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ABSTRACT Fault detection module is one of the most important components in modern industrial systems.
In this paper, we propose a novel fault detection framework which makes use of both normal and faulty
measurement signals at the same time. In this framework, the multivariate time series (MTS) pieces which
are extracted from measurement signals in a time interval are used as the training and testing samples, and a
K -nearest neighbour rule of MTS pieces is applied for fault detection. Moreover, a Mahalanobis distance
based dynamic time warping method is used to measure the divergence among MTS pieces, and a one-
class metric learning algorithm is proposed to learn the appropriate Mahalanobis distance. Experimental
results on the Tennessee Eastman process demonstrate that the proposedmethod has improved fault detection
performance compared with classical approaches on certain kinds of faults.

INDEX TERMS Data-driven, fault detection, multivariate time series, Mahalanobis distance, dynamic time
warping.

I. INTRODUCTION
In modern industrial systems with high degree of automa-
tion, process monitoring and fault diagnosis is one of the
most important blocks, which plays an important role as it
strengthens the safety as well as reliability of the industrial
process. Therefore, research on fault detection methods has
drawn great attention in recent years in both academia and
industry [1]–[4]. Modern industrial systems have become
more and more complex with the rapid development of indus-
trial automation degree. Thus it is very difficult to establish
an accurate model to detect the occurrence of fault as these
system models are always based on human expertise or pri-
ori knowledge [5], so it is believed that model-based fault
detection approaches [6], [7] can hardly achieve good per-
formance regarding complex industrial systems in practice.
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In contrast, data-driven fault diagnosis algorithms [8]–[12]
do not rely on models from first principles but learning
fault detection models directly from the measured data from
running systems. Different from model-based approaches,
data-driven fault detection methods are used to establish the
relationship between the measured signals in fault-free and
faulty operations, which do not rely on any human exper-
tise or priori knowledge of the system. As a practical solution,
data-driven fault detection approach has drawn great attention
from numerous scholars in both research and application
fields [13]–[16].

The main objective of data-driven fault detection is to
analyse the measurement signals of the system to determine
whether any fault has occurred or not [17]. Different from
normal operation, a fault is defined as an abnormal behavior,
which might be caused by electric failure, component dam-
age, extreme process disturbances etc. In the fault detection
process, the measurement signals are collected using various
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sensors, and the observable and measurable variables, such
as temperature, pressure, flow rate, etc. are recorded peri-
odically. These time-varying variables can be used to con-
struct a measurement signal, which is a uniformly sampled
multivariate time series (MTS) [18]. When a fault occurs,
some or all variables of measurement signals will change,
and certain patterns ofmeasurement signals in faulty cases are
different from those in normal operation. Finding appropriate
measurement signal patterns is the core part of data-driven
fault detection methods.

Many data-driven fault detectionmethods including princi-
pal component analysis (PCA) [17], [19], partial least squares
(PLS) [20]–[22] and fisher discriminant analysis (FDA) [25]
based fault detection methods assume that the normal mea-
surement signals follow multivariate Gaussian distribution.
These methods firstly learn the parameters of the multivari-
ate Gaussian distribution model. If the data in the testing
measurement signals are outside of the confidence interval,
the system are then regarded as faulty. PCA is a statistical
method which has high efficiency in processing data with
high dimensions. The PCA based fault detection method uses
orthogonal transformation to convert the observable data and
predicted data into orthogonal components. These orthogo-
nal components are then divided into principal components
and less important components, which will build two rules
called squared prediction error (SPE) and Hotelling T 2 to
determine whether the system is in normal or faulty operation
mode. The extended versions, including multi-scale PCA
(MSPCA) [19], modified PCA (MPCA) [26] based meth-
ods improve its fault detection performance to some degree.
Partial least squares(PLS) [20]–[22] is another powerful sta-
tistical tool used for fault detection, which utilizes the covari-
ance information of the measurement signals to identify a
linear correlation model. The model projects the observable
data as well as the predicted data into a new space. PLS based
method also uses SPE and Hotelling T 2 as the criteria of fault
detection. One modified version of PLS, called modified PLS
(MPLS) [22], estimates the correlation model in the least-
square sense at first, then uses an orthogonal decomposition
process on the measurement space. In the work [21], the
authors further decompose the results of standard PLS on
certain subspaces to avoid the oblique decomposition [27]
on measurement space, which is one weak point of standard
PLS based algorithm. This method is named as the total
projection to latent structure (TPLS) based fault detection
approach. FDA is a dimensionality reduction technique and it
is good at discriminating data with different labels. The FDA
based fault detection method firstly calculates two matrices
(within-class scatter matrix and between class-scatter matrix)
using observable data, and then eigenvectors are obtained
from these two matrices. The FDA method projects the pre-
dicted data on that eigenvectors and determine the label of the
data using a T 2 criterion.

Another category of data-driven fault detection meth-
ods deal with measurement signals with non-Gaussian
distributions. For instance, the independent component

analysis (ICA) [28] based fault detection method only
requires themeasurement signals to be decomposed into a lin-
ear combination of non-Gaussian variables, which are called
independent components (ICs). ICA based method extracts
the hidden statistically ICs from the observed data, and these
ICs construct three criteria, which are simultaneously used to
monitor the status of the running system. In the work [29],
a modified ICA (MICA) based algorithm reduces the com-
putation load of the standard ICA based approach by offering
a unique solution of ICs, which improves the fault detection
performance. The assumption limitation of ICA based meth-
ods are more relaxed than that of the PCA, PLS and FDA
based fault detection strategies. That means ICA can be used
in wider range of applications. Alternatively, subspace aided
approach (SAP) [30] can also deal with measurement signals
with non-Gaussian distribution. The main idea of SAP is to
identify a primary form of residual generators directly from
the observed measurement signals, and a T 2 value is seen as
the final criterion in the detection of predicted measurement
signals.

Most data-driven fault detection approaches detect faults
by processing the static features of samples. These static
features are obtained using the statistical value of the mea-
surement signals or special points. However, there are many
industrial process control systems that can capture multi-
variate time varying measurement signals, and only using
static features might neglect the dynamic characteristics. One
type of dynamic features is the jumping characteristics for
certain faults, in which the static features during a range of
time intervals are abnormal, but they will return to normal
status afterwards while the system is still in faulty operation.
This process might only repeat for several time cycles, which
will result in a low fault detecting rate. For example, in the
famous Tennessee Eastman (TE) process [31], several test-
ing faulty measurement signals given in [32] have jumping
characteristics, and it was proven that most classical fault
detection methods have low fault detection rate on IDV(11),
IDV(16) and IDV(19) due to the influence of the jumping
characteristics [33]. To solve this problem, a good idea is to
use multivariate time series as the training and testing sam-
ples. The authors in [34] proposed a dynamic PCA (DPCA)
method which inspects the measurement signals in a time
interval, and the following procedures are identical with stan-
dard PCA. This method utilizes dynamic features in the fault
detection process to some extent. However, DPCA is also
based on the assumption that normal measurement signals
follow multivariate Gaussian distribution.

Many classical fault detection approaches train the model
only by using normal data and determine the threshold bound-
aries by eliminating the statistical values of normal data
[23], [24]. If the testing data are within the scope enveloped
by the threshold boundaries, they will be labeled as normal,
and vice versa. However, there are many applications that
both of the normal and faulty training data can be offered in
the off-line design procedure, such as the TE process. In this
case, faulty measurement signals are not considered in the
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FIGURE 1. Framework of the proposed fault detection method.

training process of these fault detection methods, thus this
will waste information resources. A good solution is to train
a model which can make full use of the normal and faulty
signals.

In this paper, we establish a novel data-driven fault detec-
tion framework for industrial processes, in whichmultivariate
time series are used to represent the dynamic features of
the measurement signals, and a multivariate dynamic time
warping method based on Mahalanobis distance is proposed.
In order to obtain the Mahalanobis distance function, we pro-
pose a one-class metric learning algorithm, which learns a
distance metric where the normal samples have concentrated
distribution while the faulty samples are far away from nor-
mal samples. The distinct boundary between normal and
faulty signals helps to improve the fault detection perfor-
mance. In the end, the TE process is used to verify the
proposed data-driven fault detection method, which includes
faults that can hardly be detected by traditional methods. The
proposed framework is shown in Fig. 1.

The remainder of this paper is organized as follows.
In Section II, related literature and background knowledge are
presented. Then, the proposed Mahalanobis distance based
dynamic time warping algorithm is described in Section III.

Section IV illustrates the one-class LogDet divergence based
metric learning algorithm for MTS. Section V gives experi-
mental results on TE process to demonstrate the effectiveness
of the proposed method. At last, we draw conclusions and
point out future directions.

II. RELATED WORKS
In traditional data-driven fault detection methods, SPE and
Hotelling T 2 are the most popular indices to determine
whether the system is in normal or faulty operation mode.
However, these two decision rules both require the measure-
ment signals in normal mode to follow a multidimensional
Gaussian distribution. Meanwhile, the faulty measurement
signals should be outside of the multi-dimensional Gaussian
distribution learnt from training samples in normal mode.
However, in many occasions, the normal and faulty mea-
surement signals are hard to be distinguished only by SPE
and T 2 learnt from the normal training data. Many indus-
trial processes, such as semiconductor manufacturing pro-
cesses [35], [36] are nonlinear and multi-modal, where the
SPE and the T 2 do not work well. The works [35]–[37]
recommended to use nonparametric detection rules which
do not require assumption on the probability distribution of
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normal and faulty measurement signals, e.g. the k-nearest
neighbor (KNN) rule.

KNN is a tool widely used in classification problems.
An unlabelled sample is classified according to the labels of
its nearest neighboring samples. Therefore, the KNN rule can
be applied in data with any sort of distribution. Suppose xi is
a training sample with label yi ∈ {−1, 1}, i = 1, 2, · · · , n,
the predicted label of a testing sample z using KNN rule can
be expressed as

hKNN
(
z
)
= sign

( n∑
i=1

ηk
(
z, xi

)
yi
)
, (1)

where η
(
·
)
∈ {0, 1} is a nearest neighboring indicator

function. Suppose d
(
z, xi

)
is the distance between samples

z and xi, if d
(
z, xi

)
is one of the top k minimum distances,

ηk
(
z, xi

)
= 1. Otherwise, ηk

(
z, xi

)
= 0.

Fault detection task is a bit different from classification
problem, where sometimes there are only normal samples in
the training sets. Besides, there exist situations that faulty
samples are dispersed, wihch traditional KNN is not able
to handle. In [35], the authors modified the KNN rule for
fault detection problem, which only needs normal training
samples, and the KNN rule is expressed as

hKNN (z) = sign
(
ε −

n∑
i=1

ηk (z, xi) d2 (z, xi)
)
, (2)

where ε denotes a threshold. If hKNN (z) = 1, the sample is
fault free; otherwise faulty. More specifically, if the sum of
square distances from the sample z to its k nearest training
samples is smaller than the threshold ε, z is regarded as
normal; otherwise, z is faulty. In other words, distance from
an abnormal sample to the k nearest neighboring normal
training samples must be greater than that from a normal
sample.

In this rule, ε is obtained by calculating the distribution of
normal training samples square distances to their k nearest
neighboring training samples [35]. If vj is used to represent
the sum of square distances from the normal sample xj to its
k nearest normal training samples

vj =
n∑

i=1,i 6=j

ηk
(
xj, xi

)
d2
(
xj, xi

)
, (3)

ε can be defined as

ε=θ max
j

(
vj
)
, (4)

where θ is a constant parameter which is determined by
specific application.

III. THE MTS SIMILARITY MEASUREMENT USING
MAHALANOBIS DISTANCE BASED DYNAMIC
TIME WARPING
TheKNN rule is based on similaritymeasurement of samples.
In this work, MTS pieces are extracted as the training and

predicting samples. How to measure the similarity of MTS
pieces is the core problem in the proposed fault detection
framework. In this section, we will introduce the construction
of MTS pieces and how to measure the similarity of MTS
pieces.

A. THE CONSTRUCTION OF MTS PIECES
Define X as a measurement signal

X =
[
x1 x2 · · · xn

]
, (5)

where xn represents the m-dimensional observation vector in
the training set, and n stands for the length of the measure-
ment signal. Traditional fault detection methods will treat X
as a dataset with n static multivariate feature vectors, while
the timing sequence and the connection of these multivariate
data will not be considered. In contrast, in DPCA algo-
rithm [34], the authors took account of the serial correlation
of these multivariate data, where the original measurement
signals were broken into several short multivariate time series
in the following manner,

x1 x2 · · · xl
x2 x3 · · · xl+1
...

...
. . .

...

xn−l+1 xn−l+2 · · · xn

 , (6)

and the length of these MTS pieces is l. Notice that the
timing sequence of the data and the dynamic performance
can be reserved if using these MTS pieces. Therefore, in our
work, this method is used to cut the measurement signals into
n− l + 1 MTS pieces.

B. MAHALANOBIS DISTANCE BASED DYNAMIC
TIME WARPING
In this subsection, the similarity measurement of MTS
samples Z and Xi is discussed, where

Z =


z1 (1) z2 (1) · · · zl (1)
z1 (2) z2 (2) · · · zl (2)
...

...
. . .

...

z1 (m) z2 (m) · · · zl (m)

 , (7)

and

Xi=


xi−l+1 (1) xi−l+2 (1) · · · xi (1)
xi−l+1 (2) xi−l+2 (2) · · · xi (2)

...
...

. . .
...

xi−l+1 (m) xi−l+2 (m) · · · xi (m)

 . (8)

In fact, the similarity measurement of the two MTS samples
is not easy. On one hand, there might be no one-to-one corre-
spondence between Z and Xi because of different frequencies
and phases, so that we should consider the synchronization
when measuring different variables of MTS. How to align
these two MTS is a challenge. On the other hand, variables
play different roles in the system, some of which have strong
correlation with the faults, while others may have weak or no
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relation at all. How to lay stress on the relevant components
and decrease the effect of irrelevant dimensions is a big
problem as well.

In our previous work [18], traditional dynamic time warp-
ing is extended to solve the problem of measuring diver-
gence of two MTS pieces. The optimal warp path W is used
to represent the alignment of two MTS samples, which is
expressed as

W =
(
wx (k)
wz (k)

)
, k = 1, 2, · · · , p (9)

where wx (k) represents a column index from Xi, and wz (k)
represents a column index from Z . p is the length of the warp
path W . (wx (k) ,wz (k))′ indicates that the wx (k)th column
in Xi corresponds to the wz (k)th column in Z .

When constructing the warp path W , there are mainly
two constraints [38]. The first constraint is that all column
indices of the two MTS samples should be found in the
warp path W , while the second one is that the warp path W
should be continuous and monotonically increasing. There-
fore, the starting point and ending point of warp path W is
restricted as W (1) = (1, 1)′ and W (p) = (m, n)′. At the
same time, these two constraints also require adjacent points
W (k) and W (k + 1) to satisfy{

wx (k) ≤ wx (k + 1) ≤ wx (k)+ 1
wz (k) ≤ wz (k + 1) ≤ wz (k)+ 1.

(10)

Therefore, once W (k) is given, there are only three choices
for W (k + 1), that is (wx (k) ,wz (k + 1))′, (wx (k + 1),
wz (k))′, and (wx (k + 1) ,wz (k + 1))′. Meanwhile, the
length of W satisfy that p ∈ [l, 2l].
Using the optimal warp path W , the MTS Xi and Z can be

extended to two newMTS
(
X̄i
)
m×p and

(
Z̄
)
m×p, expressed as{

X̄ ki = X (wx (k))i

Z̄ k = Z (wz(k))
k = 1, 2, · · · , p (11)

where the superscript represents the column index of the
MTS. The dynamic time warping (DTW) distance between
MTS Xi and Z can be represented by the distance between
these two extended MTS X̄i and Z̄ , i.e.

DTW (Xi,Z )=
p∑

k=1

D
(
Xwx (k)i ,Zwz(k)

)
=

p∑
k=1

D
(
X̄ ki , Z̄

k
)
,

(12)

where D (,) is a local distance function, and D
(
Xui ,Z

v
)
rep-

resents local distance between the uth column of Xi and the
vth column of Z . If D (,) is chosen as the Euclidean distance,
it can be expressed as

D
(
Xui ,Z

v)
=
(
Xui − Z

v)T (Xui − Z v) . (13)

However, the Euclidean distance is not appropriate to mea-
sure the distances among local vectors in many applica-
tions. One deficiency of Euclidean distance is that it assigns
the same weight to each variable, which is not practical in

many situations. First, each variable may have different mea-
surement units in the collection process. Second, some of
them are intrinsic and important while others are mixed with
noise and outliers. Using the same weight will degrade the
classification results. Third, some variables may have a cou-
pling relationship. Noise and outliers in one variable would
affect several other variables. Hence, different variables will
play different roles in determining the categories of instances.
Therefore, the Euclidean distance is not able measure the
local distance accurately in these situations. A feasible strat-
egy is to use theMahalanobis distance function tomeasure the
local distance of vectors in MTS. The Mahalanobis distance
between Xui and Z v is expressed as

DM
(
Xui ,Z

v)
=
(
Xui − Z

v)TM (
Xui − Z

v) . (14)

Here,M is a symmetric positive semi-definite matrix, namely
the Mahalanobis matrix. If using Mahalanobis distance as
local distance function, the corresponding dynamic time
warping is named as theMahalanobis distance based dynamic
time warping (MDDTW).

The MDDTW algorithm can be summarized as the fol-
lowing steps [38], [39]. First of all, a cost distance matrix
DistM (u, v), where u = 1, 2, · · · , l, v = 1, 2, · · · , l, is con-
structed. In this matrix, each element DistM (u, v) represents
the minimumwarp distance of subMTS Xi of length i and sub
MTS Z of length j. The corresponding path is named as Wij.
Then, as mentioned above, the warp pathWuv includes (u, v)′

and one of the following choice: (u− 1, v)′, (u, v− 1)′ or
(u− 1, v− 1)′, which can construct the relationship between
DistM (u, v) and DistM (u− 1, v− 1), DistM (u− 1, v) or
DistM (uv− 1). Because DistM (u, v) represents the mini-
mum warp distance, thus the relationship is expressed as

DistM (u, v) = DM
(
Xui ,Z

v)
+min


DistM (u− 1, v− 1)
DistM (u− 1, v)
DistM (u, v− 1),

where DistM (1, 1)=DM
(
X1
i ,Z

1
)
. After computing all the

elements in the cost distance matrix DistM (i, j), DistM (l, l)
equals to the minimumwarp distanceDTWM (Xi,Z ) between
MTS Xi and Z , which could be rewritten as

DTWM (Xi,Z ) =
p∑

k=1

DM
(
X̄ ki , Z̄

k
)

=

p∑
k=1

(
X̄ ki − Z̄

k
)T
M
(
X̄ ki − Z̄

k
)

= trace
(
PTMP

)
, (15)

where Pm×p=
(
X̄i
)
m×p −

(
Z̄
)
m×p. The corresponding warp

path W is the optimal warp path.
There are several advantages when using MDDTW algo-

rithm to measure the similarity of MTS pieces. First of
all, the variables of MTS stretch or shrink along time axis
integrally instead of independently. This will not break
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the relationship among variables. Besides, a good Maha-
lanobis distance will rebuild an accurate relationship among
variables. The noise and outliers in some variables will
be suppressed when measuring the divergence of MTS.
Furthermore, the MDDTW measure can be expressed as a
very simple form like 15, which is benefitial for the develop-
ment of the corresponding metric learning algorithm.

IV. ONE-CLASS LogDet DIVERGENCE BASED METRIC
LEARNING ALGORITHM FOR FAULT DETECTION
As mentioned above, the proposed MDDTW has its own
advantages when comparing MTS pieces. In this approach,
the Mahalanobis distance function plays a key role as it
can reveal the relationship between variables and cate-
gories of instances accurately. Therefore, it is important to
learn an appropriate Mahalanobis matrix. In this section,
we would like to introduce a metric learning algorithm for
fault detection.

A. CONSTRAINTS OF METRIC LEARNING
Our previous work [18] introduces a LogDet diver-
gence based metric learning model for MTS classification.
However, the fault detection problem is a little different.
In MTS classification problem, MTS with the same label
always cluster together, while in the fault detection problem,
only fault-freeMTS cluster together. The faultyMTS samples
with same label have dispersed distributions.

Define that the MTS pieces from normal measurement
signals are positive samples, denoted by X+i and X+j . while
those from faulty signals are called negative samples, denoted
by X−k . Then, the goal of metric learning in fault detection
problem is to learn a Mahalanobis matrixM and correspond-
ing threshold ε that any normal MTS X+j satisfies

n∑
i=1

ηk
(
X+j ,X

+

i

)
DTWM

(
X+j ,X

+

i

)
≤ ε. (16)

At the same time, using the sameM and ε, any fault MTS X−k
satisfies

n∑
i=1

ηk
(
X−k ,X

+

i

)
DTWM

(
X−k ,X

+

i

)
> ε. (17)

Approximatively, the following relationship can be used to
represent the constraints in fault detection problem,

DTWM

(
X+i ,X

+

j

)
− DTWM

(
X+i ,X

−

k

)
< −ρ, (18)

where ρ > 0 represents the target margin, and the corre-
sponding

{
X+i ,X

+

j ,X
−

k

}
is called as triplet constraints.

B. LogDet DIVERGENCE BASED METRIC
LEARNING MODEL
The above mentioned MTS construction method always pro-
duces a huge amount of MTS pieces, so it is necessary to
guarantee that the metric learning process is scalable with
respect to the size of the training samples. Thus, we adopt

an online metric learning framework [41], [42] to learn the
Mahalanobis matrix. In this model, the Mahalanobis matrix
changes gradually as the model trains one triplet constraint at
a time.

Define Mt as a known matrix representing the current
obtained Mahalanobis matrix at time step t . When the metric
learning model receives a triplet constraint

(
X+i ,X

+

j ,X
−

k

)
,

there will be no loss if the triplet constraint satisfies the
relationship in the inequation (18). Otherwise, the currentMt
should be updated to a better one to reduce the following loss
function,

l (M)=ρ+DTWM

(
X+i ,X

+

j

)
−DTWM

(
X+i ,X

−

k

)
. (19)

At the next time step t+1, theMt+1 will be updated to satisfy
Mt+1= argmin

M
l (M). When the total loss function L (M) =∑

t ` (Mt) reaches its minimum, the correspondingM will be
the objective optimal Mahalanobis matrix.

Because the optimization of M is decomposed into mul-
tiple steps, it is important to make sure the learning process
is stable. Therefore, the model needs a regularization term
to guarantee that the Mahalanobis matrix changes gradually
and stably. In this work, we use the logDet divergence [43] to
measure the divergence between M and Mt , expressed as

Dld (M ,Mt) = tr
(
MMt

−1
)
− log

(
det

(
MMt

−1
))
− n.

(20)

where n is the dimension ofM . The logDet divergence based
metric learning model for MTS is to solve the following
iterative minimization problem,

Mt+1 = argmin
M�0

Dld (M ,Mt)+ ηt` (M) (21)

where ηt > 0 is a regularization parameter. The ηt is used
for the balance of the regularization functionDld (M ,Mt) and
loss function ` (M). The Dld (M ,Mt) + ηt` (M) reaches its
extremum value when its gradient is zero. Since its second
order derivative of Dld (M ,Mt) + ηt` (M) is M−2 ≥ 0,
the extremum value is the global minimum. We obtain the
following equation by setting the gradient of (21) to be zero
with respect to M ,

Mt+1 =

(
M−1t + ηt

(
PPT − QQT

))−1
, (22)

where (Pt)m×p =
(
X̄+i
)
m×p −

(
X̄+j
)
m×p

and (Qt)m×q =(
X̄+i
)
m×q −

(
X̄−k
)
m×q. p and q represent the number of

columns which are calculated by using the MDDTW algo-
rithm. To avoid expensive computation of matrix inverse,
we apply the Woodbury matrix identity to solve (22). The
standard Woodbury matrix identity is

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1.

(23)

However, in the updating equation, there are two items which
are the outer product of matrices. To solve this problem,
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we assume that γt =
(
Mt
−1
+ ηtPtPTt

)−1
, and (22) is splited

into two standard Woodbury matrix identity equations, γt =
(
M−1t + ηtPP

T
)−1

Mt+1 =

(
γ−1t − ηtQQ

T
)−1

.

(24)

Applying the Woodbury matrix identity, we arrive at an ana-
lytical expression for Mt+1 γt = Mt − ηtMtP

(
I+ηtPTMtP

)−1
PTMt

Mt+1 = γt+ηtγtQ
(
I − ηtQT γtQ

)−1
QT γt ,

(25)

where the regularization parameter ηt is chosen as
ηt = αη̄t . α is a constant learning rate parameter which is
chosen between 0 and 1, and η̄t is evaluated by solving the
following linear matrix inequalities{

η̄t
(
PPT − QQT

)
+M−1t ≥ 0

η̄t ≥ 0
. (26)

Thanks to the MDDTW, the Mahalanobis metric can
be trained uniformly using MTS with various lengths and
phases, and the convergence and boundedness have been
proved in [44]. However, there is a weak point of the proposed
method that the leaning process is time consuming. The com-
putational complexity isO

(
Nd2l2

)
, whereN is the number of

triplets. To solve this problem, our strategy is to select partial
triplet constraints instead of all triplets in the metric learning
process.

FIGURE 2. One possible data distribution in fault detection problems.

C. DYNAMIC TRIPLETS BUILDING STRATEGY
In the metric learning process, it is impossible to utilize all
triplets because the total quantity of triplets is cubic in the
volume of training MTS. It is important to select the most
useful triplets and remove redundant ones. In our previous
work [44], a dynamic triplets building strategy was proposed.
The metric learning process is broken into several cycles.
According to the Mahalanobis distance matrix of training
data pairs, the most useful triplets are chosen in each cycle.
In fault detection problem, the data distribution is different
from the normal classification problem. Fig. 2 illustrates one

possible data distribution of fault detection problem. The
normal data have a concentrated distribution while fault data
have dispersed distribution, and divergence of the fault data
with the same class may be even larger than that between
fault and normal data. Therefore, in this paper, we develop a
dynamic triplets building strategy for fault detection problem.

In this strategy, the metric learning process is divided into
several cycles. The category of normal MTS is named as
CN while the category of all other fault MTS is named as
CF . In the first step, the triplets at the boundaries of these
two categories are chosen in the initial cycle. For each MTS
X+i , instances X+j which has the largest Euclidean distance
in CN and instances X−k which has the nearest Euclidean
distance in CF are selected, and these {(i, j, k)} are picked to
build the training triplets [45]. However, these selected triplet
constraints {(i, j, k)} are based on Euclidean distance. Then,
the triplets set should be updated in the following learning
process. Using these triplet constraints, aMahalanobis matrix
Mt can be obtained using the LogDet divergence basedmetric
learning algorithm after a metric learning cycle. Then, we use
the MDDTW method to measure the performance of Mt on
the training MTS. After that, new triplets in the next cycle are
selected based on the measurement.

FIGURE 3. The framework of the proposed triplets building strategy.

The key problem in this method is how to measure the
performance ofMt on the training MTS set. Two matrices are
defined here. The first matrix is the MDDTW distance matrix
DMt =

{
DTWMt

(
Xi,Xj

)}
, which represents the MDDTW

distance between positive training MTS and all training MTS
(including positive and negative samples). The second one is
the similarity matrix S =

{
s
(
Xi,Xj

)}
, which gives the rela-

tionship information of sample pairs. If X j is a positive MTS,
s
(
Xi,X j

)
= 1, otherwise, s

(
Xi,X j

)
= 0. Fig. 3 illustrates the

framework of the proposed triplets building strategy. The top
section of Fig. 3 shows the MDDTW distance matrix DMt ={
DTWMt

(
Xi,Xj

)}
. The instances in training set have been
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sorted according to their categories. The positive samples in
CN are sorted in front of negative samples inCF . In fact, there
are two main blocks in the MDDTW distance matrix. The
first one is called intra-class block representing the MDDTW
distance among instances in the CN while the other block
(inter-class block) represents the MDDTW distance between
instances in CN and CF . The deep color means the element
value is small while light color represents a large value. The
ideal situation is that the MDDTW distances in intra-class
block should be all smaller than that in inter-class block.
However, some points DTWMt

(
X+i ,X

−

k

)
in inter-class block

has a deeper color than the pointsDTWMt

(
X+i ,X

+

j

)
in intra-

class block. That means the obtained Mahalanobis distance
Mt has’t achieved the best performance, and these triplets
{(i, j, k)} should be picked as triplet constraints in the next
metric learning cycle.

We extract the ith row in DMt which is expressed as D
i
Mt
={

DTWMt

(
Xi,Xj

)}
and the corresponding S i = {s

(
xi, x j

)
},

where j = 1, 2, · · · , n. If the vector DTW i
Mt

is sorted in
an ascending order, the corresponding S i will be changed
to S̄ i. The ideal case is that the S̄ i should be in a descending
order. However, there will be 0 elements in the S̄ i is in front
of 1, whichmeans that theMDDTWdistance between several
negative and positive pairs is smaller than that of positive
pairs using the currentMt . If the elements are to be reordered
in the S̄ i, we should exchange the disordered 0 and 1 elements
for five times, and we name this exchange count as the
disorder 2i. The normalized disorder θi = 2i

/∑
i2i is

used to determine the proportion of triplet constraints which
contain xi. When building triplets including xi, the method
is similar to the method in [45]. The main difference is that
Mahalanobis matrixMt is used instead of Euclidean distance.
It worth noting that the total disorder τ =

∑
i2i can be used

to judge whether the algorithm is converged.
In this dynamic triplets building strategy, a feedback from

the current Mahalanobis matrix to triplet constraints is con-
structed, where the negative feedback would guarantee the
stability. The most useful triplets in each cycle are selected,
which is beneficial for efficient and stable metric learning
process. In this process, the main time consumption is the
calculation of DMt , and the time complexity of the triplets
building process is about O

(
l2
(
n2N + nNnF

))
.

V. EXPERIMENTS AND RESULTS
In this work, experiments on the TE process [31] are con-
ducted to illustrate the performance of the proposed fault
detection framework. All experiments are tested inMATLAB
2016a, and all tests are implemented on a computer with
Intel(R) Core(TM) i5-4430, 3.00GHz CPU, 8G RAM, and
Windows 10 operating system. The relevant source codes
can be found on the MATLAB central.1 Besides, two gen-
eral indices are adopted to evaluate the fault diagnosis

1https://ww2.mathworks.cn/matlabcentral/fileexchange/67582-
mahalanobis-distance-based-dynamic-time-warping-for-fault-detection

performance, i.e. fault detection rate (FDR) and false alarm
rate (FAR). Assume that tp, tn, fp and fn represent correct fault
detection results, correct normal signal detection results, false
fault alarm results, and false fault missing results, respec-
tively. FDR and FAR can be expressed as

FDR =
tp

tp+ fn
× 100%

FAR =
fp

fp+ tn
× 100%.

(27)

The TE process is a realistic simulation program of a
chemical plant which has been widely studied as a bench-
mark in many fault detection methods. In this work, the data
sets of the TE process are downloaded from the website.2

In this database, there are 21 different kinds of faults, named
as IDV(1), IDV(2), · · · , IDV(21) [32], [33]. IDV(1-20) are
process faults while IDV(21) is an additional value fault.
There are 22 training sets and 22 testing sets in the database,
including 21 faulty data files and one normal data file. Each
training data file contains 480 rows which record 52 variables
for 24 operation hours. It is worth noting that only 11 manip-
ulated variables and 22 process variables are available in the
fault detection process. The rest 19 analysis variables are
obtained after operation of the system. Therefore, we only
consider the available 33 variables in the experiments. The
data in each testing data file are collected via 48 hour plant
operation time, in which the fault occurs at the beginning of
the 8th operation hour. In other word, each testing data file
contains 960 rows, where the first 160 points are normal data
and the rest 800 points are abnormal data.

In the first experiment, a Mahalanobis distance function
is learnt based on the proposed approach and used for fault
detection. The length of the MTS pieces is chosen as l = 16.
TheMTS constructed from normal data file is used as positive
samples, and all the 21 faulty data files construct the negative
samples. The threshold is chosen as ε= 1.25max (v). The
test results of the proposed MDDTW based fault detection
method are given in the last column of Table 1. Mean-
while, we also conduct the same experiment using Euclidean
distance based dynamic time warping (EDDTW), and the
detected results are also presented in Table 1. Besides, this
table also records the results of other classical fault detec-
tion methods, including PCA, DPCA, ICA, MICA, FDA,
PLS, TPLS, MPLS and SAP, the results of which have been
reported by literature [33].

In [33], 21 fault signals of TE process are classified
as three categories. The first type consists of IDV(1-2),
IDV(4-8), IDV(12-14) and IDV(17-18). These faults can be
easily detected, and almost all methods have high FDRs
as well as low FARs in fault detection results. The faults
in the second category, including IDV(10-11), IDV(16),
IDV(19) and IDV(20-21) are relatively not easy to be
detected. The fault detection performances with different
methods on these faults are in various precision levels. In the
third category, all methods produce bad results because these

2http://brahms.scs.uiuc.edu
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TABLE 1. Results comparison for different fault detection methods on TE data sets given in [32].

faults are very difficult to be detected. Besides, the IDV(0)
denotes fault free signal which is used to evaluate the FARs.

It can be seen from the results that the proposedmethod has
good performance on faulty signals in the first and second
categories. For the first category, the proposed method has
similar performance as other methods. However, it achieves
100%FDR only on IDV(4), IDV(6) and IDV(7), e.g. Fig. 4(b)
illustrates the fault detection result for IDV(4). For other
fault signals in the first category, the FDRs can hardly reach
100%. This is because the proposed method chooses MTS
to judge the status of the system. There are some lags as
MTS occupy a period of time. Therefore, the faults would
be detected a little later after the fault occurs as shown
in Fig. 4(c). For the second category, the proposed method
greatly improves the fault detection performance, especially
on IDV(11), IDV(16), IDV(19) and IDV(20). As mentioned
above, these 4 faulty signals have a common feature, i.e. when
fault occurs, the system static index jumps between normal
and fault status. The signals in normal status will be judged
as positive while signals in fault status will be labelled as
negative if using static fault detection methods. Therefore,
these methods all produce low FDRs. The proposed method
uses MTS as detecting samples, and the jumping process can
be recorded. If there exists jumping process in the testing
MTS, there will be large MDDTW divergence between the
testing MTS and normal MTS. Thus the proposed method
can easily achieve good FDRs in this kind of situations as
shown in Fig. 4(e) and Fig. 4(f). This feature is also the main
advantage of the proposed fault detection method. For the
third category, these 3 faulty signals can hardly be detected
with our approach, similar to other fault detection methods,
e.g. Fig. 4(d) gives the detection results on the IDV(15). The
last row of Table 1 illustrates the FARs of faults on the fault

TABLE 2. The relationship between FDR(%) and MTS length.

free signal IDV(0), where the proposed method achieves the
lowest FAR on IDV(0), which is also shown in Fig. 4(a).

In the second experiment, we explore the relationship
between FDR and the length of MTS. MTS with different
data length are constructed ranging from 4 to 24. Then the
corresponding Mahalanobis distance functions are learnt and
applied in the fault detection process. The FDRwith different
MTS lengths on IDV(8), IDV(11), IDV(13), IDV(16) and
IDV(21) are illustrated in Table 2. In the experiment, all the
thresholds are chosen as ε= 1.25max (v). It can be observed
that FDRs for the first and second categories have opposite
trend when MTS length grows. FDR of faulty signals in the
first category decreases slightly while it grows in the sec-
ond category. For example, FDR of IDV(8) and IDV(13)
decreases by 0.38% when the MTS length increases from
4 to 24. For IDV(11), IDV(16) and IDV(20), FDR increases
rapidly from 4 to 12, then grows slowly from 12 to 24. The
reason for this relationship between FDR and MTS length
can be explained as follows. On one hand, the fault in the
first category can be easily detected since the static data
distributions of normal and faulty signals have significant
difference. When increasing the MTS length, the lag effect
will be stronger, so the FDRwill decrease. On the other hand,
the main feature of faulty signals in the second category is the
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FIGURE 4. Process monitoring using the proposed method.

FIGURE 5. Process monitoring on IDV(11) using the proposed method with different MTS length.

jumping characteristics, and longer MTS can record this pro-
cess more completely, which is beneficial for fault detection.
Therefore, the FDR grows rapidly. When the length of MTS
is enough to recover a whole jumping process, the FDR will
slowly increase. Fig. 5 illustrates the fault detection results
on IDV(11) using the proposed method with different MTS
lengths. It can been noticed that longer MTS can produce
smoother fault detection results, and the divergence between
normal and faulty data becomes clearer.

VI. CONCLUSIONS
In this paper, a novel data-driven fault detection framework is
proposed to deal with the process control and fault diagnosis

problems in industrial applications. In this framework, MTS
pieces are used to represent the dynamic features of the mea-
surement signals, and a novel similarity metric called Maha-
lanobis distance based dynamic time warping for MTS pieces
is proposed. The MDDTW can stretch or shrink the vari-
ables of MTS pieces along time axis integrally and find the
optimal warp path to achieve the one-to-one correspondence
of MTS pieces. Meanwhile, the MDDTW uses Mahalanobis
distance to build an accurate relationship among variables,
which are beneficial for suppressing noises and outliers in
some variables when comparing MTS samples. Besides, this
work also puts forward a one-class metric learning algorithm
for the fault detection method. The proposed metric learning
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framework uses a LogDet divergence model as well as a one-
class dynamic triplets building strategy, which can learn the
Mahalanobis distance accurately and robustly. The k-nearest
neighbor rule is chosen as the fault detection criterion, which
needs no assumption on the probability distribution of nor-
mal and faulty measurement signals. Experimental results on
the famous TE process demonstrate that the proposed fault
detection framework has improved performance compared
with classical methods, especially when dealing with the
faulty signals with jumping characteristics. The weak points
of the algorithm are the huge amount of computations in
the off-line training process and delay effect in the on-line
detection stage. These are the two problems to be solved in
future works.
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