) 𝑑t

)
.

Thus, by employing Young’s inequalities and Cauchy–Schwarz inequalities, we can obtain

the bound of the linear form such that

∫
𝜏

0

F(u̇h(t))𝑑t ≤ (
𝜖a + 𝜖b + 𝜖c

2

)‖u̇h‖2

L∞(0,T;L2
(Ω)) +

T
2𝜖a

||f||2L
2
(0,T;L

2
(Ω))

+ CTh−1

2𝜖b
‖‖gN

‖‖2

L
2
(0,T;L

2
(ΓN ))

+ T2(1−𝛼)

2(1 − 𝛼)𝜖c
||𝝍

0
||2L

2
(Ω),

(3.15)

for any positive constants 𝜖a, 𝜖b and 𝜖c. We refer to [25] for the bound

||uh(0)||2V ≤ C‖u0‖2

H2(Ω), (3.16)

and we derive from (3.11) by Korn’s inequality (3.5) and Poincaré’s inequality (2.2)

||u̇h(0)||2L
2
(Ω) ≤ C||u̇h(0)||2V ≤ C‖w0‖2

H2(Ω). (3.17)
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JANG and SHAW 11 of 33

On the other hand, (3.7) leads to

∑
e⊂Γh∪ΓD

∫e
({D𝜺(uh(𝜏))} ∶ [uh(𝜏)⊗ ne] − {D𝜺(uh(0))} ∶ [uh(0)⊗ ne])

≤ C√
𝛾0

(||uh(𝜏)||2V +||uh(0)||2V)

≤ C√
𝛾0

(‖uh‖2

L∞(0,T;V) +‖u0‖2

H2(Ω)
)
,

(3.18)

on account of L∞ norm in time and (3.16).

Collecting all bounds (3.15)–(3.18) in (3.14), we have

𝜌

2
||u̇h(𝜏)||2L

2
(Ω) +

𝜑0

2
||uh(𝜏)||2V ≤

(
𝜖a + 𝜖b + 𝜖c

2

)‖u̇h‖2

L∞(0,T;L2
(Ω)) +

C√
𝛾0

‖uh‖2

L∞(0,T;V)

+ C𝜌
2
‖w0‖2

H2(Ω) +
C√
𝛾0

‖u0‖H2(Ω) +
T

2𝜖a
||f||2L

2
(0,T;L

2
(Ω))

+ CTh−1

2𝜖b
‖‖gN

‖‖2

L
2
(0,T;L

2
(ΓN ))

+ T2(1−𝛼)

2(1 − 𝛼)𝜖c
||𝝍

0
||2L

2
(Ω).

(3.19)

Since 𝜏 is arbitrary, we can write (3.19) as

𝜌

2
‖u̇h‖2

L∞(0,T;L2
(Ω)) +

𝜑0

2
‖uh‖2

L∞(0,T;V) ≤ (𝜖a + 𝜖b + 𝜖c)‖u̇h‖2

L∞(0,T;L2
(Ω)) +

C√
𝛾0

‖uh‖2

L∞(0,T;V)

+ C𝜌‖w0‖2

H2(Ω) +
C√
𝛾0

‖u0‖H2(Ω) +
T
𝜖a
||f||2L

2
(0,T;L

2
(Ω))

+ CTh−1

𝜖b
‖‖gN

‖‖2

L
2
(0,T;L

2
(ΓN ))

+ T2(1−𝛼)

(1 − 𝛼)𝜖c
||𝝍

0
||2L

2
(Ω),

and setting 𝜖a = 𝜖b = 𝜖c = 𝜌∕12 yields

𝜌

4
‖u̇h‖2

L∞(0,T;L2
(Ω)) +

(
𝜑0

2
− C√

𝛾0

)
‖uh‖2

L∞(0,T;V) ≤ C𝜌‖w0‖2

H2(Ω) +
C√
𝛾0

‖u0‖H2(Ω)

+12T
𝜌

||f||2L
2
(0,T;L

2
(Ω)) +

CTh−1

𝜌

‖‖gN
‖‖2

L
2
(0,T;L

2
(ΓN ))

+ 12T2(1−𝛼)

(1 − 𝛼)𝜌
||𝝍

0
||2L

2
(Ω).

(3.20)

Requiring a sufficiently large 𝛾0 to give 𝜑0∕2 − C∕
√
𝛾0 > 0, we complete the proof. ▪

If we used Grönwall’s inequality to estimate for the time integration, the stability bound would

depend on time exponentially, for example, the Grönwall’s inequality leads to

∫
𝜏

0

F(u̇h(t))𝑑t ≤ C exp(T)‖u̇h‖L
2
(0,T;L

2
(Ω))

(
∫

𝜏

0

||f(t)||L
2
(Ω)

+h−1∕2||gN(t)||L2
(ΓN ) + t−𝛼||𝝍

0
||L

2
(Ω) 𝑑t

)
.

Whereas our stability estimates present non-exponential bounds in time.

Remark. Even though the h−1
term appears on the traction in the stability bound, it has no

significant effect since h is fixed for the finite element space. While the h−1
term appears

from the inverse polynomial trace inequality, the numerical results will only show the

weakly imposed Neumann boundary condition, for example, see [23, 25].
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12 of 33 JANG and SHAW

3.2 A fully discrete formulation

Employing the Crank–Nicolson type time discretization, we can formulate a fully discrete problem for

the non-hereditary terms. However, due to the weak singularity in the fractional order integral, it is

necessary to also use appropriate numerical techniques for the discrete fractional integral.

A time step size Δt = T∕N > 0 is defined for some N ∈ N and we set tn = nΔt for n = 0, … ,N.

We denote the fully discrete solution for the velocity and the displacement by Wn
h ∈ k(h) and

Un
h ∈ k(h), respectively, for n = 0, … ,N (i.e., we consider u̇(tn) ≈ Wn

h and u(tn) ≈ Un
h for each

time step). To complete the time discretization, a linear interpolation technique [11, 16] is introduced.

A local interpolation operator n is defined as follows:

n(w)(t) = −
t − tn
Δt

w(tn−1) +
t − tn−1

Δt
w(tn) for n = 1, … ,N.

This operator provides a piecewise linear interpolation of w.

Proposition 3.4. If w is of C2 in time, we can define

En(t) ∶= w(t) − n(w)(t) =
1

2
ẅ(𝜉t)(t − tn−1)(t − tn) for some 𝜉t ∈ [tn−1, tn],

where t ∈ [tn−1, tn], by Rolle’s theorem. For any t ∈ [tn−1, tn], if w(t) ∈ X for a normed
space X, it holds that

||En(t)||X ≤ Δt2

2
||ẅ||L∞(tn−1

,tn;X).

This inequality also holds on the broken Sobolev norm sense.

Now, we can derive the numerical approximation qn(w) to the fractional order integration satisfying

that

0I1−𝛼
t w(tn) =

1

Γ(1 − 𝛼)

n∑
i=1
∫

ti

ti−1

(i(w)(t′) + Ei(t′)
)
(tn − t′)−𝛼𝑑t′,

= Δt1−𝛼

Γ(3 − 𝛼)

n∑
i=0

Bn,iw(ti) +
1

Γ(1 − 𝛼)

n∑
i=1
∫

ti

ti−1

Ei(t′)(tn − t′)−𝛼𝑑t′ ∶= qn(w) + en(w),
(3.21)

where

Bn,i =
⎧⎪⎨⎪⎩

n1−𝛼(2 − 𝛼 − n) + (n − 1)2−𝛼, i = 0,

(n − i − 1)2−𝛼 + (n − i + 1)2−𝛼 − 2(n − i)2−𝛼, i = 1, … , n − 1,

1, i = n.

Note that 0 < Bn,i < 2 for any n > 0 and i = 0, … , n. By Proposition 3.4, if w ∈ C2(0,T;X), the

numerical approximation error by the linear interpolation is given by, for any n = 1, … ,N,

||en(w)||X = ||0I1−𝛼
t w(tn) − qn(w)||X ≤ Δt2

2Γ(1 − 𝛼)
||ẅ||L∞(0,tn;X)∫

tn

0

(tn − t′)−𝛼𝑑t′,

≤ Δt2

2Γ(1 − 𝛼)
||ẅ||L∞(0,T;X)T1−𝛼

.

(3.22)

For more details of the linear interpolation technique for fractional integral, we refer to [10, 11, 16]

and the references therein. In the fully discrete sense, we define Qn(Wh) by

Qn(Wh) =
Δt1−𝛼

Γ(3 − 𝛼)

n∑
i=0

Bn,iWi
h.
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JANG and SHAW 13 of 33

For simplicity, we assume 𝝍
0
= 0 which implies that the linear form F(t; ⋅) is well-defined at t = 0.

Finally, we can formulate a fully discrete problem by using the Crank–Nicolson type scheme and the

approximate fractional integral as follows: find Wn
h ∈ k(h) and Un

h ∈ k(h) for n = 0, … ,N such

that for any v ∈ k(h),(
𝜌

Wn+1

h −Wn
h

Δt
, v
)
+ 𝜑0a

(
Un+1

h + Un
h

2
, v
)
+ 𝜑𝛼a

(
Qn+1

(Wh) + Qn(Wh)
2

, v
)

+ J𝛾0
,𝛾

1

0

(
Wn+1

h −Wn
h

Δt
, v
)
= F(tn+1; v) + F(tn; v)

2
,

(3.23)

for n = 0, … ,N − 1, and

a
(
U0

h, v
)
= a(u0, v), (3.24)

a
(
W0

h, v
)
= a(w0, v), (3.25)

with

Wn+1

h +Wn
h

2
= Un+1

h − Un
h

Δt
. (3.26)

The jump penalty term for the discrete acceleration (the fourth term in (3.23)) is not necessary for

stability analysis. But we will require it for energy error estimation for the velocity later.

Remark. In the previous work [10, 13, 25], the SIPG formulations for linear viscoelas-

ticity problems introduced jump penalty terms for discrete velocity to handle the spatial

discontinuity of the discrete velocity. On the other hand, our method introduces the jump

penalty term of acceleration in (3.23), providing the capability to regulate the discontinu-

ity of discrete acceleration. For instance, as detailed in [13], an additional jump penalty

term is defined as

J𝛾0
,𝛾

1

0

(
Wn+1

h +Wn
h

2
, v
)
,

involving the time-averaged velocity. While this approach allows us to have the bounded-

ness of J𝛾0
,𝛾

1

0

(
Wn

h,Wn
h
)
, it may not ensure the management of acceleration’s discontinuity.

Conversely, our scheme,

J𝛾0
,𝛾

1

0

(
Wn+1

h −Wn
h

Δt
, v
)
,

can reduce the discontinuity of acceleration by adjusting penalty parameters, immediately.

4 STABILITY AND CONVERGENCE ANALYSES

In this section, we present a stability bound as well as an error bound for the fully discrete problem.

In the fully discrete problem, the stability bound implies the existence and uniqueness of the solution.

To estimate a priori error, we introduce the usual approach using the elliptic projection.

4.1 A stability bound

In the semi-discrete problem, we showed the stability analysis without using Grönwall’s inequality to

yield non-exponentially increasing bounds in time. Using the positive definiteness (2.4), we could deal

with the fractional integration term but in the following case of the fully discrete scheme, we need to
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14 of 33 JANG and SHAW

use a different proof technique based on mathematical induction. For the stability analysis of the fully

discrete problem, we also suppose the same smooth data terms.

Theorem 4.1. If 𝛾1(𝑑 − 1) ≥ 1 and 𝛾0 is sufficiently large, there exists a unique discrete
solution to (3.23)–(3.25) that satisfies

max
0≤n≤N

||Wn
h||2L

2
(Ω) + max

0≤n≤N
||Un

h||2V + Δt2−𝛼
N−1∑
n=0

||Wn+1

h +Wn
h||2V + max

0≤n≤N
J𝛾0

,𝛾
1

0

(
Wn

h,Wn
h
)

≤ C

(
‖w0‖2

H2(Ω) + ‖u0‖2

H2(Ω) + Δt2−𝛼‖w0‖2

H2(Ω)

+ T

(
Δt

N∑
n=0

||f(tn)||2L
2
(Ω) + Δt

N∑
n=0

h−1||gN(tn)||2L
2
(ΓN )

))
,

where C is independent of the solution, Δt and h.

Proof. Let m be an arbitrary positive integer such that m < N. Taking v = 2Δt(Wn+1

h +Wn
h)

for 0 ≤ n ≤ m − 1 in (3.23) and summing all results over n = 0 to n = m − 1, we get

2𝜌
(||Wm

h ||2L
2
(Ω) − ||W0

h||2L
2
(Ω)
)
+ 𝜑0Δt

m−1∑
n=0

a
(
Un+1

h + Un
h,Wn+1

h +Wn
h
)

+ 𝜑𝛼Δt
m−1∑
n=0

a
(
Qn+1

(Wh) + Qn(Wh),Wn+1

h +Wn
h
)
+ 2

(
J𝛾0

,𝛾
1

0

(
Wm

h ,Wm
h
)
− J𝛾0

,𝛾
1

0

(
W0

h,W0

h
))

= Δt
m−1∑
n=0

(
f(tn+1) + f(tn),Wn+1

h +Wn
h
)
+ Δt

m−1∑
n=0

(
gN(tn+1) + gN(tn),Wn+1

h +Wn
h
)

L
2
(ΓN )

.

(4.1)

Using the relation (3.26), for example, Δt(Wn+1

h + Wn
h) = 2(Un+1

h − Un
h), we can rewrite

(4.1) as

2𝜌||Wm
h ||2L

2
(Ω) + 2𝜑0a

(
Um

h ,Um
h
)
+ 𝜑𝛼Δt

m−1∑
n=0

a
(
Qn+1

(Wh) + Qn(Wh),Wn+1

h +Wn
h
)

+ 2J𝛾0
,𝛾

1

0

(
Wm

h ,Wm
h
)

= Δt
m−1∑
n=0

(
f(tn+1) + f(tn),Wn+1

h +Wn
h
)
+ Δt

m−1∑
n=0

(
gN(tn+1) + gN(tn),Wn+1

h +Wn
h
)

L
2
(ΓN )

+ 2𝜌||W0

h||2L
2
(Ω) + 2𝜑0a

(
U0

h,U0

h
)
+ 2J𝛾0

,𝛾
1

0

(
W0

h,W0

h
)
.

(4.2)

By the definition of the numerical approximation of the fractional integration, we can

expand the third term of (4.2) as

𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

a

(n+1∑
i=0

Bn+1,iWi
h +

n∑
i=0

Bn,iWi
h,Wn+1

h +Wn
h

)
,

and we can split it by

𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

a
(
Wn+1

h +Wn
h,Wn+1

h +Wn
h
)
+ 𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

a

( n∑
i=0

Bn+1,iWi
h +

n−1∑
i=0

Bn,iWi
h,Wn+1

h +Wn
h

)
,
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JANG and SHAW 15 of 33

since Bn,n = 1 for ∀n. By introducing this expression into (4.2), we can obtain

2𝜌||Wm
h ||2L

2
(Ω) + 2𝜅𝜑0||Um

h ||2V + 𝜅𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

||Wn+1

h +Wn
h||2V + 2J𝛾0

,𝛾
1

0

(
Wm

h ,Wm
h
)

≤ Δt
m−1∑
n=0

(
f(tn+1) + f(tn),Wn+1

h +Wn
h
)
+ Δt

m−1∑
n=0

(
gN(tn+1) + gN(tn),Wn+1

h +Wn
h
)

L
2
(ΓN )

+ 2𝜌||W0

h||2L
2
(Ω) + 2𝜑0a

(
U0

h,U0

h
)
+ 2J𝛾0

,𝛾
1

0

(
W0

h,W0

h
)
− 𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

a

( n∑
i=0

Bn+1,iWi
h +

n−1∑
i=0

Bn,iWi
h,Wn+1

h +Wn
h

)
,

(4.3)

by the coercivity of the bilinear form.

Now, we shall present the upper bounds of the first four terms in the right-hand side

of (4.3) by following the proof of Theorem 3.1, for example, Cauchy–Schwarz inequality,

Young’s inequality, inverse polynomial trace inequality and so forth.

• Δt
∑m−1

n=0

(
f(tn+1) + f(tn),Wn+1

h +Wn
h
)

By the Cauchy–Schwarz inequality and the Young’s inequality, we have

Δt
m−1∑
n=0

(
f(tn+1) + f(tn),Wn+1

h +Wn
h
) ≤ Δt

m∑
n=0

(
2𝜖a||f(tn)||2L

2
(Ω) +

2

𝜖a
||Wn

h||2L
2
(Ω)

)

≤ Δt
N∑

n=0

2𝜖a||f(tn)||2L
2
(Ω) +

4T
𝜖a

max
0≤n≤N

||Wn
h||2L

2
(Ω)

for any positive 𝜖a.

• Δt
∑m−1

n=0

(
gN(tn+1) + gN(tn),Wn+1

h +Wn
h
)

L
2
(ΓN )

Similarly, we can also derive, with the inverse polynomial trace theorem,

Δt
m−1∑
n=0

(
gN(tn+1) + gN(tn),Wn+1

h +Wn
h
)

L
2
(ΓN )

≤ Δt
m∑

n=0

2𝜖b||gN(tn)||2L
2
(ΓN ) + Δt

m∑
n=0

2

𝜖b

∑
e⊂ΓN

||Wn
h||2L

2
(e)

≤ Δt
m∑

n=0

2𝜖b||gN(tn)||2L
2
(ΓN ) + Δt

m∑
n=0

2Ch−1

𝜖b

∑
E∈h

||Wn
h||2L

2
(E)

≤ Δt
N∑

n=0

2𝜖b||gN(tn)||2L
2
(ΓN ) +

Ch−1
4T

𝜖b
max

0≤n≤N
||Wn

h||2L
2
(Ω),

for any positive 𝜖b.

• ||W0

h||2L
2
(Ω), a

(
U0

h,U0

h
)

and J𝛾0
,𝛾

1

0

(
W0

h,W0

h
)

As seen in (3.16) and (3.17), (3.24) and (3.25) imply that

a
(
U0

h,U0

h
) ≤ K||U0

h||2V ≤ C‖u0‖2

H2(Ω), and ||W0

h||2L
2
(Ω) ≤ C||W0

h||2V ≤ C‖w0‖2

H2(Ω),
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16 of 33 JANG and SHAW

by the continuity, respectively. Also, the definition of DG energy norm gives

J𝛾0
,𝛾

1

0

(
W0

h,W0

h
) ≤ ||W0

h||2V ≤ C‖w0‖2

H2(Ω).

Tidying up all results with (4.3), we then have

2𝜌||Wm
h ||2L

2
(Ω) + 2𝜅𝜑0||Um

h ||2V + 𝜅𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

||Wn+1

h +Wn
h||2V + 2J𝛾0

,𝛾
1

0

(
Wm

h ,Wm
h
)

≤ 2C𝜌‖w0‖2

H2(Ω) + C𝜑0‖u0‖2

H2(Ω) +
(

4T
𝜖a
+ Ch−1

4T
𝜖b

)
max

0≤n≤N
||Wn

h||2L
2
(Ω)

+ Δt
N∑

n=0

2𝜖a||f(tn)||2L
2
(Ω) + Δt

N∑
n=0

2𝜖b||gN(tn)||2L
2
(ΓN )

− 𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

a

( n∑
i=0

Bn+1,iWi
h +

n−1∑
i=0

Bn,iWi
h,Wn+1

h +Wn
h

)

∶=  − 𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

a

( n∑
i=0

Bn+1,iWi
h +

n−1∑
i=0

Bn,iWi
h,Wn+1

h +Wn
h

)
.

(4.4)

Note that in (4.4), is positive and independent of m. Using mathematical induction, we

want to show the following inequality holds such that

2𝜌||Wm
h ||2L

2
(Ω) + 2𝜅𝜑0||Um

h ||2V + 𝜅𝜑
𝛼
Δt2−𝛼

2Γ(3−𝛼)

m−1∑
n=0

||Wn+1

h +Wn
h||2V

+2J𝛾0
,𝛾

1

0

(
Wm

h ,Wm
h
) ≤ C( + Δt2−𝛼||W0

h||2V ).
(4.5)

For m = 1 in (4.4), using the continuity of the bilinear form and Young’s inequality,

we have

2𝜌||W1

h||2L
2
(Ω) + 2𝜅𝜑0||U1

h||2V + 𝜅𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)
(||W1

h +W0

h||2V) + 2J𝛾0
,𝛾

1

0

(
W1

h,W1

h
)

≤  + 𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

(K2B2

1,0
𝜖

2
||W0

h||2V + 1

2𝜖
||W1

h +W0

h||2V
)
,

for any positive 𝜖, since

|||a
(
B1,0W0

h,W1

h +W0

h
)||| ≤

K2B2

1,0
𝜖

2
||W0

h||2V + 1

2𝜖
||W1

h +W0

h||2V .

Taking 𝜖 = 1∕𝜅, we can observe that (4.5) holds when m = 1. Let us assume that (4.5)

holds for j < m. Consider (4.4) for j + 1, particularly the last term. Denoting 0 < G ∶=
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JANG and SHAW 17 of 33

max
0≤i≤n≤N

Bn,i < 2, we have

j∑
n=0

||||||
a

( n∑
i=0

Bn+1,iWi
h +

n−1∑
i=0

Bn,iWi
h,Wn+1

h +Wn
h

)||||||
≤

j∑
n=0

n−1∑
i=1

|||a
(
Bn,iWi+1

h +Wi
h,Wn+1

h +Wn
h
)||| +

j∑
n=0

(Bn,0 + Bn+1,0 + Bn+1,1)
|||a
(
W0

h,Wn+1

h +Wn
h
)|||

+
j∑

n=0

Bn+1,1

|||a
(
W1

h +W0

h,Wn+1

h +Wn
h
)|||

≤
j∑

n=0

n−1∑
i=1

(
K2G2

𝜖

2
||Wi+1

h +Wi
h||2V + 1

2𝜖
||Wn+1

h +Wn
h||2V

)

+
j∑

n=0

(
K2(3G)2𝜖

2
||W0

h||2V + 1

2𝜖
||Wn+1

h +Wn
h||2V

)

+
j∑

n=0

(
K2G2

𝜖

2
||W1

h +W0

h||2V + 1

2𝜖
||Wn+1

h +Wn
h||2V

)
,

for any positive 𝜖, 𝜖 and 𝜖. Then the induction assumption (4.5) for j implies the

boundedness of

j−1∑
n=0

||Wn+1

h +Wn
h||2V and

j∑
n=0

n−1∑
i=1

||Wi+1

h +Wi
h||2V .

Therefore, choosing proper Young’s constants such as 𝜖 = 𝜖 = 𝜖 = 1∕(3𝜅) leads us to

prove (4.5) for j + 1. Consequently, (4.5) holds for arbitrary m.

After noting that ||W0

h||2V ≤ C‖w0‖2

H2(Ω), combining it with the maximum argument

such that

an + bn ≤ C, ∀n, ⇒ max
n

an +max
n

bn ≤ 2C,

(4.5) yields

2𝜌max
0≤n≤N

||Wn
h||2L

2
(Ω) + 2𝜅𝜑0 max

0≤n≤N
||Un

h||2V + 𝜅𝜑𝛼Δt2−𝛼

2Γ(3 − 𝛼)

N−1∑
n=0

||Wn+1

h +Wn
h||2V

+ 2 max
0≤n≤N

J𝛾0
,𝛾

1

0

(
Wn

h,Wn
h
)

≤ 4C
(

2𝜌‖w0‖2

H2(Ω) + C𝜑0‖u0‖2

H2(Ω) +
(

4T
𝜖a
+ Ch−1

4T
𝜖b

)
max

0≤n≤N
||Wn

h||2L
2
(Ω)

+ Δt
N∑

n=0

2𝜖a||f(tn)||2L
2
(Ω) + Δt

N∑
n=0

2𝜖b||gN(tn)||2L
2
(ΓN ) + CΔt2−𝛼‖w0‖2

H2(Ω)

)
.

In the end, we can complete our proof by taking appropriate Young’s constants, for

example, 𝜖a = 32CT∕𝜌 and 𝜖b = 32CT∕(𝜌h). ▪

In the fully discrete case, the stability bound in Theorem 4.1 implies the existence and uniqueness

of the fully discrete problem. The proof uses the maximum argument instead of discrete Grönwall’s

inequality to estimate the discrete integration in time. As a consequence, the stability bound is not
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18 of 33 JANG and SHAW

exponentially increasing in time. While we have applied the positive definiteness of a fractional inte-

gration to the stability analysis of the semi-discrete problem, by employing mathematical induction,

we have proved the stability bound of the fully discrete solution and the (discrete) fractional order

integration of the velocity. Indeed, in a similar way to the positive definiteness on the fractional order

integral, there exist positivity properties of the quadrature Qn. For instance, it holds that

Δt
n∑

i=0

Qn(𝚽)Φn ≥ 0, ∀𝚽 = (Φ0, … ,Φn)T . (4.6)

However, to use the positivity (4.6) in the stability analysis, it is essential to assume the homogeneous

Dirichlet boundary condition, since a spectral decomposition is additionally required in the proof.

Furthermore, using (4.6) will not provide energy norm bounds of velocity as in Theorem 3.1. For more

details, we refer to [19, 21].

4.2 Error estimates

Following the usual path for error estimation [13], we want to split spatial and temporal error

components by introducing the DG elliptic projection. We define

𝜽(t) ∶= u(t) − Ru(t), 𝝌n ∶= Un
h − Ru(tn), 𝝕n ∶= Wn

h − Ru̇(tn), 1(t)

∶= ü(t + Δt) + ü(t)
2

− u̇(t + Δt) − u̇(t)
Δt

,

for t ∈ [0,T] and n = 0, … ,N. Then (3.26) gives

𝝌
n+1 − 𝝌n

Δt
= 𝝕

n+1 +𝝕n

2
+ 2(tn) + 3(tn), (4.7)

for n = 0, … ,N − 1 where

2(t) ∶=
𝜽(t + Δt) − 𝜽(t)

Δt
− �̇�(t + Δt) + �̇�(t)

2
and 3(t) ∶=

u̇(t + Δt) + u̇(t)
2

− u(t + Δt) − u(t)
Δt

.

For a three-times time-differentiable function, v(t), when we denote its third time derivative by v(3),
we have

v̇(tn+1) + v̇(tn)
2

− v(tn+1) − v(tn)
Δt

= 1

2Δt∫
tn+1

tn
v(3)(t)(tn+1 − t)(t − tn)𝑑t. (4.8)

Hence, if v(3) ∈ L2(tn, tn+1;X), the Cauchy–Schwarz inequality gives

‖‖‖‖
v̇(tn+1) + v̇(tn)

2
− v(tn+1) − v(tn)

Δt
‖‖‖‖

2

X
≤ Δt3

4
||v(3)||2L

2
(tn,tn+1

;X). (4.9)

Before evaluating error estimates, we shall consider the regularity of the solution to ensure optimal

errors in time. As seen in (4.9), the Crank–Nicolson method requires H3
smoothness in time. Due to

the weak singularity in fractional order integrals, it is not trivial to have second order accuracy in time.

To describe the regularity of solutions, we first introduce a convolution form in fractional integrals

and a spatial differential operator. For instance, when we define 𝛽1−𝛼(t) = t−𝛼∕Γ(1−𝛼) and = ∇⋅D𝜺,

and we denote a Laplace convolution by ∗, in the strong form (3.2), we can rewrite it as

𝜌ü(t) = 𝜑0u(t) + 𝜑𝛼𝛽1−𝛼 ∗ u̇(t) + f(t), (4.10)
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JANG and SHAW 19 of 33

with the assumption 𝝍
0
= 0 for simplicity. In fact, to obtain 𝝍

0
= 0, we need to suppose u0 ∈ ker().

When we consider Lq norm in time, Young’s inequality for convolution yields

||𝜌ü||Lq(0,T) ≤ 𝜑0||u||Lq(0,T) + 𝜑𝛼||𝛽1−𝛼||L
1
(0,T)||u̇||Lq(0,T) + ||f||Lq(0,T), (4.11)

for q ≥ 1. In (4.11), ü is L2 integrable in time if u, u̇ and f are L2 integrable in time. By

differentiation of (4.10) in time, we have

𝜌u(3)(t) = 𝜑0u̇(t) + 𝜑𝛼𝛽1−𝛼(t)w0 + 𝜑𝛼𝛽1−𝛼 ∗ ü(t) + ḟ(t). (4.12)

Since 𝛽1−𝛼 is L1 integrable, so is u(3) with L1 integrable u̇, ü and ḟ in time. However, 𝛽1−𝛼 is only

L2 integrable for 𝛼 < 1∕2. Hence, if 𝛼 < 1∕2 or w0 ∈ ker(), u(3) is L2 integrable in time where

u̇, ü, ḟ ∈ L2(0,T). Repeating this process, we can consider the fourth time derivative of u such

that

𝜌u(4)(t) = 𝜑0ü(t) + 𝜑𝛼�̇�1−𝛼(t)w0 + 𝜑𝛼𝛽1−𝛼(t)ü(0) + 𝜑𝛼𝛽1−𝛼 ∗ u(3)(t) + f̈(t). (4.13)

Note that �̇�1−𝛼 ∉ Lq(0,T) for q ≥ 1, for any 0 < 𝛼 < 1. Hence, for the Lq integrability of u(4), it is

required to assume that w0 ∈ ker() and ü(0) ∈ ker().
Remark. For n ≥ 1, since we have u(3) ∈ L2(tn, tn+1;X) and u(4) ∈ L2(tn, tn+1;X) with

sufficiently smooth initial data and source terms, substitutions of (4.12) and (4.13) into

(4.8) lead to (4.9) for u and u̇, respectively. However, when n = 0, the singularity appears.

Thus, in order to take full boundedness in time, we need further attention to manage the

bound for n = 0.

Lemma 4.1. Suppose f ∈ H3(0,T;L2(Ω)) ∩ H2(0,T;H2(Ω)), u0 ∈ ker() and w0 ∈
H2(Ω). Furthermore, we assume that u ∈ H3(0,T;H2(Ω)) and u ∈ H3(0,T;H2(Ω)). If
w0 ∈ ker(), there exists a positive constant C independent of Δt such that

‖‖‖‖
ü(Δt) + ü(0)

2
− u̇(Δt) − u̇(0)

Δt
‖‖‖‖ ≤ CΔt2−𝛼

. (4.14)

Moreover, if w0 ∈ ker() and ü(0) ∈ ker(), we can also obtain

‖‖‖‖
ü(Δt) + ü(0)

2
− u̇(Δt) − u̇(0)

Δt
‖‖‖‖ ≤ CΔt2

. (4.15)

Proof. Consider (4.13) and split it into two parts by L2 integrable part l(t) and others. Then

we have

𝜌u(4)(t) = l(t) + 𝜑𝛼�̇�1−𝛼(t)w0 + 𝜑𝛼𝛽1−𝛼(t)ü(0). (4.16)

If w0 ∈ ker(), (4.16) implies u(4) is L1 integrable in time. Let p2(t) = (Δt − t)t for

t ∈ [0,Δt]. By substitution (4.16) into (4.8), when w0 ∈ ker(), we derive the following

equation

ü(Δt) + ü(0)
2

− u̇(Δt) − u̇(0)
Δt

= 1

2𝜌Δt∫
Δt

0

l(t)p2(t)𝑑t + 𝜑𝛼

2𝜌Δt∫
Δt

0

𝛽1−𝛼(t)ü(0)p2(t)𝑑t.

(4.17)

Using integration by parts, we get

∫
t

0

l(t)p2(t)𝑑t = l(t)p3(t) − ∫
t

0

l̇(t′)p3(t′)𝑑t′,
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20 of 33 JANG and SHAW

where p3(t) = Δt∕2t2 − t3∕3, and so there exists a positive C such that

‖‖‖‖‖∫
Δt

0

l(t)p2(t)𝑑t
‖‖‖‖‖ ≤ CΔt3

(||l(Δt)||L
2
(Ω) + ||l̇||L

1
(0,Δt;L

2
(Ω))

)
.

On the other hand, sinceü(0) is time independent, we have

1

Δt∫
Δt

0

𝛽1−𝛼(t)ü(0)p2(t)𝑑t = (1 − 𝛼)Δt2−𝛼

Γ(4 − 𝛼)
ü(0).

Therefore, we can obtain from (4.17)

‖‖‖‖
ü(Δt) + ü(0)

2
− u̇(Δt) − u̇(0)

Δt
‖‖‖‖ ≤ C

(
Δt2 + Δt2−𝛼) ≤ CΔt2−𝛼

, (4.18)

where C depends on u and f but is independent of Δt.
In addition, if w0 ∈ ker() and ü(0) ∈ ker(), it immediately implies that the error

has second order accuracy. ▪

We refer to [19] for the regularity of solutions of fractional order integro-differential equations,

using a spectral decomposition for a representation with Fourier coefficients.

Remark. In our model problem, the weak singularity only occurs at t = 0. If the solution

has sufficient regularity in time for the second order time discretization schemes, addi-

tional regularity properties in space will not be required. Otherwise, the solution needs

higher regularity in space such that u(3)(t) ∈ H4(Ω) near t = 0 where the regularity con-

ditions rely on initial conditions and f. For more details of regularity results with respect

to time and space, and their assumptions, for example, see [19].

Using the DG elliptic error estimates as in Proposition 3.1 and Crank–Nicolson type temporal

errors (4.9) with Lemma 4.1, we can derive the following lemma.

Lemma 4.2. Let 𝛾0 > 0 be large enough and 𝛾1(𝑑 − 1) ≥ 1. Suppose

u ∈ C2
(
0,T;C2(Ω) ∩Hs(h)

)
∩W3

∞(0,T;Hs(h)),

and the data terms are sufficiently smooth to fulfil Lemma 4.1. For the fully discrete
solutions to (3.23)–(3.25),

(
Wn

h
)N

n=0
and

(
Un

h
)N

n=0
, there exists a positive constant C such

that

max
0≤n≤N

||𝝕n||L
2
(Ω) + max

0≤n≤N
||𝝌n||V +

(
Δt2−𝛼

N−1∑
n=0

||𝝕n+1 +𝝕n||2V
)1∕2

+max
0≤n≤N

(
J𝛾0

,𝛾
1

0
(𝝕n

,𝝕
n)
)1∕2 ≤ CT

2−𝛼 (hr + Δt2−𝛼)
,

where r = min(k + 1, s). Here, C is independent of h, Δt and the numerical solutions. In
addition to the condition of smooth data, if ü(0) ∈ ker(), we have

max
0≤n≤N

||𝝕n||L
2
(Ω) + max

0≤n≤N
||𝝌n||V +

(
Δt2−𝛼

N−1∑
n=0

||𝝕n+1 +𝝕n||2V
)1∕2

+max
0≤n≤N

(
J𝛾0

,𝛾
1

0
(𝝕n

,𝝕
n)
)1∕2 ≤ CT

2−𝛼 (hr + Δt2
)
.
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JANG and SHAW 21 of 33

Proof. Let m be an arbitrary positive integer in [1,N]. For any 0 ≤ n ≤ m− 1, average of

(3.9) over tn and tn+1 and subtraction of it from (3.23) give

𝜌

(
Wn+1

h −Wn
h

Δt
− ü(tn+1) + ü(tn)

2
, v
)
+ 𝜑0a

(
Un+1

h + Un
h

2
− u(tn+1) + u(tn)

2
, v
)

+ 𝜑𝛼a

(
Qn+1

(Wh) + Qn(Wh)
2

− 0I1−𝛼
tn+1

u̇ +0 I1−𝛼
tn u̇

2
, v

)

+ J𝛾0
,𝛾

1

0

(
Wn+1

h −Wn
h

Δt
− ü(tn+1) + ü(tn)

2
, v
)
= 0,

(4.19)

and (4.19) can be rewritten, by recalling the definitions of elliptic projection errors and

(3.21), as

𝜌

Δt
(
𝝕

n+1 −𝝕n
, v
)
+ 𝜑0

2
a
(
𝝌

n+1 + 𝝌n
, v
)
+ 𝜑𝛼

2
a
(
Qn+1

(𝝕) + Qn(𝝕), v
)

+ 1

Δt
J𝛾0

,𝛾
1

0

(
𝝕

n+1 −𝝕n
, v
)

= 𝜌

Δt
(
�̇�(tn+1) − �̇�(tn), v

)
+ 𝜑0

2
a(𝜽(tn+1) + 𝜽(tn), v) +

𝜑𝛼

2
a
(
qn+1

(�̇�) + qn(�̇�), v
)

+ 𝜑𝛼

2
a(en+1(u̇) + en(u̇), v) + 𝜌(1(tn), v) +

1

Δt
J𝛾0

,𝛾
1

0

(
�̇�(tn+1) − �̇�(tn), v

)
+ J𝛾0

,𝛾
1

0
(1(tn), v).

(4.20)

The Galerkin orthogonality, the linearity of the bilinear form and the spatial continuity

reduce (4.20) to

𝜌

Δt
(
𝝕

n+1 −𝝕n
, v
)
+ 𝜑0

2
a
(
𝝌

n+1 + 𝝌n
, v
)
+ 𝜑𝛼

2
a
(
Qn+1

(𝝕) + Qn(𝝕), v
)

+ 1

Δt
J𝛾0

,𝛾
1

0

(
𝝕

n+1 −𝝕n
, v
)

= 𝜌

Δt
(
�̇�(tn+1) − �̇�(tn), v

)
+ 𝜑𝛼

2
a(en+1(u̇) + en(u̇), v) + 𝜌(1(tn), v).

(4.21)

Since u̇(t) ∈ C2(Ω), en(u̇) is of C2
in the spatial domain too. Hence, the continuity implies

that

a(en+1(u̇) + en(u̇), v) = ((en+1(u̇) + en(u̇)), v). (4.22)

To complete the proof, we will follow the same arguments in the stability analysis

with the spatial error estimates as well as the time discretization errors. By substitution of

v = 2Δt(𝝕n+1 +𝝕n) into (4.21) with (4.7) and (4.22), summing together from n = 0 to

n = m − 1 yields

2𝜌||𝝕m||2L
2
(Ω) + 2𝜑0a(𝝌m

,𝝌
m) + 𝜑𝛼Δt

m−1∑
n=0

a
(
Qn+1

(𝝕) + Qn(𝝕),𝝕n+1 +𝝕n) + 2J𝛾0
,𝛾

1

0
(𝝕m

,𝝕
m)

=2𝜌||𝝕0||2L
2
(Ω) + 2𝜑0a

(
𝝌

0
,𝝌

0
)
+ 2J𝛾0

,𝛾
1

0

(
𝝕

0
,𝝕

0
)
+ 2𝜌

m−1∑
n=0

(
�̇�(tn+1) − �̇�(tn),𝝕n+1 +𝝕n)

+ 𝜑𝛼Δt
m−1∑
n=0

((en+1(u̇) + en(u̇)),𝝕n+1 +𝝕n) + 2𝜌Δt
m−1∑
n=0

(
1(tn),𝝕n+1 +𝝕n)

+ 2𝜑0Δt
m−1∑
n=0

a
(
𝝌

n+1 + 𝝌n
,2(tn)

)
+ 2𝜑0Δt

m−1∑
n=0

a
(
𝝌

n+1 + 𝝌n
,3(tn)

)
.

(4.23)
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22 of 33 JANG and SHAW

Expanding the discrete fractional integration Q, and using the coercivity in (4.23), we can

derive

2𝜌||𝝕m||2L
2
(Ω) + 2𝜅𝜑0||𝝌m||2V + 𝜅𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

||𝝕n+1 +𝝕n||2V + 2J𝛾0
,𝛾

1

0
(𝝕m

,𝝕
m)

≤ 2𝜌||𝝕0||2L
2
(Ω) + 2𝜑0a

(
𝝌

0
,𝝌

0
)
+ 2J𝛾0

,𝛾
1

0

(
𝝕

0
,𝝕

0
)
+ 2𝜌

m−1∑
n=0

(
�̇�(tn+1) − �̇�(tn),𝝕n+1 +𝝕n)

+ 𝜑𝛼Δt
m−1∑
n=0

((en+1(u̇) + en(u̇)),𝝕n+1 +𝝕n) + 2𝜌Δt
m−1∑
n=0

(
1(tn),𝝕n+1 +𝝕n)

+ 2𝜑0Δt
m−1∑
n=0

a
(
𝝌

n+1 + 𝝌n
,2(tn)

)

+ 2𝜑0Δt
m−1∑
n=0

a
(
𝝌

n+1 + 𝝌n
,3(tn)

)
− Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

a

( n∑
i=0

Bn+1,i𝝕
i +

n−1∑
i=0

Bn,i𝝕
i
,𝝕

n+1 +𝝕n

)
.

(4.24)

Next, we shall show the bounds of the right-hand side of (4.24) except for the last term.

• ||𝝕0||2L
2
(Ω), a

(
𝝌

0
,𝝌

0
)

and J𝛾0
,𝛾

1

0

(
𝝕

0
,𝝕

0
)

For any v ∈ k(h), we have

a
(
𝝕

0
, v
)
= a

(
W0

h − w0, v
)
+ a(w0 − Rw0, v) = 0

by (3.25) and the Galerkin orthogonality. Then Poincaré’s inequality (2.2) leads us to

obtain

||𝝕0||2L
2
(Ω) ≤ C||𝝕0||2V = 0 and so J𝛾0

,𝛾
1

0

(
𝝕

0
,𝝕

0
) ≤ ||𝝕0||2V = 0.

In this manner, the Galerkin orthogonality and (3.24) gives

a
(
𝝌

0
,𝝌

0
)
= 0.

•
∑m−1

n=0

(
�̇�(tn+1) − �̇�(tn),𝝕n+1 +𝝕n)

The use of Cauchy–Schwarz inequalities, Young’s inequality and elliptic error

estimates yields

m−1∑
n=0

(
�̇�(tn+1) − �̇�(tn),𝝕n+1 +𝝕n) =

m−1∑
n=0
∫

tn+1

tn

(
�̈�(t′),𝝕n+1 +𝝕n)

𝑑t′

≤ 𝜖a
2 ∫

tm

0

||�̈�(t′)||2L
2
(Ω)𝑑t′ + Δt

2𝜖a

m−1∑
n=0

||𝝕n+1 +𝝕n||2L
2
(Ω)

≤ 𝜖a
2
||�̈�||2L

2
(0,T;L

2
(Ω)) +

Δt
2𝜖a

4N max
0≤n≤N

||𝝕n||2L
2
(Ω)

≤ C||ü||2L
2
(0,T;Hs(h))

𝜖a
2

h2r + 2T
𝜖a

max
0≤n≤N

||𝝕n||2L
2
(Ω),

for any positive 𝜖a and r = min(k + 1, s).
• Δt

∑m−1

n=0

((en+1(u̇) + en(u̇)),𝝕n+1 +𝝕n)
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JANG and SHAW 23 of 33

In a similar way, we have

Δt
m−1∑
n=0

((en+1(u̇) + en(u̇)),𝝕n+1 +𝝕n)

≤ Δt
N−1∑
n=0

𝜖b
2
||(en+1(u̇) + en(u̇))||2L

2
(Ω) +

2T
𝜖b

max
0≤n≤N

||𝝕n||2L
2
(Ω),

for any positive 𝜖b. After noting that

||(en+1(u̇) + en(u̇))||2L
2
(Ω) ≤ C‖en+1(u̇) + en(u̇)‖2

H2(Ω),

(3.22) allows us to derive

Δt
m−1∑
n=0

((en+1(u̇) + en(u̇)),𝝕n+1 +𝝕n)

≤ C||u||2W3

∞(0,T;H2(Ω))T
3−2𝛼

𝜖bΔt4 + 2T
𝜖b

max
0≤n≤N

||𝝕n||2L
2
(Ω).

• Δt
∑m−1

n=0

(
1(tn),𝝕n+1 +𝝕n)

Recalling Lemma 4.1 and the time discretization error (4.9) gives

Δt
m−1∑
n=0

(
1(tn),𝝕n+1 +𝝕n) ≤ 𝜖c

8
Δt4||u(4)||2L

2
(t

1
,T;L

2
(Ω)) + CT𝜖cΔt4−2𝛼

+2T
𝜖c

max
0≤n≤N

||𝝕n||2L
2
(Ω) ≤ CT𝜖cΔt4−2𝛼 + 2T

𝜖c
max

0≤n≤N
||𝝕n||2L

2
(Ω)

by Cauchy–Schwarz inequalities and Young’s inequality, for any positive 𝜖c. If ü(0) ∈
ker(), it holds ||u||H4(0,T;H2(Ω)) <∞ to yield

Δt
m−1∑
n=0

(
1(tn),𝝕n+1 +𝝕n) ≤ C||u||2H4(0,T;H2(Ω))T𝜖cΔt4 + 2T

𝜖c
max

0≤n≤N
||𝝕n||2L

2
(Ω).

• Δt
∑m−1

n=0
a
(
𝝌

n+1 + 𝝌n
,2(tn)

)
and Δt

∑m−1

n=0
a
(
𝝌

n+1 + 𝝌n
,3(tn)

)
Following similar arguments but using the continuity of the DG bilinear form rather

than Cauchy–Schwarz inequality, we get

Δt
m−1∑
n=0

a
(
𝝌

n+1 + 𝝌n
,2(tn)

) ≤ 𝜖𝑑

8K2
Δt4||𝜽(3)||2L

2
(0,T;V) +

2T
𝜖𝑑

max
0≤n≤N

||𝝌n||2V ,

for any positive 𝜖𝑑 . Note that the DG elliptic error estimates such as (3.6) provide spatial

error estimates of 𝜽 and its time derivatives. For example, (3.6) implies ||𝜽(3)(t)||V ≤
C||||||u(3)(t)||||||H1(h)

for any t. Also, we have

Δt
m−1∑
n=0

a
(
𝝌

n+1 + 𝝌n
,3(tn)

) ≤ C 𝜖𝑑

8K2
Δt4||u(3)||2L

2
(0,T;H1(h))

+ 2T
𝜖𝑑

max
0≤n≤N

||𝝌n||2V .
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24 of 33 JANG and SHAW

Collecting up all the above results, we can derive a bound for (4.24) as

2𝜌||𝝕m||2L
2
(Ω) + 2𝜅𝜑0||𝝌m||2V + 𝜅𝜑𝛼Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

||𝝕n+1 +𝝕n||2V + 2J𝛾0
,𝛾

1

0
(𝝕m

,𝝕
m)

≤ C
(
𝜌𝜖ah2r + 𝜑𝛼T3−2𝛼

𝜖bΔt4 + 𝜌T𝜖cΔt4−2𝛼 + 𝜑0𝜖𝑑Δt4
)

+
(

4𝜌T
𝜖a

+ 2𝜑𝛼T
𝜖b

+ 2𝜌T
𝜖c

)
max

0≤n≤N
||𝝕n||2L

2
(Ω)

+ 8𝜑0T
𝜖𝑑

max
0≤n≤N

||𝝌n||2V − Δt2−𝛼

Γ(3 − 𝛼)

m−1∑
n=0

a

( n∑
i=0

Bn+1,i𝝕
i +

n−1∑
i=0

Bn,i𝝕
i
,𝝕

n+1 +𝝕n

)
,

(4.25)

where C is a positive constant independent of Δt, h and the discrete solutions. We can

observe that the bound in (4.25) except the last term is independent of m. As shown in

the proof of Theorem 4.1, the use of mathematical induction and the maximum argument

leads to

2𝜌max
0≤n≤N

||𝝕n||2L
2
(Ω) + 2𝜅𝜑0 max

0≤n≤N
||𝝌n||2V + 𝜅𝜑𝛼Δt2−𝛼

2Γ(3 − 𝛼)

N−1∑
n=0

||𝝕n+1 +𝝕n||2V
+ 2 max

0≤n≤N
J𝛾0

,𝛾
1

0
(𝝕n

,𝝕
n)

≤ 4C
(
𝜌𝜖ah2r + 𝜑𝛼T3−2𝛼

𝜖bΔt4 + 𝜌T𝜖cΔt4−2𝛼 + 𝜑0𝜖𝑑Δt4 + 2T
(

2𝜌

𝜖a
+ 𝜑𝛼

𝜖b
+ 𝜌

𝜖c

)

max
0≤n≤N

||𝝕n||2L
2
(Ω) +

8𝜑0T
𝜖𝑑

max
0≤n≤N

||𝝌n||2V
)
.

(4.26)

At last, by the setting of coefficients of Young’s inequalities,

𝜖a = 48CT, 𝜖b = 24𝜑𝛼CT, 𝜖c = 24CT, 𝜖𝑑 = 32CT∕𝜅,

we have

𝜌max
0≤n≤N

||𝝕n||2L
2
(Ω) + 𝜅𝜑0 max

0≤n≤N
||𝝌n||2V + 𝜅𝜑𝛼Δt2−𝛼

2Γ(3 − 𝛼)

N−1∑
n=0

||𝝕n+1 +𝝕n||2V + 2 max
0≤n≤N

J𝛾0
,𝛾

1

0
(𝝕n

,𝝕
n)

≤ CT
4−2𝛼(h2r + Δt4 + Δt4−2𝛼),

(4.27)

for some positive C which is independent of h,Δt, T and the discrete solutions but depends

on the strong solution, the data terms, the spatial domain and the material properties.

Moreover, if we suppose ü(0) ∈ ker(), the Δt4−2𝛼
terms in the bounds will disappear

and (4.27) becomes

𝜌max
0≤n≤N

||𝝕n||2L
2
(Ω) + 𝜅𝜑0 max

0≤n≤N
||𝝌n||2V + 𝜅𝜑𝛼Δt2−𝛼

2Γ(3 − 𝛼)

N−1∑
n=0

||𝝕n+1 +𝝕n||2V
+ 2 max

0≤n≤N
J𝛾0

,𝛾
1

0
(𝝕n

,𝝕
n) ≤ CT

4−2𝛼(h2r + Δt4).
(4.28)

This completes the proof. ▪

In Lemma 4.2, under the assumption of H4
regularity in time, it is clear to see that the constant of

the bound C depends on ||u||H4(0,T;Hs(h)). On the other hand, if the solution has only H3
regularity in

time, Lemma 4.1 plays an important role to present sub-optimal orders of time discretization errors.
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JANG and SHAW 25 of 33

Once H4
regularity of the solution is possessed in time, the smoothness of f is no longer required. Only

the condition of the continuous linear form is needed for the stability of discrete formulations.

By Lemma 4.2, we can prove the following a priori error estimates.

Theorem 4.2. Assume that u, f and initial conditions are given satisfying Lemma 4.2,

and
(
Wn

h
)N

n=0
and

(
Un

h
)N

n=0
are the fully discrete solution. Then we can observe optimal

orders of L2 error estimates as well as energy error estimates with respect to h. Although
we have sub-optimal 2 − 𝛼 order accuracy in time, some additional conditions such as
ü(0) ∈ ker() or H4 regularity in time lead us to obtain second-order accuracy. Thus, we
obtain

max
0≤n≤N

||u̇(tn) −Wn
h||L2

(Ω) ≤ CT
2−𝛼 (hr + Δt2−𝛼)

, max
0≤n≤N

||u(tn) − Un
h||V ≤ CT

2−𝛼 (hr−1 + Δt2−𝛼)
,

and with higher regularity in time,

max
0≤n≤N

||u̇(tn) −Wn
h||L2

(Ω) ≤ CT
2−𝛼 (hr + Δt2

)
, max

0≤n≤N
||u(tn) − Un

h||V ≤ CT
2−𝛼 (hr−1 + Δt2

)
,

where r = min(k + 1, s) and C is a positive constant independent of h and Δt.
Moreover, we can derive energy norm error estimates for the velocity as well as L2

norm error estimates for the displacement:

max
0≤n≤N

||u̇(tn) −Wn
h||V ≤ CT

2−𝛼 (hr−1 + Δt2−𝛼)
, max

0≤n≤N
||u(tn) − Un

h||L2
(Ω) ≤ CT

2−𝛼 (hr + Δt2−𝛼)
,

and if u is H4 regular in time

max
0≤n≤N

||u̇(tn) −Wn
h||V ≤ CT

2−𝛼 (hr−1 + Δt2
)
, max

0≤n≤N
||u(tn) − Un

h||L2
(Ω) ≤ CT

2−𝛼 (hr + Δt2
)
.

Proof. Let us consider ||u̇(tn) − Wn
h||L2

(Ω) for any n = 0, … ,N. Using the triangular

inequality, we have

||u̇(tn) −Wn
h||L2

(Ω) = ||�̇�(tn) −𝝕n||L
2
(Ω) ≤ ||�̇�(tn)||L

2
(Ω) + ||𝝕n||L

2
(Ω).

By (3.6) and Lemma 4.2, this immediately gives

||u̇(tn) −Wn
h||L2

(Ω) ≤ CT
2−𝛼(hr + Δt2−𝛼),

and since n is arbitrary,

max
0≤n≤N

||u̇(tn) −Wn
h||L2

(Ω) ≤ CT
2−𝛼 (hr + Δt2−𝛼)

.

With higher regularity in time, we have

max
0≤n≤N

||u̇(tn) −Wn
h||L2

(Ω) ≤ CT
2−𝛼 (hr + Δt2

)
.

In this manner, we take into account the energy norm error for the displacement. By the

triangular inequality, the elliptic energy error estimates (3.6) and Lemma (4.2), we can

obtain

||u(tn) − Un
h||V ≤ ||𝜽(tn)||V + ||𝝌n||V ≤ CT

2−𝛼(hr−1 + Δt2−𝛼),

hence

max
0≤n≤N

||u(tn) − Un
h||V ≤ CT

2−𝛼(hr−1 + Δt2−𝛼).
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26 of 33 JANG and SHAW

In addition, if the strong solution has H4
regularity in time, it holds

max
0≤n≤N

||u(tn) − Un
h||V ≤ CT

2−𝛼(hr−1 + Δt2).

On the other hand, to show energy error estimates of the velocity, we need the inverse

inequality (2.3). Then, after noting that

||v||2V = ∑
E∈h
∫E

D𝜺(v) ∶ 𝜺(v) 𝑑E + J𝛾0
,𝛾

1

0
(v, v) ≤ C|||v|||2H1(h)

+ J𝛾0
,𝛾

1

0
(v, v) ⇒ ||v||V ≤ 2C|||v|||H1(h) + 2

√
J𝛾0

,𝛾
1

0
(v, v),

the inverse inequality implies

||u̇(tn) −Wn
h||V ≤ ||�̇�(tn)||V + ||𝝕n||V ≤ ||�̇�(tn)||V + C|||𝝕n|||H1(h) + 2

√
J𝛾0

,𝛾
1

0
(𝝕n,𝝕n)

≤ ||�̇�(tn)||2V + Ch−1||𝝕n||L
2
(Ω) + 2

√
J𝛾0

,𝛾
1

0
(𝝕n,𝝕n).

Then, by employing (3.6) and Lemma 4.2, we can obtain the energy norm error bounds

for the velocity.

In the case of L2 error estimation of the displacement, Poincaré inequality (2.2) gives,

||u(tn) − Un
h||L2

(Ω) ≤ ||𝜽(tn)||L
2
(Ω) + ||𝝌n||L

2
(Ω) ≤ ||𝜽(tn)||L

2
(Ω) + C||𝝌n||V .

Therefore, we can complete the proof using (3.6) and Lemma 4.2. ▪

Remark. In the context of the stability analysis, the jump penalty term of the discrete

velocity in (3.23) may not directly contribute. However, it plays a crucial role in achieving

energy error bounds for the velocity. This additional jump penalty term allows us to handle

the spatial discontinuity of the error between the numerical velocity and the elliptic pro-

jection of the exact solution over the edges. It ensures the energy norm error estimates of

the numerical velocity, which are essential for accurate and reliable numerical solutions.

5 NUMERICAL EXPERIMENTS

Using the open-source finite element method library FEniCS of version 2019.1.0 (https://fenicsproject

.org), we conduct numerical simulations to validate our error analysis. We consider two cases to

demonstrate the influence of the regularity of solutions in time:

1. Example 1: This case involves a solution that is not of class H4
in time, showcasing the

performance of our method with less regular solutions.

2. Example 2: Here, we consider a smoother case with a solution having higher regularity in time.

Additionally, we provide Example 3 to demonstrate the practical applicability of our method

using real-material data. The numerical simulations presented in this manuscript were implemented

with code available on author Jang’s Git repository (https://github.com/Yongseok7717/visco_frac_dg)

and Zenodo (https://doi.org/10.5281/zenodo.10973154). We believe in the importance of open and

reproducible research, and thus, we encourage readers to access and explore our code for a better

understanding of our proposed approach.

Let en
u ∶= u(tn) − Un

h and en
w ∶= u̇(tn) −Wn

h be the numerical errors of displacement and velocity,

respectively. On account of the dependency of the DG energy norm on the penalty parameters, 𝛾0 and

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23107 by B
runel U

niversity, W
iley O

nline L
ibrary on [31/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://fenicsproject.org
https://fenicsproject.org
https://fenicsproject.org
https://github.com/Yongseok7717/visco_frac_dg
https://github.com/Yongseok7717/visco_frac_dg
https://doi.org/10.5281/zenodo.10973154
https://doi.org/10.5281/zenodo.10973154


JANG and SHAW 27 of 33

𝛾1, we consider the broken H1
norm of errors instead. Thanks to Korn’s inequality, the (broken) H1

norm error estimates follow the same convergence rates as the DG energy error estimates. Therefore,

by Theorem 4.2, for a solution with H3
regularity in time and sufficient smoothness of f and initial

conditions, the error estimates are as follows: ∀n,

• Displacement errors: |||en
u|||H1(h) = O(hr−1 + Δt2−𝛼) and ||en

u||L
2
(Ω) = O(hr + Δt2−𝛼).

• Velocity errors: |||en
w|||H1(h) = O(hr−1 + Δt2−𝛼) and ||en

w||L
2
(Ω) = O(hr + Δt2−𝛼).

Here, r is the spatial convergence rate, 𝛼 is the fractional order of the time derivative, and h and

Δt are the mesh sizes in space and time, respectively. A higher regularity of the solution will lead to

the second order accuracy in time as the optimal result of the Crank–Nicolson Scheme. The numerical

convergent rate can be computed by the differences between two errors divided by mesh differences

in the logarithm. For example, the spatial order of convergence 𝑑h is obtained by

𝑑h =
log(error of h1) − log(error of h2)

log(h1) − log(h2)
,

for different mesh sizes h1 and h2, when the temporal errors are negligible. In this manner, we can

derive a numerical order of convergence in time 𝑑t as well. This allows us to quantify how the error

decreases as we refine the mesh or change the time step size, providing valuable insights into the

accuracy and efficiency of our numerical method.

Remark. For the stability of our numerical scheme, we should take sufficiently large

penalty parameters, since the coercivity, the continuity, the DG elliptic error estimates and

the bounds for interior penalty rely on the penalty parameters. We refer to [13] for the fail-

ure of DG simulations when the penalty parameters are not large enough. In our following

numerical experiments, we define 𝛾0 = 20 and 𝛾1 = 1 in 2D problems.

Example 1. Let us consider an exact solution to the primal model problem in the strong

form defined by

u(t, x, y) = (0.5t2 + 0.4t2.5)

[
sin(𝜋x) sin(𝜋y)
x(1 − x)y(1 − y)

]
on [0, 1] × Ω,

with Ω = (0, 1)2 and its boundary splitting in ΓN ∶= {(x, y) ∈ 𝜕Ω | x = 0} and ΓD ∶=
𝜕Ω ⧵ ΓN . We set 𝛼 = 1∕2, 𝜌 = 1, 𝜑0 = 0, 𝜑1 = 1∕Γ(1∕2) and D𝜺 = 𝜺 so that u solves

ü(t) − ∇ ⋅0 I1∕2

t �̇�(t) = f(t), (5.1)

for some f that can be readily determined analytically (easy to compute fractional integrals

of polynomials. For example, 1∕2 order integral of tk
is Γ(k + 1)∕Γ(k + 3∕2)tk+1∕2

). Also,

the traction gN(t) can be obtained from the exact solution. Here, we can observe that

u ∈ C3(0,T;C∞(Ω)), u(0) = u̇(0) = 0 and ü(0) ∉ ker().
Note that u(4) is not integrable in time hence the numerical errors of Example 1 will follow 1.5

order of accuracy in time, that is, suboptimal convergence in time. This example is equivalent to [11,

Example 5.1], where the model problem has reduced to a parabolic type evolution problem of fractional

order viscoelasticity. We refer to the reference for the suboptimal numerical results by the continuous

finite element method imposed by purely homogeneous Dirichlet boundary conditions. In contrast,

our simulation utilizes DGFEM for spatial discretization and imposes a mixed boundary condition of

a non-homogeneous Neumann boundary and a homogeneous Dirichlet boundary.
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28 of 33 JANG and SHAW

Figure 1 illustrates spatial and temporal convergence rates with respect to error norms and degrees

of polynomial bases. More precisely, Tables 1 and 2 indicate numerical errors at the final time in H1

norm and L2 norm with fixed fine timesteps for linear and quadratic polynomial bases, respectively.

Those errors exhibit optimal orders of convergence with respect to the spatial mesh h, that is, 𝑑h ≈ k in

H1
norm and 𝑑h ≈ k+1 in L2 norm for both displacement and velocity, where k = 1 or 2. However, due

to the weak singularity, the second-order schemes in Example 1 cannot fully exploit their second-order

accuracy in time, resulting in suboptimal convergent rates in time as shown in Table 3, where 𝑑t ≈ 1.5

regardless of variables and norms.

FIGURE 1 Example 1; numerical convergence with fixed Δt (left) and fixed h (right). The numerical errors are illustrated

with respect to error norms
(
by ⋄: ||||||eN

u ||||||H1(h)
, ○: ||eN

u ||L2(Ω), △: ||||||eN
w ||||||H1(h)

, □: ||eN
w ||L2(Ω)

)
and polynomial degrees (by

linear: solid line, quadratic: dash line, cubic: dotted line).

TABLE 1 Example 1; numerical errors and spatial orders of convergence when k = 1 and Δt = 1∕512.

H1 norm error L2 norm error

h |
|
|
|
|
|eN

u ||
|
|
|
|H1(h)

Rate |
|
|
|
|
|eN

w ||
|
|
|
|H1(h)

Rate ||eN
u ||L2(𝛀) Rate ||eN

w ||L2(𝛀) Rate

1/2 1.3147e+00 2.8811e+00 1.6518e−01 3.8249e−01

1/4 7.4445e−01 0.82 1.6378e+00 0.81 5.2814e−02 1.65 1.2549e−01 1.61

1/8 3.8444e−01 0.95 8.4734e−01 0.95 1.4469e−02 1.87 3.4810e−02 1.85

1/16 1.9377e−01 0.99 4.2730e−01 0.99 3.7269e−03 1.97 9.0123e−03 1.95

1/32 9.7095e−02 1.00 2.1416e−01 1.00 9.4061e−04 1.99 2.2769e−03 1.98

TABLE 2 Example 1; numerical errors and spatial orders of convergence when k = 2 and Δt = 1∕512.

H1 norm error L2 norm error

h |
|
|
|
|
|eN

u ||
|
|
|
|H1(h)

Rate |
|
|
|
|
|eN

w ||
|
|
|
|H1(h)

Rate ||eN
u ||L2(𝛀) Rate ||eN

w ||L2(𝛀) Rate

1/2 3.9823e−01 8.7083e−01 2.6754e−02 6.0143e−02

1/4 1.1133e−01 1.84 2.4333e−01 1.84 3.6105e−03 2.89 7.9411e−03 2.92

1/8 2.8963e−02 1.94 6.3316e−02 1.94 4.6371e−04 2.96 1.0064e−03 2.98

1/16 7.3409e−03 1.98 1.6054e−022 1.98 5.8663e−05 2.98 1.2665e−04 2.99

1/32 1.8446e−03 1.99 4.0350e−03 1.99 7.5356e−06 2.96 1.6114e−05 2.97
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JANG and SHAW 29 of 33

TABLE 3 Example 1; numerical errors and temporal orders of convergence when k = 3 and h = 1∕64.

H1 norm error L2 norm error

𝚫t |
|
|
|
|
|eN

u ||
|
|
|
|H1(h)

Rate |
|
|
|
|
|eN

w ||
|
|
|
|H1(h)

Rate ||eN
u ||L2(𝛀) Rate ||eN

w ||L2(𝛀) Rate

1/8 6.7401e−04 6.3975e−04 1.4615e−04 1.3384e−04

1/16 2.7884e−04 1.27 2.9409e−04 1.12 6.0717e−05 1.27 6.4152e−05 1.10

1/32 1.0582e−04 1.40 9.1038e−05 1.69 2.3073e−05 1.40 1.9915e−05 1.69

1/64 3.8465e−05 1.46 2.7789e−05 1.71 8.3728e−06 1.46 5.9461e−06 1.74

1/128 1.3947e−05 1.46 1.0314e−05 1.43 2.9817e−06 1.49 1.8027e−06 1.72

FIGURE 2 Example 2; numerical convergence with fixed Δt (left) and fixed h (right). The numerical errors are illustrated

with respect to error norms
(
by ⋄: ||||||eN

u ||||||H1(h)
, ○: ||eN

u ||L2(Ω), △: ||||||eN
w ||||||H1(h)

, □: ||eN
w ||L2(Ω)

)
and polynomial degrees (by

linear: solid line, quadratic: dash line, cubic: dotted line).

In the next example, we solve the fractional order viscoelasticity problem for smoother solutions

than Example 1 so that error estimates will follow optimal convergence rates not only of h but also of

Δt.

Example 2. Let us define

u(t, x, y) = t4.5

[
sin(𝜋x) sin(𝜋y)
x(1 − x)y(1 − y)

]
on [0, 1] × Ω,

with the same parameters and domains setting in Example 1 but𝜑0 = 1 so that we suppose

u solves

ü(t) − ∇ ⋅ 𝜺(t) − ∇ ⋅0 I1∕2

t �̇�(t) = f(t), (5.2)

where data terms are obtained from the exact solution u. Clearly, the strong solution

satisfies the regularity in time and space for the optimal error estimation theorem such that

u ∈ C4(0,T;C∞(Ω)), and u(0) = u̇(0) = ü(0) = 0.

By following the error estimates theorem for smooth solutions, on account of the regularity of

solutions, the loss of accuracy in time discretization will disappear in Example 2. The numerical errors

will follow O(hk +Δt2) in H1
norm and O(hk+1 +Δt2) in L2 norm for both displacement and velocity,

respectively. For example, the optimal convergence rates are displayed in Figure 2. We can observe

the optimal orders of convergence with respect to h such that 𝑑h ≈ 1 or 2 with linear polynomial bases
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30 of 33 JANG and SHAW

and 𝑑h ≈ 2 or 3 with quadratic polynomial bases, depending on the choice of norms, in Tables 4 and 5.

On the other hand, Table 6 illustrates the second order accuracy in time of our numerical scheme for

fixed h with cubic polynomial bases.

Example 3. According to the real material data of butyl rubber, butyl 70821, from [1,

18], we illustrate fractional order viscoelasticity behavior of the butyl rubber in 2D. For

example, we have the parameters of the material such that 𝜌 = 920 kg m
−3

,* 𝛼 = 0.449,

𝜑0 = 0.685 MN m
−2

, 𝜑1 = 1.37 MN m
−2

, 𝜇 = 0.228 and 𝜆 = 0.456. We suppose

Ω = (0, 2) × (0, 1), T = 0.25, ΓD = {(x, y) ∈ 𝜕Ω | x = 2} and ΓN = 𝜕Ω ⧵ ΓD. We impose

zero initial conditions, zero body force, and homogeneous boundary conditions on the ΓD

(the right edge) and the Neumann boundary of the top and bottom edges. For the left edge,

we define the traction g(x, t) by

g(x, t) =

[
A((t) −(t − 𝜖)

0

]
on x ∈ Γleft ∶= {0} × [0, 1],

where A = 1 MN m
−2

, small 𝜖 > 0 and  is the Heaviside step function. To impose

non-zero traction only at the beginning of the simulation, we assume Δt > 𝜖.

TABLE 4 Example 2; numerical errors and spatial orders of convergence when k = 1 and Δt = 1∕512.

H1 norm error L2 norm error

h |
|
|
|
|
|eN

u ||
|
|
|
|H1(h)

Rate |
|
|
|
|
|eN

w ||
|
|
|
|H1(h)

Rate ||eN
u ||L2(𝛀) Rate ||eN

w ||L2(𝛀) Rate

1/2 1.4802e+00 6.6002e+00 1.7595e−01 8.1404e−01

1/4 8.3331e−01 0.83 3.7310e+00 0.82 5.4569e−02 1.69 2.5799e−01 1.66

1/8 4.2932e−01 0.96 1.9255e+00 0.95 1.4649e−02 1.90 7.0264e−02 1.88

1/16 2.1627e−01 0.99 9.7035e−01 0.99 3.7427e−03 1.97 1.8056e−02 1.96

1/32 1.0835e−01 1.00 4.8620e−01 1.00 9.4141e−04 1.99 4.5539e−03 1.99

TABLE 5 Example 2; numerical errors and spatial orders of convergence when k = 2 and Δt = 1∕512.

H1 norm error L2 norm error

h |
|
|
|
|
|eN

u ||
|
|
|
|H1(h)

Rate |
|
|
|
|
|eN

w ||
|
|
|
|H1(h)

Rate ||eN
u ||L2(𝛀) Rate ||eN

w ||L2(𝛀) Rate

1/2 4.4695e−01 1.9979e+00 2.9012e−02 1.3276e−01

1/4 1.2494e−01 1.84 5.5857e−01 1.84 4.0018e−03 2.86 1.8044e−02 2.88

1/8 3.2497e−02 1.94 1.4530e−01 1.94 5.2061e−04 2.94 2.3277e−03 2.95

1/16 8.2348e−03 1.98 3.6826e−02 1.98 6.6068e−05 2.98 2.9492e−04 2.98

1/32 2.0690e−03 1.99 9.2531e−03 1.99 8.4004e−06 2.98 3.7547e−05 2.97

TABLE 6 Example 2; numerical errors and temporal orders of convergence when k = 3 and h = 1∕64.

H1 norm error L2 norm error

𝚫t |
|
|
|
|
|eN

u ||
|
|
|
|H1(h)

Rate |
|
|
|
|
|eN

w ||
|
|
|
|H1(h)

Rate ||eN
u ||L2(𝛀) Rate ||eN

w ||L2(𝛀) Rate

1/8 2.3658e−02 9.6445e−02 6.1306e−03 1.9759e−02

1/16 5.6874e−03 2.01 2.4780e−02 1.96 1.4761e−03 2.05 5.1026e−03 1.95

1/32 1.3851e−03 2.04 6.2993e−03 1.98 3.5974e−04 2.04 1.2997e−03 1.97

1/64 3.4020e−04 2.03 1.5921e−03 1.98 8.8378e−05 2.03 3.2885e−04 1.98

1/128 8.4070e−05 2.02 4.0123e−04 1.99 2.1827e−05 2.02 8.2883e−05 1.99
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JANG and SHAW 31 of 33

In this numerical simulation, we want to solve

𝜌ü(t) − 𝜑0∇ ⋅ D𝜺(t) − 𝜑𝛼∇ ⋅0 I1−𝛼
t D�̇�(t) = 0, (5.3)

with the given boundary conditions and initial conditions, where D𝜺 is computed by

(D𝜺)ij = Dijkl𝜀kl = 2𝜇𝜀ij + 𝜆𝛿ij𝜀kk.

By the zero body force and initial conditions, the numerical solution will satisfy at least suboptimal

order of accuracy in time, that is, O(Δt2−𝛼). In this numerical simulation, the non-zero traction force

on Γleft appears only at the first time iteration and then there is no more loading in the system, that is,

zero body force, homogeneous Dirichlet boundary condition and homogeneous Neumann boundary

condition.

To compare mechanical responses between elasticity and viscoelasticity, we solve a linear elastic

model by setting 𝜑1 = 0, for simplicity. Hence, the constitutive equation of the linear elasticity model

is given by

𝝈
elastic

(t) = 𝜑0D𝜺(t).

For space and time discretization, we define the piecewise quadratic DG finite element space of 60×30

uniform mesh resulting in right-angled triangles and the timestep Δt = 1∕1000.

In Figure 3, the physical properties of wave propagation are observed well with respect to elastic

and viscoelastic problems. The left figures of Figure 3 exhibit characteristics of elastic waves, while

FIGURE 3 Displacement snapshots in the x-direction: The discrete solution u1 for the linear elastic problem on the left and

the viscoelastic problem on the right.

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23107 by B
runel U

niversity, W
iley O

nline L
ibrary on [31/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



32 of 33 JANG and SHAW

the solution of the viscoelastic model shows large attenuation. For more details on the attenuation in

the unified elastic-viscoelastic model, we refer to [30].

6 CONCLUSION

In conclusion, this research presents a rigorous analysis of the discontinuous Galerkin finite element

method for addressing complex challenges in fractional order viscoelasticity. We have developed a fully

discrete numerical approach that ensures stability and provides reliable numerical solutions, incor-

porating the Crank–Nicolson time-stepping scheme. Theoretical error estimates have been derived,

revealing optimal convergence rates in both space and time for sufficiently smooth solutions. Con-

versely, solutions lacking high regularity exhibit suboptimal convergence in time. Our extensive

numerical experiments affirm the efficiency and effectiveness of the proposed DGFEM method. These

numerical findings solidify theoretical error estimates, confirming the numerical reliability of our

approach.

The proposed approach has proven to be a robust and efficient numerical tool, capable of accurately

predicting viscoelastic behavior, even for solutions with nonsmooth features and weak singularities.

The ability to handle non-homogeneous Neumann boundary conditions adds to its versatility and

practicality, making it suitable for a wide range of real-world applications. The method’s adaptability

to different boundary conditions and solution regularities makes it important in various engineering

and scientific domains. Higher order methods for time discretization are of our future work with fast

computations of the fractional order integral/differentiation for practical use.

CONFLICT OF INTEREST STATEMENT
The authors declare that they have no conflict of interest.

DATA AVAILABILITY STATEMENT
All codes and scripts to reproduce can be found at Jang’s GitHub https://github.com/Yongseok7717

/visco_frac_dg and Zenodo (https://doi.org/10.5281/zenodo.10973154).

ENDNOTE

*https://www.aqua-calc.com/page/density-table/substance/rubber-coma-and-blank-butyl.

ORCID
Yongseok Jang https://orcid.org/0000-0002-2036-558X

Simon Shaw https://orcid.org/0000-0003-1406-7225

REFERENCES

[1] R. L. Bagley and P. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol.

27 (1983), no. 3, 201–210.

[2] S. C. Brenner, Poincaré–Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal. 41 (2003), no.

1, 306–324.

[3] S. C. Brenner, Korn’s inequalities for piecewise H1 vector fields, Math. Comput. 73 (2004), 1067–1087.

[4] A. D. Drozdov, Viscoelastic structures: Mechanics of growth and aging, Academic Press, Cambridge, MA, 1998.

[5] W. N. Findley and F. A. Davis, Creep and relaxation of nonlinear viscoelastic materials, Courier Corporation,

North Chelmsford, MA, 2013.

[6] J. M. Golden and G. A. Graham, Boundary value problems in linear viscoelasticity, Springer Science & Business

Media, Berlin, 2013.

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23107 by B
runel U

niversity, W
iley O

nline L
ibrary on [31/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/Yongseok7717/visco_frac_dg
https://github.com/Yongseok7717/visco_frac_dg
https://github.com/Yongseok7717/visco_frac_dg
https://doi.org/10.5281/zenodo.10973154
https://doi.org/10.5281/zenodo.10973154
https://www.aqua-calc.com/page/density-table/substance/rubber-coma-and-blank-butyl
https://orcid.org/0000-0002-2036-558X
https://orcid.org/0000-0002-2036-558X
https://orcid.org/0000-0003-1406-7225
https://orcid.org/0000-0003-1406-7225


JANG and SHAW 33 of 33

[7] P. Hansbo and M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible
elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Eng. 191 (2002), no. 17-18, 1895–1908.

[8] P. Houston, D. Schötzau, and T. P. Wihler, An hp-adaptive mixed discontinuous Galerkin FEM for nearly
incompressible linear elasticity, Comput. Methods Appl. Mech. Eng. 195 (2006), no. 25-28, 3224–3246.

[9] S. C. Hunter, Mechanics of continuous media, Halsted Press, New York, 1976.

[10] Y. Jang. Spatially continuous and discontinuous Galerkin finite element approximations for dynamic viscoelastic
problems, Ph.D. thesis, Brunel University London, 2020. http://bura.brunel.ac.uk/handle/2438/21084.

[11] Y. Jang and S. Shaw, A priori error analysis for a finite element approximation of dynamic viscoelasticity problems
involving a fractional order integro-differential constitutive law, Adv. Comput. Math. 47 (2021), no. 3, 46.

[12] Y. Jang and S. Shaw, Finite element approximation and analysis of a viscoelastic scalar wave equation with internal
variable formulations, J. Comput. Appl. Math. 412 (2022), 114340.

[13] Y. Jang and S. Shaw, A priori analysis of a symmetric interior penalty discontinuous Galerkin finite element method
for a dynamic linear viscoelasticity model, Comput. Methods Appl. Math. 23 (2023), no. 3, 647–669.

[14] S. Larsson, M. Racheva, and F. Saedpanah, Discontinuous Galerkin method for an integro-differential equation
modeling dynamic fractional order viscoelasticity, Comput. Methods Appl. Mech. Eng. 283 (2015), 196–209.

[15] S. Larsson and F. Saedpanah, The continuous Galerkin method for an integro-differential equation modeling
dynamic fractional order viscoelasticity, IMA J. Numer. Anal. 30 (2010), no. 4, 964–986.

[16] C. Li, A. Chen, and J. Ye, Numerical approaches to fractional calculus and fractional ordinary differential
equation, J. Comput. Phys. 230 (2011), no. 9, 3352–3368.

[17] P. Linz, Theoretical numerical analysis: An introduction to advanced techniques, Courier Corporation, North

Chelmsford, MA, 2001.

[18] N. Makris, Three-dimensional constitutive viscoelastic laws with fractional order time derivatives, J. Rheol. 41

(1997), no. 5, 1007–1020.

[19] W. McLean and V. Thomée, Numerical solution of an evolution equation with a positive-type memory term,

ANZIAM J. 35 (1993), no. 1, 23–70.

[20] W. McLean and V. Thomée, Maximum-norm error analysis of a numerical solution via Laplace transformation
and quadrature of a fractional-order evolution equation, IMA J. Numer. Anal. 30 (2010), no. 1, 208–230.

[21] W. McLean and V. Thomée, Numerical solution via Laplace transforms of a fractional order evolution equation,

J. Integral Equ. Appl. 21 (2010), 57–94.

[22] S. Ozisik, B. Riviere, and T. Warburton, On the constants in inverse inequalities in L2, Rice University, Houston,

TX, 2010.

[23] B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations: Theory and implemen-
tation, SIAM, Philadelphia, PA, 2008.

[24] B. Riviére, S. Shaw, M. F. Wheeler, and J. R. Whiteman, Discontinuous Galerkin finite element methods for linear
elasticity and quasistatic linear viscoelasticity, Numer. Math. 95 (2003), no. 2, 347–376.

[25] B. Rivière, S. Shaw, and J. Whiteman, Discontinuous Galerkin finite element methods for dynamic linear solid
viscoelasticity problems, Numer. Methods Partial Differ. Equ. 23 (2007), no. 5, 1149–1166.

[26] F. Saedpanah, Existence and convergence of Galerkin approximation for second order hyperbolic equations with
memory term, Numer. Methods Partial Differ. Equ. 32 (2016), no. 2, 548–563.

[27] S. Shaw and J. Whiteman, “Some partial differential Volterra equation problems arising in viscoelasticity,”

Proceedings of Equadiff , Vol 9, Masaryk University, Brno, 1998, pp. 183–200.

[28] S. Shaw and J. Whiteman. Numerical solution of linear quasistatic hereditary viscoelasticity problems II: A
posteriori estimates, BICOM Technical report 98-3, 1998.

[29] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials,

J. Appl. Mech. 51 (1984), no. 2, 294–298.

[30] Y. Wang, Generalized viscoelastic wave equation, Geophys. J. Int. 204 (2016), no. 2, 1216–1221.

[31] T. Warburton and J. Hesthaven, On the constants in hp-finite element trace inverse inequalities, Comput. Methods

Appl. Mech. Eng. 192 (2003), no. 25, 2765–2773.

[32] T. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems, Math. Comput. 75

(2006), no. 255, 1087–1102.

How to cite this article: Y. Jang and S. Shaw, Discontinuous Galerkin finite element method
for dynamic viscoelasticity models of power-law type, Numer. Methods Partial Differ. Eq.

(2024), e23107. https://doi.org/10.1002/num.23107

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23107 by B
runel U

niversity, W
iley O

nline L
ibrary on [31/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://bura.brunel.ac.uk/handle/2438/21084
http://bura.brunel.ac.uk/handle/2438/21084
https://doi.org/10.1002/num.23107
https://doi.org/10.1002/num.23107
https://doi.org/10.1002/num.23107
https://doi.org/10.1002/num.23107
https://doi.org/10.1002/num.23107
https://doi.org/10.1002/num.23107
https://doi.org/10.1002/num.23107

	{Discontinuous Galerkin finite element method for dynamic viscoelasticity models of power-law type}
	1 INTRODUCTION
	2 PRELIMINARY
	3 SPACE AND TIME DISCRETIZATION
	3.1 A semi-discrete problem
	3.2 A fully discrete formulation

	4 STABILITY AND CONVERGENCE ANALYSES
	4.1 A stability bound
	4.2 Error estimates

	5 NUMERICAL EXPERIMENTS
	6 CONCLUSION

	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

