
Petri Nets for Systems and Synthetic Biology

Monika Heiner1, David Gilbert2, and Robin Donaldson2

1 Department of Computer Science, Brandenburg University of Technology
Postbox 10 13 44, 03013 Cottbus, Germany

monika.heiner@tu-cottbus.de
2 Bioinformatics Research Centre, University of Glasgow

Glasgow G12 8QQ, Scotland, UK
drg@brc.dcs.gla.ac.uk, radonald@brc.dcs.gla.ac.uk

Abstract. We give a description of a Petri net-based framework for
modelling and analysing biochemical pathways, which unifies the qualita-
tive, stochastic and continuous paradigms. Each perspective adds its con-
tribution to the understanding of the system, thus the three approaches
do not compete, but complement each other. We illustrate our approach
by applying it to an extended model of the three stage cascade, which
forms the core of the ERK signal transduction pathway. Consequently
our focus is on transient behaviour analysis. We demonstrate how quali-
tative descriptions are abstractions over stochastic or continuous descrip-
tions, and show that the stochastic and continuous models approximate
each other. Although our framework is based on Petri nets, it can be
applied more widely to other formalisms which are used to model and
analyse biochemical networks.

1 Motivation

Biochemical reaction systems have by their very nature three distinctive charac-
teristics. (1) They are inherently bipartite, i.e. they consist of two types of game
players, the species and their interactions. (2) They are inherently concurrent,
i.e. several interactions can usually happen independently and in parallel. (3)
They are inherently stochastic, i.e. the timing behaviour of the interactions is
governed by stochastic laws. So it seems to be a natural choice to model and
analyse them with a formal method, which shares exactly these distinctive char-
acteristics: stochastic Petri nets.

However, due to the computational efforts required to analyse stochastic
models, two abstractions are more popular: qualitative models, abstracting away
from any time dependencies, and continuous models, commonly used to approx-
imate stochastic behaviour by a deterministic one. We describe an overall frame-
work to unify these three paradigms, providing a family of related models with
high analytical power.

The advantages of using Petri nets as a kind of umbrella formalism are seen
in the following:

M. Bernardo, P. Degano, and G. Zavattaro (Eds.): SFM 2008, LNCS 5016, pp. 215–264, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

216 M. Heiner, D. Gilbert, and R. Donaldson

– intuitive and executable modelling style,
– true concurrency (partial order) semantics, which may be lessened to inter-

leaving semantics to simplify analyses,
– mathematically founded analysis techniques based on formal semantics,
– coverage of structural and behavioural properties as well as their relations,
– integration of qualitative and quantitative analysis techniques,
– reliable tool support.

This chapter can be considered as a tutorial in the step-wise modelling and
analysis of larger biochemical networks as well as in the structured design of
systems of ordinary differential equations (ODEs). The qualitative model is in-
troduced as a supplementary intermediate step, at least from the viewpoint of
the biochemist accustomed to quantitative modelling only, and serves mainly for
model validation since this cannot be performed on the continuous level, and is
generally much harder to do on the stochastic level. Having successfully validated
the qualitative model, the quantitative models are derived from the qualitative
one by assigning stochastic or deterministic rate functions to all reactions in the
network. Thus the quantitative models preserve the structure of the qualitative
one, and the stochastic Petri net describes a system of stochastic reaction rate
equations (RREs), and the continuous Petri net is nothing else than a structured
description of ODEs.

systems biology: modelling as formal knowledge representation

synthetic biology: modelling for system construction

biosystem
natural

biosystem
synthetic

observed
behaviour

predicted
behaviour

model
(blueprint)

desired
behaviour

design construction

verification verification

observed
behaviour

predicted
behaviour

wetlab

model-based
experiment design

experiments

formalizing
understanding

wetlab
experiments

model
(knowledge)

Fig. 1. The role of formal models in systems biology and synthetic biology.

Petri Nets for Systems and Synthetic Biology 217

This framework is equally helpful in the setting of systems biology as well as
synthetic biology, see Figure 1. In systems biology, models help us in formalising
our understanding of what has been created by natural evolution. So first of all,
models serve as an unambiguous representation of the acquired knowledge and
help to design new wetlab experiments to sharpen our comprehension.

In synthetic biology, models help us to make the engineering of biology eas-
ier and more reliable. Models serve as blueprints for novel synthetic biological
systems. Their employment is highly recommended to guide the design and con-
struction in order to ensure that the behaviour of the synthetic biological systems
is reliable and robust under a variety of conditions.

Formal models open the door to mathematically founded analyses for model
validation and verification. This paper demonstrates typical analysis techniques,
with special emphasis on transient behaviour analysis. We show how to sys-
tematically derive and interpret the partial order run of the signal response
behaviour, and how to employ model checking to investigate related properties
in the qualitative, stochastic and continuous paradigms. All analysis techniques
are introduced through a running example. To be self-contained, we give the
formal definitions of the most relevant notions, which are Petri net specific.

This paper is organised as follows. In the following section we outline our
framework, discussing the special contributions of the three individual analysis
approaches, and examining their interrelations. Next we provide an overview of
the biochemical context and introduce our running example. We then present
the individual approaches and discuss mutually related properties in all three
paradigms in the following order: we start off with the qualitative approach,
which is conceptually the easiest, and does not rely on knowledge of kinetic
information, but describes the network topology and presence of the species. We
then demonstrate how the validated qualitative model can be transformed into
the stochastic representation by addition of stochastic firing rate information.
Next, the continuous model is derived from the qualitative or stochastic model
by considering only deterministic firing rates. Suitable sets of initial conditions
for all three models are constructed by qualitative analysis. Finally, we refer to
related work, before concluding with a summary and outlook regarding further
research directions.

2 Overview of the framework

In the following we describe our overall framework, illustrated in Figure 2, that
relates the three major ways of modelling and analysing biochemical networks
described in this paper: qualitative, stochastic and continuous.

The most abstract representation of a biochemical network is qualitative and
is minimally described by its topology, usually as a bipartite directed graph with
nodes representing biochemical entities or reactions, or in Petri net terminology
places and transitions (see Figures 4 – 6). Arcs can be annotated with stoi-
chiometric information, whereby the default stoichiometric value of 1 is usually
omitted.

218 M. Heiner, D. Gilbert, and R. Donaldson

Qualitative

Stochastic Continuous

A
bs

tr
ac

tio
n

Approximation, type (1)

Molecules/Levels

Qualitative Petri nets

CTL/LTL

Molecules/Levels

Stochastic rates

Stochastic Petri nets

RREs

CSL/PLTL

Concentrations

Deterministic rates

Continuous Petri nets

ODEs

LTLc
A
bstraction

Approximation, type (2)

Discrete State Space Continuous State Space

Time-free

Timed,

Quantitative

Fig. 2. Conceptual framework

The qualitative description can be further enhanced by the abstract repre-
sentation of discrete quantities of species, achieved in Petri nets by the use of
tokens at places. These can represent the number of molecules, or the level of
concentration, of a species. The standard semantics for these qualitative Petri
nets (QPN) does not associate a time with transitions or the sojourn of tokens
at places, and thus these descriptions are time-free. The qualitative analysis
considers however all possible behaviour of the system under any timing. The
behaviour of such a net forms a discrete state space, which can be analysed in
the bounded case, for example, by a branching time temporal logic, one instance
of which is Computational Tree Logic (CTL), see [CGP01].

Timed information can be added to the qualitative description in two ways –
stochastic and continuous. The stochastic Petri net (SPN) description preserves
the discrete state description, but in addition associates a probabilistically dis-
tributed firing rate (waiting time) with each reaction. All reactions which occur
in the QPN can still occur in the SPN, but their likelihood depends on the prob-
ability distribution of the associated firing rates. Special behavioural properties
can be expressed using e.g. Continuous Stochastic Logic (CSL), see [PNK06], a
probabilistic counterpart of CTL, or Probabilistic Linear-time Temporal Logic
(PLTL), see [MC208], a probabilistic counterpart to LTL [Pnu81]. The QPN is
an abstraction of the SPN, sharing the same state space and transition rela-
tion with the stochastic model, with the probabilistic information removed. All
qualitative properties valid in the QPN are also valid in the SPN, and vice versa.

The continuous model replaces the discrete values of species with continuous
values, and hence is not able to describe the behaviour of species at the level
of individual molecules, but only the overall behaviour via concentrations. We
can regard the discrete description of concentration levels as abstracting over the
continuous description of concentrations. Timed information is introduced by the
association of a particular deterministic rate information with each transition,
permitting the continuous model to be represented as a set of ordinary differential

Petri Nets for Systems and Synthetic Biology 219

equations (ODEs). The concentration of a particular species in such a model will
have the same value at each point of time for repeated experiments. The state
space of such models is continuous and linear. So it has to be analysed by a linear
time temporal logic (LTL), for example, Linear Temporal Logic with constraints
(LTLc) in the manner of [CCRFS06], or PLTL [MC208].

The stochastic and continuous models are mutually related by approxima-
tion. The stochastic description can be used as the basis for deriving a continu-
ous Petri net (CPN) model by approximating rate information. Specifically, the
probabilistically distributed reaction firing in the SPN is replaced by a particular
average firing rate over the continuous token flow of the CPN. This is achieved
by approximation over hazard (propensity) functions of type (1), described in
more detail in section 5.1. In turn, the stochastic model can be derived from the
continuous model by approximation, reading the tokens as concentration levels,
as introduced in [CVGO06]. Formally, this is achieved by a hazard function of
type (2), see again section 5.1.

It is well-known that time assumptions generally impose constraints on be-
haviour. The qualitative and stochastic models consider all possible behaviours
under any timing, whereas the continuous model is constrained by its inherent
determinism to consider a subset. This may be too restrictive when modelling
biochemical systems, which by their very nature exhibit variability in their be-
haviour.

3 Biochemical Context

We have chosen a model of the mitogen-activated protein kinase (MAPK) cas-
cade published in [LBS00] as a running case study. This is the core of the ubiq-
uitous ERK/MAPK pathway that can, for example, convey cell division and
differentiation signals from the cell membrane to the nucleus. The model does
not describe the receptor and the biochemical entities and actions immediately
downstream from the receptor. Instead the description starts at the RasGTP
complex which acts as a kinase to phosphorylate Raf, which phosphorylates
MAPK/ERK Kinase (MEK), which in turn phosphorylates Extracellular signal
Regulated Kinase (ERK). This cascade (RasGTP → Raf → MEK → ERK) of
protein interactions controls cell differentiation, the effect being dependent upon
the activity of ERK. We consider RasGTP as the input signal and ERKPP (ac-
tivated ERK) as the output signal.

The scheme in Figure 3 describes the typical modular structure for such
a signalling cascade, compare [CKS07]. Each layer corresponds to a distinct
protein species. The protein Raf in the first layer is only singly phosphory-
lated. The proteins in the two other layers, MEK and ERK respectively, can
be singly as well as doubly phosphorylated. In each layer, forward reactions
are catalysed by kinases and reverse reactions by phosphatases (Phosphatase1,
Phosphatase2, Phosphatase3). The kinases in the MEK and ERK layers are
the phosphorylated forms of the proteins in the previous layer. Each phospho-
rylation/dephosphorylation step applies mass action kinetics according to the

220 M. Heiner, D. Gilbert, and R. Donaldson

following pattern: A + E ­ AE → B + E, taking into account the mechanism
by which the enzyme acts, namely by forming a complex with the substrate,
modifying the substrate to form the product, and a disassociation occurring to
release the product.

Raf RafP

MEKP MEKPPMEK

ERKP ERKPPERK

Phosphatase3

Phosphatase1

Phosphatase2

RasGTP

Fig. 3. The general scheme of the considered signalling pathway: a three-stage dou-
ble phosphorylation cascade. Each phosphorylation/dephosphorylation step applies the
mass action kinetics pattern A+E ­ AE → B+E. We consider RasGTP as the input
signal and ERKPP as the output signal.

4 The Qualitative Approach

4.1 Qualitative Modelling

To allow formal reasoning of the general scheme of a signal transduction cas-
cade, which is given in Figure 3 in an informal way, we are going to derive a
corresponding Petri net. Petri nets enjoy formal semantics amenable to math-
ematically sound analysis techniques. The first two definitions introduce the
standard notion of place/transition Petri nets, which represents the basic class
in the ample family of Petri net models.

Petri Nets for Systems and Synthetic Biology 221

Definition 1 (Petri net, Syntax). A Petri net is a quadruple N = (P, T, f,m0),
where

– P and T are finite, non empty, and disjoint sets. P is the set of places (in
the figures represented by circles). T is the set of transitions (in the figures
represented by rectangles).

– f : ((P × T) ∪ (T × P)) → IN0 defines the set of directed arcs, weighted by
nonnegative integer values.

– m0 : P → IN0 gives the initial marking.

Thus, Petri nets (or nets for short) are weighted, directed, bipartite graphs.
The idea to use Petri nets for the representation of biochemical networks is
rather intuitive and has been mentioned by Carl Adam Petri himself in one of
his internal research reports on interpretation of net theory in the seventies. It
has also been used as the very first introductory example in [Mur89], and we
follow that idea in this tutorial, compare Figure 4.

Places usually model passive system components like conditions, species or
any kind of chemical compounds, e.g. proteins or proteins complexes, playing the
role of precursors or products. Transitions stand for active system components
like atomic actions or any kind of chemical reactions, e.g. association, disas-
sociation, phosphorylation, or dephosphorylation, transforming precursors into
products.

The arcs go from precursors to reactions (ingoing arcs), and from reactions
to products (outgoing arcs). In other words, the preplaces of a transition corre-
spond to the reaction’s precursors, and its postplaces to the reaction’s products.
Enzymes establish side conditions and are connected in both directions with the
reaction they catalyse; we get a read arc.

Arc weights may be read as the multiplicity of the arc, reflecting known
stoichiometries. Thus, the (pseudo) arc weight 0 stands for the absence of an
arc. The arc weight 1 is the default value and is usually not given explicitly.

A place carries an arbitrary number of tokens, represented as black dots or
a natural number. The number zero is the default value and usually not given
explicitly. Tokens can be interpreted as the available amount of a given species in
number of molecules or moles, or any abstract, i.e. discrete concentration level.

In the most abstract way, a concentration can be thought of as being ‘high’
or ‘low’ (present or absent). Generalizing this Boolean approach, any continuous
concentration range can be divided into a finite number of equally sized sub-
ranges (equivalence classes), so that the concentrations within can be considered
to be equivalent. The current number of tokens on a place will then specify the
current level of the species’ concentration, e.g. the absence of tokens specifies
level 0. In the following, when speaking in terms of level semantics, we always
give the highest level number.

A particular arrangement of tokens over the places of the net is called a
marking, modelling a system state. In this paper, the notions marking and state
are used interchangeably.

222 M. Heiner, D. Gilbert, and R. Donaldson

We introduce the following notions and notations. m(p) yields the number
of tokens on place p in the marking m. A place p with m(p) = 0 is called clean
(empty, unmarked) in m, otherwise it is called marked (non-clean). A set of
places is called clean if all its places are clean, otherwise marked. The preset of
a node x ∈ P ∪T is defined as •x := {y ∈ P ∪ T |f (y, x) 6= 0}, and its postset as
x• := {y ∈ P ∪ T |f (x, y) 6= 0}. Altogether we get four types of sets:

– •t, the preplaces of a transition t, consisting of the reaction’s precursors,
– t•, the postplaces of a transition t, consisting of the reaction’s products,
– •p, the pretransitions of a place p, consisting of all reactions producing this

species,
– p •, the posttransitions of a place p, consisting of all reactions consuming this

species.

We extend both notions to a set of nodes X ⊆ P ∪ T and define the set of
all prenodes •X :=

⋃
x∈X

•x, and the set of all postnodes X• :=
⋃

x∈X x•. See
Figure 11 for an illustration of these notations.

Petri net, Semantics Up to now we have introduced the static aspects of a
Petri net only. The behaviour of a net is defined by the firing rule, which consists
of two parts: the precondition and the firing itself.

Definition 2 (Firing rule). Let N = (P, T, f, m0) be a Petri net.

– A transition t is enabled in a marking m, written as m[t〉, if
∀p ∈ •t : m(p) ≥ f(p, t), else disabled.

– A transition t, which is enabled in m, may fire.
– When t in m fires, a new marking m′ is reached, written as m[t〉m′, with
∀p ∈ P : m′(p) = m(p)− f(p, t) + f(t, p).

– The firing happens atomically and does not consume any time.

Please note, a transition is never forced to fire. Figuratively, the firing of
a transition moves tokens from its preplaces to its postplaces, while possibly
changing the number of tokens, compare Figure 4. Generally, the firing of a
transition changes the formerly current marking to a new reachable one, where
some transitions are not enabled anymore while others get enabled. The repeated
firing of transitions establishes the behaviour of the net.

The whole net behaviour consists of all possible partially ordered firing se-
quences (partial order semantics), or all possible totally ordered firing sequences
(interleaving semantics), respectively.

Every marking is defined by the given token situation in all places m ∈ IN|P |0 ,
whereby |P | denotes the number of places in the Petri net. All markings, which
can be reached from a given marking m by any firing sequence of arbitrary
length, constitute the set of reachable markings [m〉. The set of markings [m0〉
reachable from the initial marking is said to be the state space of a given system.

Petri Nets for Systems and Synthetic Biology 223

Fig. 4. The Petri net for the well
known chemical reaction r: 2H2 +
O2 → 2H2O and three of its mark-
ings (states), connected each by a
firing of the transition r. The tran-
sition is not enabled anymore in
the marking reached after these two
single firing steps.

O2

H2 4

H2O

H2O

H2

O2

H2O4

H2

O2

r

r

r

2
2

2
2

2
2

All notions introduced in the following in this section refer to a place/transi-
tion Petri net according to Definitions 1 and 2.

Running example In this modelling spirit we are now able to create a Petri
net for our running example. We start with building blocks for some typical
chemical reaction equations as shown in Figure 5. We get the Petri net in Figure
6 for our running example by composing these building blocks according to the
scheme of Figure 3. As we will see later, this net structure corresponds exactly
to the set of ordinary differential equations given in [LBS00]. Thus, the net can
equally be derived by SBML import and automatic layout, manually improved
from this ODE model.

Reversible reactions have to be modelled explicitly by two opposite transi-
tions. However in order to retain the elegant graph structure of Figure 6, we use
macro transitions, each of which stands here for a reversible reaction. The entire
(flattened) place/transition Petri net consists of 22 places and 30 transitions,
where r1, r2, . . . stand for reaction (transition) labels.

We associate a discrete concentration with each of the 22 species. In the
qualitative analysis we apply Boolean semantics where the concentrations can
be thought of as being “high” or “low” (above or below a certain threshold). This
results into a two level model, and we extend this to a multi-level model in the
quantitative analysis, where each discrete level stands for an equivalence class
of possibly infinitely many concentrations. Then places can be read as integer
variables.

4.2 Qualitative Analysis

A preliminary step will usually execute the net, which allows us to experience
the model behaviour by following the token flow1. Having established initial
confidence in the model by playing the token game, the system needs to be
1 If the reader would like to give it a try, just download our Petri net tool [Sno08].

224 M. Heiner, D. Gilbert, and R. Donaldson

A B A B BA

BA

E

E

BA_EA

A B

E E

BA

A A_E B

E

A

A_E1

B

E1

B_E2

E2 E2

B_E2

E1

B

A_E1

A

r1

r1

r2

r1

r3

r2

r1

r1

r2

r3

r1

r2

r3

r4

r5

r6

r6

r3

(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

r1/r2

r1/r2

r1/r2

r1/r2

r4/r5

Fig. 5. The Petri net components for some typical basic structures of biochemical
reaction networks. (a) simple reaction A → B; (b) reversible reaction A ­ B; (c)
hierarchical notation of (b); (d) simple enzymatic reaction, Michaelis-Menten kinetics;
(e) reversible enzymatic reaction, Michaelis-Menten kinetics; (f) hierarchical notation
of (e); (g) enzymatic reaction, mass action kinetics, A + E ­ A E → B + E; (h)
hierarchical notation of (g); (i) two enzymatic reactions, mass action kinetics, building
a cycle; (j) hierarchical notation of (i). Two concentric squares are macro transitions,
allowing the design of hierarchical net models. They are used here as shortcuts for
reversible reactions. Two opposite arcs denote read arcs, see (d) and (e), establishing
side conditions for a transition’s firing.

Petri Nets for Systems and Synthetic Biology 225

Raf

RasGTP

Raf_RasGTP

RafP

RafP_Phase1

MEK_RafP MEKP_RafP

MEKP_Phase2 MEKPP_Phase2

ERK

ERK_MEKPP ERKP_MEKPP

ERKP

MEKPP

ERKPP_Phase3ERKP_Phase3

MEKP

ERKPP

Phase2

Phase3

MEK

Phase1

r3

r6

r21

r18

r9 r12

r15

r24

r27r30

PUR ORD HOM NBM CSV SCF CON SC FT0 TF0 FP0 PF0 NC

Y Y Y Y N N Y Y N N N N nES

DTP CPI CTI SCTI SB k-B 1-B DCF DSt DTr LIV REV

Y Y Y N Y Y Y N 0 N Y Y

r1/r2

r4/r5

r7/r8 r10/r11

r16/r17

r22/r23r19/r20

r13/r14

r28/r29 r25/r26

Fig. 6. The bipartite graph for the extended ERK pathway model according to the
scheme in Figure 3. Places (circles) stand for species (proteins, protein complexes).
Protein complexes are indicated by an underscore “ ” between the constituent pro-
tein names. The suffixes P or PP indicate phosphorylated or doubly phosphorylated
forms respectively. The name Phase serves as shortcut for Phosphatase. The species
that are read as input/output signals are given in grey. Transitions (squares) stand
for irreversible reactions, while macro transitions (two concentric squares) specify re-
versible reactions, compare Figure 5. The initial state is systematically constructed
using standard Petri net analysis techniques. At the bottom the two-line result vector
as produced by Charlie [Cha08] is given. Properties of interest in this vector for this
biochemical network are explained in the text.

226 M. Heiner, D. Gilbert, and R. Donaldson

formally analysed. Formal analyses are exhaustive, opposite to the token game,
which exemplifies the net behaviour.

(0) General behavioural properties The first step in analysing a Petri net
usually aims at deciding general behavioural properties, i.e. properties which
can be formulated independently from the special functionality of the network
under consideration. There are basically three of them, which are orthogonal:
boundedness, liveness, and reversibility [Mur89]. We start with an informal char-
acterisation of the key issues.

– boundedness For every place it holds that: Whatever happens, the maximal
number of tokens on this place is bounded by a constant. This precludes
overflow by unlimited increase of tokens.

– liveness For every transition it holds that: Whatever happens, it will always
be possible to reach a state where this transition gets enabled. In a live net,
all transitions are able to contribute to the net behaviour forever, which
precludes dead states, i.e. states where none of the transitions are enabled.

– reversibility For every state it holds that: Whatever happens, the net will
always be able to reach this state again. So the net has the capability of
self-reinitialization.

In most cases these are requirable properties. To be precise, we give the
following formal definitions, elaborating these notions in more details.

Definition 3 (Boundedness).

– A place p is k-bounded (bounded for short) if there exists a positive integer
number k, which represents an upper bound for the number of tokens on this
place in all reachable markings of the Petri net:
∃ k ∈ IN0 : ∀m ∈ [m0〉 : m(p) ≤ k .

– A Petri net is k-bounded (bounded for short) if all its places are k-bounded.
– A Petri net is structurally bounded if it is bounded in any initial marking.

Definition 4 (Liveness of a transition).

– A transition t is dead in the marking m if it is not enabled in any marking
m′ reachable from m:
6 ∃ m′ ∈ [m〉 : m′[t〉.

– A transition t is live if it is not dead in any marking reachable from m0.

Definition 5 (Liveness of a Petri net).

– A marking m is dead if there is no transition which is enabled in m.
– A Petri net is deadlock-free (weakly live) if there are no reachable dead

markings.
– A Petri net is live (strongly live) if each transition is live.

Petri Nets for Systems and Synthetic Biology 227

Definition 6 (Reversibility). A Petri net is reversible if the initial marking
can be reached again from each reachable marking: ∀m ∈ [m0〉 : m0 ∈ [m〉.

Finally we introduce the general behavioural property dynamic conflict, which
refers to a marking enabling two transitions, but the firing of one transition
disables the other one. The occurrence of dynamic conflicts causes alternative
(branching) system behaviour, whereby the decision between these alternatives
is taken nondeterministically. See Figure 7 for an illustration of these behavioural
properties.

BA C
D

E F

r1

r2

r3 r5

r6r4

r7

r8

r9

2 2

Fig. 7. A net to illustrate the general behavioural properties. The place A is 0-bounded,
place B is 1-bounded and all other places are 2-bounded, so the net is 2-bounded.
The transitions r1 and r2 in the leftmost cycle are dead at the initial marking. The
transitions r8 and r9 in the rightmost cycle are live. All other transitions are not live;
so the net is weakly live. The net is not reversible, because there is no counteraction
to the token decrease by firing of r4. There are dynamic conflicts, e.g. between r4 and
r5 in a marking with m(C)=2.

Running example Our net enjoys the three orthogonal general properties of
a qualitative Petri net: it is bounded, even structural bounded (SB), live (LIV),
and reversible (REV).

Boundedness can always be decided in a static way, i.e. without construction
of the state space, while the remaining behavioural properties generally require
dynamic analysis techniques, i.e. the explicit construction of the partial or full
state space. However as we will see later, freedom of dead states (DSt) can still
be decided in a static way for our running example.

The essential steps of the systematic analysis procedure for our running ex-
ample are given in more detail as follows. They represent a typical pattern how
to proceed. So they may be taken as a recipe how to analyse your own system.

(1) Structural properties The following structural properties are elementary
graph properties and reflect the modelling approach. They can be read as pre-
liminary consistency checks to preclude production faults in drawing the net.
Remarkably, certain combinations of structural properties allow conclusions on
behavioural properties; some examples of such conclusions will be mentioned.
The list follows the order as used in the two-line result vector produced by our
qualitative analysis tool Charlie [Cha08], compare Figure 6.

228 M. Heiner, D. Gilbert, and R. Donaldson

PUR A Petri net is pure if
∀x, y ∈ P ∪ T : f(x, y) 6= 0 ⇒ f(y, x) = 0,
i.e. there are no two nodes, connected in both directions. This precludes read
arcs. Then the net structure is fully represented by the incidence matrix,
which is used for the calculation of the P- and T-invariants, see step (2).

ORD A Petri net is ordinary if
∀x, y ∈ P ∪ T : f(x, y) 6= 0 ⇒ f(x, y) = 1,
i.e. all arc weights are equal to 1. This includes homogeneity. A non-ordinary
Petri net cannot be live and 1-bounded at the same time.

HOM A Petri net is homogeneous if
∀p ∈ P : t, t′ ∈ p• ⇒ f(p, t) = f(p, t′),
i.e. all outgoing arcs of a given place have the same multiplicity.

NBM A net has non-blocking multiplicity if
∀p ∈ P : •p 6= ∅ ∧min{f(t, p)|∀t ∈ •p} ≥ max{f(p, t)|∀t ∈ p•},
i.e. an input place causes blocking multiplicity. Otherwise, it must hold for
each place: the minimum of the multiplicities of the incoming arcs is not less
than the maximum of the multiplicities of the outgoing arcs.

CSV A Petri net is conservative if
∀t ∈ T :

∑
p∈•t f(p, t) =

∑
p∈t• f(t, p),

i.e. all transitions add exactly as many tokens to their postplaces as they sub-
tract from their preplaces, or briefly, all transitions fire token-preservingly.
A conservative Petri net is structurally bounded.

SCF A Petri net is static conflict free if
∀t, t′ ∈ T : t 6= t′ ⇒ •t ∩ •t′ = ∅,
i.e. there are no two transitions sharing a preplace. Transitions involved in
a static conflict compete for the tokens on shared preplaces. Thus, static
conflicts indicate situations where dynamic conflicts, i.e. nondeterministic
choices, may occur in the system behaviour. However, it depends on the
token situation whether a conflict does actually occur dynamically. There is
no nondeterminism in SCF nets.

CON A Petri net is connected if it holds for every two nodes a and b that there
is an undirected path between a and b. Disconnected parts of a Petri net
cannot influence each other, so they can usually be analysed separately. In
the following we consider only connected Petri nets.

SC A Petri net is strongly connected if it holds for every two nodes a and b
that there is a directed path from a to b. Strong connectedness involves
connectedness and the absence of boundary nodes. It is a necessary condition
for a Petri net to be live and bounded at the same time.

FT0, TF0, FP0, PF0 A node x ∈ P ∪ T is called boundary node if
•x = ∅ ∨ x• = ∅. Boundary nodes exist in four types:
– input transition - a transition without preplaces (•t = ∅, shortly FT0),
– output transition - a transition without postplaces (t• = ∅, shortly TF0),
– input place - a place without pretransitions (•p = ∅, shortly FP0),
– output place - a place without posttransitions (p• = ∅, shortly PF0).

A net with boundary nodes cannot be bounded and live at the same time.
For example, an input transition is always enabled, so its postplaces are

Petri Nets for Systems and Synthetic Biology 229

unbounded, while input places preclude liveness. Boundary nodes model
interconnections of an open system with its environment. A net without
boundary nodes is self-contained, i.e. a closed system. It needs a non-clean
initial marking to become live.

Definition 7 (Net structure classes).

– A Petri net is called State Machine (SM) if
∀t ∈ T : |•t| = |t•| ≤ 1,

i.e. there are neither forward branching nor backward branching transitions.
– A Petri net is called Synchronisation Graph (SG) if

∀p ∈ P : |•p| = |p•| ≤ 1,
i.e. there are neither forward branching nor backward branching places.

– A Petri net is called Extended Free Choice (EFC) if
∀p, q ∈ P : p• ∩ q• = ∅ ∨ p• = q•,

i.e. transitions in conflict have identical sets of preplaces.
– A Petri net is called Extended Simple (ES) if

∀p, q ∈ P : p• ∩ q• = ∅ ∨ p• ⊆ q• ∨ q• ⊆ p•,
i.e. every transition is involved in one conflict at most.

Please note, these definitions refer to the net structure only, neglecting any
arc multiplicities. However, these net classes are especially helpful in the setting
of ordinary nets. SM and SG 2 are dual notions; a SM net can be converted into
an SG net by exchanging places and transitions, and vice versa. Both net classes
are properly included in the EFC net class, which again is properly included in
the ES net class.

SM nets are conservative, and thus the prototype of bounded models; they
correspond to the well-known notion of finite state automata. SG nets are free
of static conflicts, and therefore of nondeterminism. In EFC nets, transitions
in conflict are always together enabled or disabled; so there is always a free
choice between them in dynamic conflict situations. EFC nets have the pleasant
property of monotonous liveness, i.e. if they are live in the marking m, then
they remain live for any other marking m′ with m′ ≥ m. In ES nets, the conflict
relation is transitive: if t1 and t2 are in conflict, and t2 and t3 are in conflict,
then t1 and t3 are in conflict too. ES nets have the distinguished property to be
live independent of time, i.e. if they are live, then they remain live under any
timing [Sta89].

All these structural properties do not depend on the initial marking. Most
of these properties can be locally decided in the graph structure. Connectedness
and strong connectedness need to consider the global graph structure, which can
be done using standard graph algorithms.

Running example The net is pure and ordinary, therefore homogeneous as
well, but not conservative. There are static conflicts. The net structure does

2 We use synchronisation graph instead of the more popular term marked graph, which
might cause confusion.

230 M. Heiner, D. Gilbert, and R. Donaldson

not comply to any of the introduced net structure classes, so it is said to be
not Extended Simple (nES). The net is strongly connected, which includes con-
nectedness and absence of boundary nodes, and thus self-contained, i.e. a closed
system. Therefore, in order to make the net live, we have to construct an initial
marking, see step (3) below.

(2) Static decision of marking-independent behavioural properties To
open the door to analysis techniques based on linear algebra, we represent the net
structure by a matrix, called incidence matrix in the Petri net community, and
stoichiometric matrix in systems biology. We briefly recall the essential technical
terms.

Definition 8 (P-invariants, T-invariants).

– The incidence matrix of N is a matrix C : P × T → ZZ, indexed by P and
T , such that C(p, t) = f(t, p)− f(p, t).

– A place vector (transition vector) is a vector x : P → ZZ, indexed by P
(y : T → ZZ, indexed by T).

– A place vector (transition vector) is called a P-invariant (T-invariant) if it
is a nontrivial nonnegative integer solution of the linear equation system
x · C = 0 (C · y = 0).

– The set of nodes corresponding to an invariant’s nonzero entries are called
the support of this invariant x, written as supp (x).

– An invariant x is called minimal if 6 ∃ invariant z : supp (z) ⊂ supp (x), i.e.
its support does not contain the support of any other invariant z, and the
greatest common divisor of all nonzero entries of x is 1.

– A net is covered by P-invariants, shortly CPI, (covered by T-invariants,
shortly CTI) if every place (transition) belongs to a P-invariant (T-invariant).

CPI causes structural boundedness (SB), i.e. boundedness for any initial
marking. CTI is a necessary condition for bounded nets to be live. But maybe
even more importantly, invariants are a beneficial technique in model valida-
tion, and the challenge is to check all invariants for their biological plausibility.
Therefore, let’s elaborate these notions more carefully, compare also Figure 8.

The incidence matrix of a Petri net is an integer matrix C with a row for
each place and a column for each transition. A matrix entry C(p, t) gives the
token change on place p by the firing of transition t. Thus, a preplace of t, which
is not a postplace of t, has a negative entry, while a postplace of t, which is not
a preplace of t, has a positive entry, each corresponding to the arc multiplicities.
The entry for a place, which is preplace as well as postplace of a transition,
gives the difference of the multiplicities of the transition’s outgoing arc minus
the transition’s ingoing arc. In this case we lose information; the non-ordinary
net structure cannot be reconstructed uniquely out of the incidence matrix.

The columns of C are place vectors, i.e. vectors with as many entries as there
are places, describing the token change on a marking by the firing of the transi-
tion defining the column index. The rows of C are transition vectors, i.e. vectors

Petri Nets for Systems and Synthetic Biology 231

with as many entries as there are transitions, describing the influence of all
transitions on the tokens in the place, defining the row index. For stoichiometric
reaction networks, e.g. metabolic networks, the incidence matrix coincides with
the stoichiometric matrix.

A P-invariant x is a nonzero and nonnegative integer place vector such that
x ·C = 0; in words, for each transition it holds that: multiplying the P-invariant
with the transition’s column vector yields zero. Thus, the total effect of each
transition on the P-invariant is zero, which explains its interpretation as a token
conservation component. A P-invariant stands for a set of places over which
the weighted sum of tokens is constant and independent of any firing, i.e. for
any markings m1, m2, which are reachable by the firing of transitions, it holds
that x ·m1 = x ·m2. In the context of metabolic networks, P-invariants reflect
substrate conservations, while in signal transduction networks P-invariants often
correspond to the several states of a given species (protein or protein complex).
A place belonging to a P-invariant is obviously bounded.

Analogously, a T-invariant y is a nonzero and nonnegative integer transition
vector such that C · y = 0; in words, for each place it holds that: multiplying
the place’s row with the T-invariant yields zero. Thus, the total effect of the
T-invariant on a marking is zero. A T-invariant has two interpretations in the
given biochemical context.

– The entries of a T-invariant specify a multiset of transitions which by their
partially ordered firing reproduce a given marking, i.e. basically occurring
one after the other. This partial order sequence of the T-invariant’s tran-
sitions may contribute to a deeper understanding of the net behaviour. A
T-invariant is called feasible if such a behaviour is actually possible in the
given marking situation.

– The entries of a T-invariant may also be read as the relative firing rates
of transitions, all of them occurring permanently and concurrently. This
activity level corresponds to the steady state behaviour.

r1: 2 A
E−→ 2 B

r2/3: A ­ B

r1 r2 r3

A –2 –1 1
B 2 1 –1
E 0 0 0 A B

E

r1

r2

r3

2 2

x1 = (1, 1, 0) = (A, B),
x2 = (0, 0, 1) = (E)

y1 = (1, 0, 2) = (r1, 2 · r3),
y2 = (0, 1, 1) = (r2, r3)

y3 = (1, 1, 3) = y1 + y2

Fig. 8. Two reaction equations with the corresponding Petri net, its incidence matrix,
and the minimal P-invariants x1, x2, and the minimal T-invariants y1, y2, and a non-
minimal T-invariant y3. The invariants are given in the standard vector notation as
well as in a shorthand notation, listing the nonzero entries only. The net is not pure;
the incidence matrix does not reflect the dependency of r1 on E.

232 M. Heiner, D. Gilbert, and R. Donaldson

The two transitions modelling the two directions of a reversible reaction
always make a minimal T-invariant; thus they are called trivial T-invariants.
A net which is covered by nontrivial T-invariants is said to be strongly covered
by T-invariants (SCTI). Transitions not covered by nontrivial T-invariants are
candidates for model reduction, e.g. if the model analysis is concerned with
steady state analysis only.

The set xi of all minimal P-invariants (T-invariants) of a given net is unique
and represents a generating system for all P-invariants (T-invariants). All invari-
ants x can be computed as nonnegative linear combinations: n · x =

∑
(ai · xi),

with n, ai ∈ IN0, i.e., the allowed operations are addition, multiplication by a
natural number, and division by a common divisor.

Technically, we need to solve a homogenous linear equation system over natu-
ral numbers (nonnegative integers). This restriction of the data space establishes
– from a mathematical point of view – a challenge, so there is no closed formula
to compute the solutions. However there are algorithms – actually, a class of
algorithms – constructing the solution (to be precise: the generating system for
the solution space) by systematically considering all possible candidates.

This algorithm class has been repetitively re-invented over the years. So,
these algorithms come along with different names; but if you take a closer look,
you will always encounter the same underlying idea. All these versions may be
classified as “positive Gauss elimination”; the incidence matrix is systematically
transformed to a zero matrix by suitable matrix operations.

However, there are net structures where we get the invariants almost for free.
For ordinary state machines it holds:

– each (minimal) cycle is a (minimal) T-invariant;
– for strongly connected state machines, the reverse direction holds also: each

(minimal) T-invariant corresponds to a (minimal) cycle;
– all places of a strongly connected state machine form a minimal P-invariant.

Likewise, for ordinary synchronisation graphs it holds:

– each (minimal) cycle is a (minimal) P-invariant;
– for strongly connected synchronisation graphs, the reverse direction holds

also: each (minimal) P-invariant corresponds to a (minimal) cycle;
– all transitions of a strongly connected synchronisation graph form a minimal

T-invariant.

A minimal P-invariant (T-invariant) defines a connected subnet, consisting
of its support, its pre- and posttransitions (pre- and postplaces), and all arcs
in between. There are no structural limitations for such subnets induced by
minimal invariants, compare Figure 9, but they are always connected, however
not necessarily strongly connected. These minimal self-contained subnets may
be read as a decomposition into token preserving or state repeating modules,
which should have an enclosed biological meaning. However, minimal invariants
generally overlap, and in the worst-case there are exponentially many of them.

Petri Nets for Systems and Synthetic Biology 233

|
.
|
.
|
.
|
.
|

Fig. 9. The four nets on the left are each covered by one minimal T-invariants. Invari-
ants can contain any structures (from left to right): cycles, forward/backward branching
transitions, forward branching places, backward branching places. Generally, invariants
overlap, and in the worst-case there are exponentially many of them; the net on the
far-right has 24 T-invariants.

Running example There are seven minimal P-invariants covering the net
(CPI), and consequently the net is bounded for any initial marking (SB). All
these P-invariants xi contain only entries of 0 and 1, permitting a shorthand
specification by just giving the names of the places involved.

x1 = (RasGTP, Raf RasGTP)
x2 = (Raf, Raf RasGTP, RafP, RafP Phase1, MEK RafP, MEKP RafP)
x3 = (MEK, MEK RafP, MEKP RafP, MEKP Phase2, MEKPP Phase2,

ERK MEKPP, ERKP MEKPP, MEKPP, MEKP)
x4 = (ERK, ERK MEKPP, ERKP MEKPP, ERKP, ERKPP Phase3,

ERKP Phase3, ERK PP)
x5 = (Phase1, RafP Phase1)
x6 = (Phase2, MEKP Phase2, MEKPP Phase2)
x7 = (Phase3, ERKP Phase3, ERKPP Phase3)

Each P-invariant stands for a reasonable conservation rule, the species preserved
being given by the first name in the invariant. Due to the chosen naming con-
vention, this particular name also appears in all the other place names of the
same P-invariant.

The net under consideration is also covered by T-invariants (CTI), however
not strongly covered (SCTI). Besides the expected ten trivial T-invariants for
the ten reversible reactions, there are five nontrivial, but obvious minimal T-
invariants, each corresponding to one of the five phosphorylation/dephosphoryla-
tion cycles in the network structure:

y1 = (r1, r3, r4, r6),
y2 = (r7, r9, r16, r18),
y3 = (r10, r12, r13, r15),
y4 = (r19, r21, r28, r30),
y5 = (r22, r24, r25, r27).

234 M. Heiner, D. Gilbert, and R. Donaldson

The interesting net behaviour, demonstrating how input signals finally cause out-
put signals, is contained in a nonnegative linear combination of all five nontrivial
T-invariants,

y1−5 = y1 + y2 + y3 + y4 + y5,

which is called an I/O T-invariant in the following. The I/O T-invariant is sys-
tematically constructed by starting with the two minimal T-invariants, involving
the input and output signal, which define disconnected subnetworks. Then we
add minimal sets of minimal T-invariants to get a connected subnet, which corre-
sponds to a T-invariant feasible in the initial marking. For our running example,
the solution is unique, which is not generally the case.

The automatic identification of nontrivial minimal T-invariants is in general
useful as a method to highlight important parts of a network, and hence aids its
comprehension by biochemists, especially when the entire network is too complex
to easily comprehend.

P/T-invariants relate only to the structure, i.e. they are valid independently
of the initial marking. In order to proceed we first need to generate an initial
marking.

(3) Initial marking construction For a systematic construction of the initial
marking, we consider the following criteria.

– Each P-invariant needs at least one token.
– All (nontrivial) T-invariants should be feasible, meaning, the transitions,

making up the T-invariant’s multi-set can actually be fired in an appropriate
(partial) order.

– Additionally, it is common sense to look for a minimal marking (as few tokens
as possible), which guarantees the required behaviour.

– Within a P-invariant, choose the species with the most inactive or the
monomeric state.

Running example Taking all these criteria together, the initial marking on
hand is: RasGTP, MEK, ERK, Phase1, Phase2 and Phase3 get each one token,
while all remaining places are empty. With this initial marking, the net is covered
by 1-P-invariants (exactly one token in each P-invariant), therefore the net is
1-bounded (indicated as 1-B in the analysis result vector, compare Figure 6).
That is in perfect accordance with the understanding that in signal transduction
networks a P-invariant comprises all the different states of one species. Obviously,
each species can be only in one state at any time.

Generalising this reasoning to a multi-level concept, we could assign n to-
kens to each place representing the most inactive state, in order to indicate the
highest concentration level for them in the initial state. The “abstract” mass
conservation within each P-invariant would then be n tokens, which could be
distributed fairly freely over the P-invariant’s places during the behaviour of the

Petri Nets for Systems and Synthetic Biology 235

RasGTP Raf MEKPhase2 ERK Phase3

Raf_RasGTP

RasGTP

RafP

MEK_RafP

RafP MEKP

MEKP_RafP

RafP MEKPP

ERK_MEKPP

MEKPP ERKP

MEKPP ERKPP

ERKP_MEKPP

Phase1

RafP_Phase1

Raf Phase1

MEKPP_Phase2

MEKP Phase2

MEKP_Phase2

MEK Phase2 Phase3ERK

ERKP_Phase3

Phase3ERKP

ERKPP_Phase3

r1

r3

r7

r9

r10

r12

r19

r21

r22

r24

r4

r6

r13

r15

r16

r18

r25

r30

r28

r27

Fig. 10. The beginning of the infinite partial order run of the I/O T-invariant y1−5 =
y1 + y2 + y3 + y4 + y5 of the place/transition Petri net given in Figure 6. We get this
run by unfolding the behaviour of the subnet induced by the T-invariant, whereby any
concurrency is preserved. Here, transitions represent events, labelled by the name of the
reaction taking place, while places stand for binary conditions, labelled by the name of
the species, set or reset by the event, respectively. The highlighted set of transitions and
places is the required minimal sequence of events to produce the output signal ERKPP.
We get a totally ordered sequence of events for our running example. Generally, this
sequence will be partially ordered only.

236 M. Heiner, D. Gilbert, and R. Donaldson

model. This results in a dramatic increase of the state space, as we will later see,
while not improving the qualitative reasoning.

We check the I/O T-invariant for feasibility in the constructed initial mark-
ing, which then involves the feasibility of all trivial T-invariants. In order to
preserve all the concurrency information we have, we construct a new net which
describes the behaviour of our system net under investigation. We obtain an infi-
nite partial order run, the beginning of which is given as labelled condition/event
net in Figure 10. Here, transitions represent events, labelled by the name of the
reaction taking place, while places stand for binary conditions, labelled by the
name of the species, set or reset by the event, respectively. We get this run by
unfolding the behaviour of the subnet induced by the T-invariant. This run can
be characterized in a shorthand notation by the following set of partially ordered
words out of the alphabet of all transition labels T (“;” stands for “sequential-
ity”, “‖” for “concurrency”):

(r1; r3; r7; r9; r10; r12;
((r4; r6) ‖

((r19; r21; r22; r24);
((r13; r15; r16; r18) ‖ (r25; r27; r28; r30))))).

This partial order run gives further insight into the dynamic behaviour of
the network, which may not be apparent from the standard net representation,
e.g. we are able to follow the (minimal) producing process of the proteins RafP,
MEKP, MEKPP, ERKP and ERKPP (highlighted in Figure 10), and we notice
the clear independence, i.e. concurrency of the dephosphorylation in all three lev-
els. The entire run describes the whole network behaviour triggered by the input
signal, i.e. including the dephosphorylation. This unfolding is completely defined
by the net structure, the initial marking and the multiset of firing transitions.
Thus it can be constructed automatically.

Having established and justified our initial marking, we proceed to the next
steps of the analysis.

(4) Static decision of marking-dependent behavioural properties The
following advanced structural Petri net properties can be decided by combina-
torial algorithms. First, we need to introduce two new notions.

Definition 9 (Structural deadlocks, traps).

– A nonempty set of places D ⊆ P is called structural deadlock (co-trap) if
•D ⊆ D• (the set of pretransitions is contained in the set of posttransitions),
i.e. every transition which fires tokens onto a place in this structural deadlock
set, also has a preplace in this set.

– A set of places Q ⊆ P is called trap if Q• ⊆ •Q (the set of posttransitions is
contained in the set of pretransitions), i.e. every transition which subtracts
tokens from a place of the trap set, also has a postplace in this set.

Petri Nets for Systems and Synthetic Biology 237

Pretransitions of a structural deadlock 3 cannot fire if the structural deadlock
is clean. Therefore, a structural deadlock cannot get tokens again as soon as it
is clean, and then all its posttransitions t ∈ D• are dead. A Petri net without
structural deadlocks is live, while a system in a dead state has a clean structural
deadlock.

Posttransitions of a trap always return tokens to the trap. Therefore, once a
trap contains tokens, it cannot become clean again. There can be a decrease of
the total token amount within a trap, but not down to zero.

An input place p establishes a structural deadlock D = {p} on its own, and
an output place q, a trap Q = {q}. If each transition has a preplace, then P • = T ,
and if each transition has a postplace, then •P = T . Therefore, in a net without
boundary transitions, the whole set of places is a structural deadlock as well
as a trap. If D and D′ are structural deadlocks (traps), then D ∪ D′ is also a
structural deadlock (trap).

A structural deadlock (trap) is minimal if it does not properly contain a
structural deadlock (nonempty trap). The network, defined by a minimal struc-
tural deadlock (trap), is strongly connected. A trap is maximal if it is not a
proper subset of a trap. Every structural deadlock includes a unique maximal
trap with respect to set inclusion (which may be empty).

The support of a P-invariant is structural deadlock and trap at the same
time. But caution: not every place set which is a structural deadlock as well as a
trap is a P-invariant. Even more, a P-invariant may properly contain a structural
deadlock. Of special interest are often those minimal deadlocks (traps), which
are not at the same time a P-invariant, for which we introduce the notion proper
deadlock (trap). See also Figure 11 for an example to illustrate these two notions
of structural deadlock and trap.

Structural deadlock and trap are closely related but contrasting notions.
When they come on their own, we get usually deficient behaviour. However,
both notions have the power to complement each other perfectly.

Definition 10 (Deadlock trap property).
A Petri net satisfies the deadlock trap property (DTP) if

– every deadlock includes an initially marked trap,

To optimize computational effort this can be translated into:

– the maximal trap in every minimal deadlock is initially marked.

This is only possible if there are no input places. An input place establishes
a structural deadlock on its own, in which the maximal trap is empty, and
therefore not marked. The DTP can still be decided by structural reasoning
only. Its importance becomes clear by the following theorems.
3 The notion structural deadlock has nothing in common with the famous deadlock

phenomenon of concurrent processes. The Petri net community has been quite cre-
ative in trying to avoid this name clash (co-trap, siphon, tube). However, none of
these terms got widely accepted.

238 M. Heiner, D. Gilbert, and R. Donaldson

BA C D

E
r1

r2

r3

r4

r5

structural deadlock: trap:
•{A, B} ⊆ {A, B}• {C, D, E}• ⊆ •{C, D, E}
pretransitions: •{A, B} = {r1, r2} posttransitions: {C, D, E}• = {r4, r5}
posttransitions: {A, B}• = {r1, r2, r3} pretransitions: •{C, D, E} = {r1, r3, r4, r5}

Fig. 11. The token on place A can rotate in the left cycle by repeated firing of r1 and
r2. Each round produces an additional token on place E, making this place unbounded.
This cycle can be terminated by firing of transition r3, which brings the circulating
token from the left to the right side of the Petri net. The place set {A, B} cannot get
tokens again as soon as it got clean. Thus, it is a (proper) structural deadlock. On the
contrary, the place set {C, D, E} cannot become clean again as soon as it got a token.
The repeated firing of r4 and r5 reduces the total token number, but cannot remove
all of them. Thus, the place set {C, D, E} is a (proper) trap.

Theorem 1 (Relations between structural and behavioural proper-
ties).

1. A net without structural deadlocks is live.
2. ORD ∧DTP ⇒ no dead states
3. ORD ∧ ES ∧DTP ⇒ live
4. ORD ∧ EFC ∧DTP ⇔ live

The first theorem occasionally helps to decide liveness of unbounded nets.
The last theorem is also known as Commoner’s theorem, published in 1972. The-
orems 2-4 have been generalized to non-ordinary nets by requiring homogeneity
and non-blocking multiplicity [Sta90]. The proof for ordinary Petri nets can be
found in [DE95].

Running example The Deadlock Trap Property holds, but no special net struc-
ture class is given, therefore we know now that the net is weakly live, i.e. there
is no dead state (DSt). Please note, for our given net we are not able to decide
liveness by structural reasoning only.

(5) Dynamic decision of behavioural properties In order to decide liveness
and reversibility we need to construct the state space. This could be done ac-
cording the partial order semantics or the interleaving semantics. To keep things
simple in this introductory tutorial we consider here the interleaving semantics
only, which brings us to the reachability graph.

Petri Nets for Systems and Synthetic Biology 239

A B

E

r1

r2

r3

2 2

m0 2A, E

m1 2B, E m2A, B, E

r1

r3

r2

r2 r3

Fig. 12. A Petri net (left) and its reachability graph (right). The states are given in a
shorthand notation. In state m0, transitions r1 and r2 are in a dynamic conflict; the
firing of one transition disables the other one. In state m2, transitions r2 and r3 are
concurrently enabled; they can fire independently, i.e. in any order. In both cases we
get a branching node in the reachability graph.

Definition 11 (Reachability graph). Let N = (P, T, f,m0) be a Petri net.
The reachability graph of N is the graph RG(N) = (VN , EN), where

– VN := [m0〉 is the set of nodes,
– EN := { (m, t, m′) | m,m′ ∈ [m0〉, t ∈ T : m[t〉m′} is the set of arcs.

The nodes of a reachability graph represent all possible states (markings)
of the net. The arcs in between are labelled by single transitions, the firing
of which causes the related state change, compare Figure 12. The reachability
graph gives us a finite automaton representation of all possible single step firing
sequences. Consequently, concurrent behaviour is described by enumerating all
interleaving firing sequences; so the reachability graph reflects the behaviour of
the net according to the interleaving semantics.

The reachability graph is finite for bounded nets only. A branching node
in the reachability graph, i.e. a node with more than one successor, reflects
either alternative or concurrent behaviour. The difference is not locally decidable
anymore in the reachability graph. For 1-bounded ordinary state machines, net
structure and reachability graph are isomorphic.

Reachability graphs tend to be huge. In the worst-case the state space grows
faster than any primitive recursive function4, basically for two reasons: concur-
rency is resolved by all interleaving sequences, see Figure 13, and the tokens in
over-populated P-invariants can distribute themselves fairly arbitrarily, see Fig-
ure 14. The state space explosion motivates the static analyses, as discussed in
the preceding analysis steps. If we succeed in constructing the complete reacha-
bility graph, we are able to decide behavioural Petri net properties.

– A Petri net is k-bounded iff there is no node in the reachability graph with
a token number larger than k in any place.

4 To be precise: the dependence of the size of a reachability graph on the size of the
net cannot be bounded by a primitive recursive function [PW03].

240 M. Heiner, D. Gilbert, and R. Donaldson

– A Petri net is reversible iff the reachability graph is strongly connected.
– A Petri net is deadlock-free iff the reachability graph does not contain ter-

minal nodes, i.e., nodes without outgoing arcs.
– In order to decide liveness, we partition the reachability graph into strongly

connected components (SCC), i.e. maximal sets of strongly connected nodes.
A SCC is called terminal if no other SCC is reachable in the partitioned
graph. A transition is live iff it is included in all terminal SCCs of the parti-
tioned reachability graph. A Petri net is live iff this holds for all transitions.

The occurrence of dynamic conflicts is checked at best during the construc-
tion of the reachability graph, because branching nodes do not necessarily mean
alternative system behaviour.

Fig. 13. State explosion problem 1. There
are n! interleaving sequences from m (all
places p∗1 carry a token) to m′ (all places
p∗2 carry a token), causing 2n−2 interme-
diate states.

m′

m

r1 r2 rn

p12

p21p11

p22

pn1

pn2

Fig. 14. State explosion problem 2.
The k tokens are bound to circulate
within the given cycle. They can arbi-
trarily distribute themselves on the n
places, forming a P-invariant. There are
(n + k − 1)!/[(n− 1)! k!] possibilities for
this distribution (combinations with rep-
etition). Each distribution defines a state.

ri+1
pi+2

pi+1

pn−1

k
p1

pn

p2r1

rn

ri

rn−1

pi

Running example We already know that the net is bounded, so the reacha-
bility graph has to be finite. It comprises in the Boolean token interpretation
118 states out of 222 theoretically possible ones; see Table 1 for some samples
of the size of the state space in the integer token semantics (discrete concen-
tration levels). Independently of the size, the reachability graph we get forms
one strongly connected component. Therefore, the Petri net is reversible, i.e.
each system state is always reachable again. Further, each transition (reaction)
appears at least once in this strongly connected component, therefore the net
is live. There are dynamic conflicts, e.g. between r2 and r3 in all states, where
Raf RasGTP is marked.

Moreover, from the viewpoint of the qualitative model, all of these states of
the reachability graph’s only strongly connected component are equivalent, and
each could be taken as an initial state resulting in exactly the same total (dis-
crete) system behaviour. This prediction will be confirmed by the observations
gained during quantitative analyses, see Sections 5.2 and 6.2.

Petri Nets for Systems and Synthetic Biology 241

Table 1. State explosion in the running example.

levels IDD data structurea reachability graph
number of nodes number of states

1 52 118
4 115 2.4 ·104

8 269 6.1 ·106

40 3,697 4.7 ·1014

80 13,472 5.6 ·1018

120 29,347 1.7 ·1021

a This computational experiment has been performed with idd-ctl, a model checker
based on interval decision diagrams (IDD).

This concludes the analysis of general behavioural net properties, i.e. of prop-
erties we can speak about in syntactic terms only, without any semantic knowl-
edge. The next step consists in a closer look at special behavioural net properties,
reflecting the expected special functionality of the network.

(6) Model checking of special behavioural properties Temporal logic is
particularly helpful in expressing special behavioural properties of the expected
transient behaviour, whose truth can be determined via model checking. It is an
unambiguous language, providing a flexible formalism which considers the va-
lidity of propositions in relation to the execution of the model. Model checking
generally requires boundedness. If the net is 1-bounded, there exists a partic-
ularly rich choice of model checkers, which get their efficiency by exploiting
sophisticated data structures and algorithms.

One of the widely used temporal logics is the Computational Tree Logic
(CTL). It works on the computational tree, which we get by unwinding the
reachability graph, compare Figure 15. Thus, CTL represents a branching time
logic with interleaving semantics.

The application of this analysis approach requires an understanding of tem-
poral logics. Here, we restrict ourselves to an informal introduction into CTL.
CTL - as any temporal logic - is an extension of a classical (propositional) logic.
The atomic propositions consist of statements on the current token situation in
a given place. In the case of 1-bounded models, places can be read as Boolean
variables, with allows propositions such as RafP instead of m(RafP) = 1.
Likewise, places are read as integer variables for k-bounded models, k 6= 1.

Propositions can be combined to composed propositions using the standard
logical operators: ¬ (negation), ∧ (conjunction), ∨ (disjunction), and → (impli-
cation), e.g. RafP ∧ ERKP .

The truth value of a proposition may change by the execution of the net; e.g.
the proposition RafP does not hold in the initial state, but there are reachable
states where Raf is phosphorylated, so RafP holds in these states. Such tem-
poral relations between propositions are expressed by the additionally available
temporal operators.

242 M. Heiner, D. Gilbert, and R. Donaldson

m0 2A, E

m1 2B, E m2A, B, E

r1

r3

r2

r2 r3

m0

m1 m2

m2 m1m0

m1m0 m1 m2 m2

r1 r2

r3 r2

r3 r2 r1 r3

r3

r2

Fig. 15. Unwinding the reachability graph (left) into an infinite computation tree
(right). The root of the computation tree is the initial state of the reachability graph.

φ

φ

φ

φ

φ

φ

φφ

φ

φ

φ

φφ

φ

φφ

φ1

φ1

φ1

φ1

φ2 φ2

φ2

φ2

EX φ AX φ

AF φEF φ

AG φEG φ

E φ1 U φ2 A φ1 U φ2

φ

Fig. 16. The eight CTL operators and their semantics in the computation tree, which
we get by unwinding the reachability graph, compare Figure 15. The two path quan-
tifiers E, A relate to the branching structure in the computation tree: E - for some
computation path (left column), A - for all computation paths (right column).

Petri Nets for Systems and Synthetic Biology 243

In CTL there are basically four of them (neXt, Finally, Globally, Until),
which come in two versions (E for Existence, A for All), making together eight
operators. Let φ[1,2] be an arbitrary temporal-logic formulae. Then, the following
formulae hold in state m,

– EX φ : if there is a state reachable by one step where φ holds.
– EF φ : if there is a path where φ holds finally, i.e., at some point.
– EG φ : if there is a path where φ holds globally, i.e., forever.
– E (φ1 U φ2) : if there is a path where φ1 holds until φ2 holds.

The other four operators, which we get by replacing the Existence operator by
the All operator, are defined likewise by extending the requirement “there is a
path” to “for all paths”. A formula holds in a net if it holds in its initial state.
See Figure 16 for a graphical illustration of the eight temporal operators.

Running example We confine ourselves here to two CTL properties, checking
the generalizability of the insights gained by the partial order run of the I/O
T-invariant. Recall that places are interpreted as Boolean variables in order to
simplify notation.

property Q1: The signal sequence predicted by the partial order run of the
I/O T-invariant is the only possible one. In other words, starting at the initial
state, it is necessary to pass through states RafP, MEKP, MEKPP and ERKP
in order to reach ERKPP.

¬ [E (¬ RafP U MEKP) ∨ E (¬ MEKP U MEKPP) ∨
E (¬ MEKPP U ERKP) ∨ E (¬ ERKP U ERKPP)]

property Q2: Dephosphorylation takes place independently. E.g., the du-
ration of the phosphorylated state of ERK is independent of the duration of the
phosphorylated states of MEK and Raf.

(EF [Raf ∧ (ERKP ∨ ERKPP)] ∧ EF [RafP ∧ (ERKP ∨ ERKPP)] ∧
EF [MEK ∧ (ERKP ∨ ERKPP)] ∧
EF [(MEKP ∨MEKPP) ∧ (ERKP ∨ ERKPP)])

Temporal logic is an extremely powerful and flexible language to describe
special properties, however needs some experience to get accustomed to it. Ap-
plying this analysis technique requires seasoned understanding of the network
under investigation, combined with the skill to correctly express the expected
behaviour in temporal logics.

In subsequent sections we will see how to employ the same technique in a quan-
titative setting. We will use Q1 as a basis to illustrate how the stochastic and
continuous approaches provide complementary views of the system behaviour.

4.3 Summary

To summarize the preceding validation steps, the model has passed the following
validation criteria.

244 M. Heiner, D. Gilbert, and R. Donaldson

– validation criterion 0 All expected structural properties hold, and all
expected general behavioural properties hold.

– validation criterion 1 The net is CPI, and there are no minimal P-invariant
without biological interpretation.

– validation criterion 2 The net is CTI, and there are no minimal T-
invariant without biological interpretation. Most importantly, there is no
known biological behaviour without a corresponding, not necessarily mini-
mal, T-invariant.

– validation criterion 3 All expected special behavioural properties ex-
pressed as temporal-logic formulae hold.

One of the benefits of using the qualitative approach is that systems can
be modelled and analysed without any quantitative parameters. In doing so, all
possible behaviour under any timing is considered. Moreover the qualitative step
helps in identifying suitable initial markings and potential quantitative analysis
techniques. Now we are ready for a more sophisticated quantitative analysis of
our model.

5 The Stochastic Approach

5.1 Stochastic Modelling

As with a qualitative Petri net, a stochastic Petri net maintains a discrete num-
ber of tokens on its places. But contrary to the time-free case, a firing rate
(waiting time) is associated with each transition t, which are random variables
Xt ∈ [0,∞), defined by probability distributions. Therefore, all reaction times
can theoretically still occur, but the likelihood depends on the probability dis-
tribution. Consequently, the system behaviour is described by the same discrete
state space, and all the different execution runs of the underlying qualitative
Petri net can still take place. This allows the use of the same powerful analysis
techniques for stochastic Petri nets as already applied for qualitative Petri nets.

For better understanding we describe the general procedure of a particular
simulation run for a stochastic Petri net. Each transition gets its own local
timer. When a particular transition becomes enabled, meaning that sufficient
tokens arrive on its preplaces, then the local timer is set to an initial value,
which is computed at this time point by means of the corresponding probability
distribution. In general, this value will be different for each simulation run. The
local timer is then decremented at a constant speed, and the transition will fire
when the timer reaches zero. If there is more than one enabled transition, a race
for the next firing will take place.

Technically, various probability distributions can be chosen to determine the
random values for the local timers. Biochemical systems are the prototype for
exponentially distributed reactions. Thus, for our purposes, the firing rates of
all transitions follow an exponential distribution, which can be described by
a single parameter λ, and each transition needs only its particular, generally
marking-dependent parameter λ to specify its local time behaviour. The follow-
ing definition summarises this informal introduction.

Petri Nets for Systems and Synthetic Biology 245

Definition 12 (Stochastic Petri net, Syntax). A biochemically interpreted
stochastic Petri net is a quintuple SPNBio = (P, T, f, v,m0), where

– P and T are finite, non empty, and disjoint sets. P is the set of places, and
T is the set of transitions.

– f : ((P × T) ∪ (T × P)) → IN0 defines the set of directed arcs, weighted by
nonnegative integer values.

– v : T → H is a function, which assigns a stochastic hazard function ht to
each transition t, whereby
H :=

⋃
t∈T

{
ht |ht : IN|

•t|
0 → IR+

}
is the set of all stochastic hazard func-

tions, and v(t) = ht for all transitions t ∈ T .
– m0 : P → IN0 gives the initial marking.

The stochastic hazard function ht defines the marking-dependent transition
rate λt(m) for the transition t. The domain of ht is restricted to the set of
preplaces of t to enforce a close relation between network structure and hazard
functions. Therefore λt(m) actually depends only on a sub-marking.

Stochastic Petri net, Semantics Transitions become enabled as usual, i.e.
if all preplaces are sufficiently marked. However there is a time, which has to
elapse, before an enabled transition t ∈ T fires. The transition’s waiting time
is an exponentially distributed random variable Xt with the probability density
function:

fXt(τ) = λt(m) · e(−λt(m)·τ), τ ≥ 0.

The firing itself does not consume time and again follows the standard fir-
ing rule of qualitative Petri nets. The semantics of a stochastic Petri net (with
exponentially distributed reaction times for all transitions) is described by a
continuous time Markov chain (CTMC). The CTMC of a stochastic Petri net
without parallel transitions is isomorphic to the reachability graph of the under-
lying qualitative Petri net, while the arcs between the states are now labelled by
the transition rates. For more details see [MBC+95], [BK02].

Based on this general SPNBio definition, specialised biochemically inter-
preted stochastic Petri nets can be defined by specifying the required kind of
stochastic hazard function more precisely. We give two examples, reading the
tokens as molecules or as concentration levels. The stochastic mass-action haz-
ard function tailors the general SPNBio definition to biochemical mass-action
networks, where tokens correspond to molecules:

ht := ct ·
∏

p∈•t

(
m(p)
f(p, t)

)
, (1)

where ct is the transition-specific stochastic rate constant, and m(p) is the cur-
rent number of tokens on the preplace p of transition t. The binomial coefficient

246 M. Heiner, D. Gilbert, and R. Donaldson

describes the number of unordered combinations of the f(p, t) molecules, re-
quired for the reaction, out of the m(p) available ones.

Tokens can also be read as concentration levels, as introduced in [CVGO06].
The current concentration of each species is given as an abstract level. We as-
sume the maximum molar concentration is M , and the amount of different levels
is N +1. Then the abstract values 0, . . . , N represent the concentration intervals
0, (0, 1 ∗M/N], (1 ∗M/N, 2 ∗M/N], . . . , (N − 1 ∗M/N, N ∗M/N]. Each
of these (finitely many) discrete levels stands for an equivalence class of (in-
finitely many) continuous states. The stochastic level hazard function tailors the
general SPNBio definition to biochemical mass-action networks, where tokens
correspond to concentration levels; for ordinary nets we get:

ht := kt ·N ·
∏

p∈•t

(
m(p)
N

), (2)

where kt is the transition-specific deterministic rate constant, and N the number
of the highest level. The transformation rules between the stochastic and deter-
ministic rate constants are well-understood, see e.g. [Wil06]. In practice, kinetic
rates are taken from literature, textbooks, etc. or determined from biochemical
experiments. A hazard function (2) is the means whereby the continuous model
(see the framework in Figure 2 and Section 6) can be approximated by the
stochastic model; this can generally be achieved by a limited number of levels –
see Section 5.2.

We only consider here the level
semantics. Since the continuous con-
centrations of proteins in our run-
ning example are all in the same
range (0.1. . . 0.4 mMol in 0.1 steps),
we employ a model with only 4, and
a second version with 8 levels, com-
pare Figure 17.
The corresponding CTMCs (and
reachability graphs) comprise
24,065 states for the 4 level version
and 6,110,643 states for the 8 level
version, compare Table 1.

Fig. 17. The partitioning of the
concentration scale into discrete
levels.

5.2 Stochastic Analysis

Due to the isomorphy of the reachability graph and the CTMC, all qualitative
analysis results obtained in Section 4 are still valid. The influence of time does
not restrict the possible system behaviour. Specifically it holds that the CTMC
of our case study is reversible, which ensures ergodicity; i.e. we could start the

Petri Nets for Systems and Synthetic Biology 247

system in any of the reachable states, always resulting in the same CTMC with
the same steady state probability distribution.

Additionally, probabilistic analyses of the transient and steady state be-
haviour are now available. Generally, this can be done in an analytical as well
as in a simulative manner. The analytical approach works on the CTMC, which
therefore has to be finite. Consequently, the net to be analysed has to be bounded.
On the contrary, the simulative approach works also for systems with infinite
state space or state space beyond the current limits of exact analyses, and for
systems with complex dynamics as semi-Markov processes or generalized semi-
Markov processes.

In order to use the probabilistic model checker PRISM [PNK06] for the an-
alytical approach, we encode the running example in its modelling language.
We follow the technique proposed in [DDS04], which is more natural for Petri
nets than the one proposed in [CVGO06] for algebraic models. This translation
requires knowledge of the boundedness degree of all species involved, which we
acquire by the structural analysis technique of P-invariants.

In the following the reader is assumed to be familiar with related standard
techniques and terminology.

(1) Equivalence check by transient analysis We start with transient anal-
ysis to prove the sufficient equivalence between the stochastic model in the level
semantics and the corresponding continuous model, justifying the interpretation
of the properties gained by the stochastic model also in terms of the continuous
one. PRISM permits the analysis of the transient behaviour of the stochastic
model; e.g., the concentration of RafP at time t is given by:

CRafP (t) = 0.1
s ·

4s∑

i=1

(
i · P (LRafP (t) = i)

)

︸ ︷︷ ︸
expected value of LRafP (t)

.

The random variable LRafP (t) stands for the level of RafP at time t. We set
s to 1 for the 4 level version, and to 2 for the 8 level version. The factor 0.1

s
calibrates the expected value for a given level to the concentration scale. In
the 4 level version a single level (token) represents 0.1 mMol and 0.05 mMol in
the 8 level version. Figure 18 shows the simulation results for the species MEK
and RasGTP in the time interval [0..100] according to the continuous and the
stochastic models respectively. These results confirm that 4 levels are sufficiently
adequate to approximate the continuous model, and that 8 levels are preferable
if the computational expenses are acceptable.

(2) Analytical stochastic model checking In Section 4.2 we employed CTL
to express behavioural properties. Since we have now a stochastic model, we ap-
ply Continuous Stochastic Logic (CSL), which replaces the path quantifiers (E,
A) in CTL by the probability operator P./p, whereby ./ p specifies the prob-
ability of the given formula. For example, introducing in CSL the abbreviation

248 M. Heiner, D. Gilbert, and R. Donaldson

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100

C
on

ce
nt

ra
tio

n

Time

MEK

Continuous
Stochastic 4 level
Stochastic 8 level

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0 20 40 60 80 100

C
on

ce
nt

ra
tio

n

Time

RasGTP

Continuous
Stochastic 4 level
Stochastic 8 level

Fig. 18. Comparison of the concentration traces.

Fφ for trueUφ, the CTL formula EFφ becomes the CSL formula P≥0[Fφ],
and AFφ becomes P≥1[Fφ].

We give two properties related to the partial order run of the I/O T-invariant,
see Section 4.2 and qualitative property Q1 therein, from which we expect a con-
secutive increase of RafP, MEKPP and ERKPP. Both properties are expressed
as so-called experiments, which are analysed varying the parameter L over all
levels, i.e. 0 to N. For the sake of efficiency, we restrict the U operator to 100
time steps. Note that places are read as integer variables in the following.

property S1a: What is the probability of the concentration of RafP increas-
ing, when starting in a state where the level is for the first time at L (the latter
side condition is specified by the filter given in braces)?

P=? [(RafP = L) U<=100 (RafP > L) { RafP = L }]

The results indicate, see Figure 19(a), that it is absolutely certain that the
concentration of RafP increases from level 0 and likewise there is no increase from
level N; this behaviour has already been determined by the qualitative analysis.
Furthermore, an increase in RafP is very likely in the lower levels, increase and
decrease are almost equally likely in the intermediate levels, while in the higher
levels, but obviously not in the highest, an increase is rather unlikely (but not
impossible). In summary this means that the total mass, circulating within the
first layer of the signalling cascade, is unlikely to be accumulated in the activated
form. We need this understanding to interpret the results for the next property.

property S2a: What is the probability that, given the initial concentrations
of RafP, MEKPP and ERKPP being zero, the concentration of RafP rises above
some level L while the concentrations of MEKPP and ERKPP remain at zero,
i.e. RafP is the first species to react?

P=? [((MEKPP = 0) ∧ (ERKPP = 0)) U<=100 (RafP > L)
{ (MEKPP = 0) ∧ (ERKPP = 0) ∧ (RafP = 0) }]

The results indicate, see Figure 19(b), that the likelihood of the concentration
of RafP rising, while those of MEKPP and ERKPP are zero, is very high in

Petri Nets for Systems and Synthetic Biology 249

the bottom half of the levels, and quite high in the lower levels of the upper
half. The decrease of the likelihood in the higher levels is explained by property
S1. Property S2 is related to the qualitative property Q1 (Section 4.2), and the
continuous property C1 (Section 6.2) – the concentration of RafP rises before
those of MEKPP and ERKPP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
ro

b
a
b
ili

ty

Level

4 levels (scaled)
8 levels

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

P
ro

b
a
b
ili

ty

Level

4 levels (scaled)
8 levels

Fig. 19. Probability of the accumulation of RafP. (a) property S1. (b) property S2.

Due to the computational efforts of analytical stochastic model checking,
we are only able to treat properties over a stochastic model with 4 or at most
8 levels. This restricts the kind of properties that we can prove; e.g., in order
to check increases of MEKPP and ERKPP – as suggested by the qualitative
property Q1 and done above for RafP in the stochastic properties S1 and S2 –
we would need 50 or 200 levels respectively.

Analytical stochastic model checking becomes more and more impractical
with increasing size of the state space. In order to avoid the enormous compu-
tational power required for larger state spaces, the time-dependent stochastic
behaviour can be simulated by dedicated algorithms, and evaluated by simula-
tive stochastic model checking, see next step, or approximated by a deterministic
continuous behaviour, see Section 6.

(3) Simulative stochastic model checking This approach of Monte Carlo
sampling handles large state spaces through approximating results by analysing
only a subset of the state space – a set of finite outputs from a stochastic simu-
lation algorithm (SSA), e.g. Gillespie’s exact SSA [Gil77].

The type of logic now suitable for describing properties changes from branch-
ing time (e.g., CSL operating over CTMC) to linear time. A linear time logic
operates in-turn over sets of linear paths through the state space, equivalent to
operating on simulation outputs. A given property holds if it holds in all paths.
Consequently, there are no path quantifiers in LTL.

We apply PLTL, a probabilistic linear time temporal logic [MC208]. This
logic extends standard LTL to a stochastic setting, with a P./p operator, such
as in CSL, and a filter construct, {φ }, defining the initial state of the property.

250 M. Heiner, D. Gilbert, and R. Donaldson

However, PLTL does not have the ability to embed probability operators or
perform steady state analysis.

The semantics is defined over sets of linear traces of temporal behaviour, in
this case by stochastic simulation runs. Each trace is evaluated to a Boolean
truth value, and the probability of a property holding true is computed by the
fraction of true values in the set over the whole set. Please note, the choice of
simulator and simulation parameters used to compute the sequence of states can
affect the semantics of the PLTL property and the correctness of the result.

This approach to model checking incorporates two approximations. The truth
value of a single trace is approximated by operating over a finite sequence of
states only; and the probability of the property is approximated through sam-
pling a finite number of traces (a subset of the model’s behaviours) only.

PLTL could be considered as a linear time counterpart to CSL, and can
easily be used to formalise the visual evaluation of diagrams as generated by de-
terministic/stochastic simulation runs or by recording experimental time series.
We repeat properties S1a and S2a. Notice that the properties no longer require
time bounds on temporal operators.

property S1s: What is the probability of the concentration of RafP increas-
ing, when starting in a state where the level is for the first time at L (the latter
side condition is specified by the filter given in braces)?

P=? [(RafP = L) U (RafP > L) { RafP = L }]

We check this property using 100 simulation traces from Gillespie’s algorithm
with a simulation time of 300s as input to the PLTL model checker MC2
[MC208].

This property can be assessed with far greater numbers of tokens than pos-
sible in the analytical approach. We highlight the efficiency of the simulative
approach in Table 5.2 providing the time taken at varying numbers of tokens to
perform model checking.

We extend the analysis of property S1 up to 4,000 molecules, shown in Fig-
ure 20, and observe that when increasing the number of molecules, the behaviour
of the pathway tends towards the deterministic behaviour. The deterministic be-
haviour states that the protein RafP will always increase (property probability
1) until it reaches its maximum concentration value of around 0.1182 mMol.
With increasing molecules, the maximum possible number of molecules in the
stochastic behaviour of RafP tends towards the deterministic maximum (verti-
cal line). The stochastic behaviour is seen to tend towards a probability of 0.5
in its possible concentration range, due to the stochastic nature where there is
always a possibility of the protein decreasing or increasing when at a certain
concentration.

property S2s: What is the probability that, given the initial concentrations
of RafP, MEKPP and ERKPP being zero, the concentration of RafP rises above
some level L while the concentrations of MEKPP and ERKPP remain at zero,
i.e. RafP is the first species to react?

Petri Nets for Systems and Synthetic Biology 251

Table 2. Example figures for MC2 model checking of property S1 at varying number
of levels/molecules.

Levels MC Timea Simulation Output Size

4 10 s b 750 KB

8 15 s b 1.5 MB

40 1.5 minutes b 7.5 MB
400 1 minute c 80 MB
4,000 30 minutes c 900 MB

a Both Gillespie simulation and MC2 checking.
b Computation on a standard workstation.
c Distributed computation on a computer cluster comprising 45 Sun X2200 servers
each with 2 dual core processors (180 CPU cores).

P=? [((MEKPP = 0) ∧ (ERKPP = 0)) U (RafP > L)
{ (MEKPP = 0) ∧ (ERKPP = 0) ∧ (RafP = 0) }]

To perform the analysis, we use the same simulation time (300s) and number of
runs (100) as per S1s. Similarly, we extend this analysis up to 4,000 molecules,
shown in Figure 21, and again note that the stochastic behaviour begins to ap-
proximate the deterministic behaviour. In the deterministic behaviour, only at
the initial state of the system are RafP, MEKPP and ERKPP all zero, hence
a probability of 1 at this state and probability of 0 elsewhere. With increas-
ing molecules, the stochastic behaviour becomes less curved and more step-like,
tending towards the vertical line in the deterministic behaviour.

5.3 Summary

The stochastic Petri net contains discrete tokens and transitions which fire prob-
abilistically. In summary, our results show that

1. Transient analysis helps to decide on the number of tokens to adequately
describe the system.

2. The stochastic behaviour tends towards the deterministic behaviour. Thus
the stochastic model can be approximated by a continuous model, represent-
ing the averaged behaviour only.

3. Stochastic model checking allows a quantification of the probabilities at
which qualitative properties hold.

6 The Continuous Approach

6.1 Continuous Modelling

In a continuous Petri net the marking of a place is no longer an integer, but a
positive real number, called token value, which we are going to interpret as the
concentration of the species modelled by the place. The instantaneous firing of
a transition is carried out like a continuous flow.

252 M. Heiner, D. Gilbert, and R. Donaldson

0 1 2 3 4
0.

0
0.

4
0.

8

4 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 10 20 30 40

0.
0

0.
4

0.
8

40 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 100 200 300 400

0.
0

0.
4

0.
8

400 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 1000 2000 3000 4000
0.

0
0.

4
0.

8

4,000 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

Fig. 20. Simulative stochastic model checking for property S1 at a varying number of
molecules; 4, 40, 400 and 4,000. This shows a progression towards the deterministic
behaviour as the number of molecules increases.

0 1 2 3 4

0.
0

0.
4

0.
8

4 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 10 20 30 40

0.
0

0.
4

0.
8

40 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 100 200 300 400

0.
0

0.
4

0.
8

400 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

0 1000 2000 3000 4000

0.
0

0.
4

0.
8

4,000 Molecules

Level

P
ro

ba
bi

lit
y

Deterministic
Stochastic

Fig. 21. Simulative stochastic model checking for property S2 at a varying number of
molecules; 4, 40, 400 and 4,000. This shows a progression towards the deterministic
behaviour as the number of molecules increases.

Petri Nets for Systems and Synthetic Biology 253

Definition 13 (Continuous Petri net, Syntax). A continuous Petri net is
a quintuple CONBio = (P, T, f, v, m0), where

– P and T are finite, non empty, and disjoint sets. P is the set of continuous
places. T is the set of continuous transitions.

– f : ((P × T) ∪ (T × P)) → IR+
0 defines the set of directed arcs, weighted by

nonnegative real values.
– v : T → H is a function which assigns a firing rate function ht to each

transition t, whereby
H :=

⋃
t∈T

{
ht|ht : IR|

•t| → IR
}

is the set of all firing rate functions, and
v(t) = ht for all transitions t ∈ T .

– m0 : P → IR+
0 gives the initial marking.

The firing rate function ht defines the marking-dependent continuous tran-
sition rate for the transition t. The domain of ht is restricted to the set of
preplaces of t to enforce a close relation between network structure and firing
rate functions. Therefore ht(m) actually depends only on a sub-marking.

Technically, any mathematical function in compliance with this restriction
is allowed for ht. However, often special kinetic patterns are applied, whereby
Michaelis-Menten and mass-action kinetics seem to be the most popular ones.

Please note, a firing rate may also be negative, in which case the reaction
takes place in the reverse direction. This feature is commonly used to model
reversible reactions by just one transition, where positive firing rates correspond
to the forward direction, and negative ones to the backward direction.

Continuous Petri net, Semantics Each continuous marking is a place vector
m ∈ (

IR+
0

)|P |, and m(p) yields again the marking on place p, which is now a
real number. A continuous transition t is enabled in m, if ∀p ∈ •t : m(p) > 0.
Due to the influence of time, a continuous transition is forced to fire as soon as
possible.

The semantics of a continuous Petri net is defined by a system of ODEs,
whereby one equation describes the continuous change over time on the token
value of a given place by the continuous increase of its pretransitions’ flow and
the continuous decrease of its posttransitions’ flow, i.e., each place p subject to
changes gets its own equation:

dm (p)
dt

=
∑

t∈•p

f (t, p) v (t)−
∑

t∈p •
f (p, t) v (t) ,

Each equation corresponds basically to a line in the incidence matrix, whereby
now the matrix elements consist of the rate functions multiplied by the arc
weight, if any.

In other words, the continuous Petri net becomes the structured description
of the corresponding ODEs. Due to the explicit structure we expect to get de-
scriptions which are less error prone compared to those ones created manually

254 M. Heiner, D. Gilbert, and R. Donaldson

from the scratch. In fact, writing down a system of ODEs by designing continu-
ous Petri nets instead of just using a text editor might be compared to high-level
instead of assembler programming.

For our running case study, we derive the continuous model from the qual-
itative Petri net by associating a mass action rate with each transition in the
network.

We can likewise derive the continuous Petri net from the stochastic Petri net
by approximating over the hazard function of type (1), see for instance [Wil06].
In both cases, we obtain a continuous Petri net, preserving the structure of the
qualitative one, see our framework in Figure 2.

The complete system of nonlinear ODEs generated from the continuous Petri
net of our running example is given in [GHL07a], Appendix C.

The initial concentrations as suggested by the qualitative analysis correspond
to those given in [LBS00], when mapping nonzero values to 1. For reasons of
better comparability we have also considered more precise initial concentrations,
where the presence of a species is encoded by biologically motivated real values
varying between 0.1 and 0.4 in steps of 0.1.

6.2 Continuous Analysis

As soon as there are transitions with more than one preplace, we get a non-linear
system, which calls for a numerical treatment of the system on hand. In order
to simulate the continuous Petri net, exactly the same algorithms are employed
as for numerical differential equation solvers.

In the following the reader is assumed to be familiar with related standard
techniques and terminology.

(1) Steady state analysis Since there are 22 species, there are 222, i.e.
4,194,304 possible initial states in the qualitative Petri net (Boolean token in-
terpretation). Of these, 118 were identified by the reachability graph analysis
(Section 4.2) to form one strongly connected component, and thus to be “good”
initial states. These are ‘sensible’ initial states from the point of view of biochem-
istry in that in all these 118 cases, and in none of the other 4,194,186 states,
each protein species is in a high initial concentration in only one of the following
states: uncomplexed, complexed, unphosphorylated or phosphorylated. These
conditions relate exactly to the 1-P-invariant interpretation given in our initial
marking construction procedure in Section 4.2.

We then compute the steady state of the set of species for each possible
initial state, using the MatLab ODE solver ode45, which is based on an explicit
Runge-Kutta formula, the Dormand-Prince pair [DP80], with 350 time steps.

In Figure 22 (a) we reproduce the computed behaviour of MEK for all 118
good initial states, showing that despite differences in the concentrations at early
time points, the steady state concentration is the same in all 118 states. We also
reproduce two arbitrary chosen simulations of the model, compare Figure 23. The

Petri Nets for Systems and Synthetic Biology 255

equivalence of the final states, compared with the difference in some intermediate
states is clearly illustrated in these figures.

In summary, our results show that all of the ‘good’ 118 states result in the
same set of steady state values for the 22 species in the pathway, within the
bounds of computational error of the ODE solver. In [GHL07b] it is also shown
that none of the remaining possible initial states results in a steady state close
to that generated by the 118 markings in the reachability graph. See Table 4 in
[GHL07a], Appendix C for the steady state concentrations of the 22 species.

This is an interesting result, because the net considered here is not covered
by the class of net structures discussed in [ADLS06] with the unique steady state
property.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

MEK

MEK

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 50 100 150 200 250 300 350

RasGTP
RafP

MEKPP
ERKPP

Fig. 22. (a) Steady state analysis of MEK for all 118 ‘good’ states. (b) Continuous
transient analysis of the phosphorylated species RasP, MEKPP, ERKPP, triggered by
RasGTP.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

State1

Raf

RKIP

RasGTP

Raf_RasGTP

Rafx

Rafx_Phase1

MEK_Rafx

MEKP_Rafx

MEKP_Phase2

MEKPP_Phase2

ERK

ERK_MEKPP

ERKP_MEKPP

ERKP

MEKPP

ERKPP_Phase3

ERKP_Phase3

MEKP

ERKPP

Phase2

Phase3

MEK

Phase1

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

State10

Raf

RKIP

RasGTP

Raf_RasGTP

Rafx

Rafx_Phase1

MEK_Rafx

MEKP_Rafx

MEKP_Phase2

MEKPP_Phase2

ERK

ERK_MEKPP

ERKP_MEKPP

ERKP

MEKPP

ERKPP_Phase3

ERKP_Phase3

MEKP

ERKPP

Phase2

Phase3

MEK

Phase1

Fig. 23. Dynamic behaviour for state 1 (left) and state 10 (right). State 1 corresponds
to the initial marking suggested by Section 4.2.

256 M. Heiner, D. Gilbert, and R. Donaldson

(2) Continuous model checking of the transient behaviour Correspond-
ing to the partial order run of the I/O T-invariant, see Section 4.2, we expect
a consecutive increase of RafP, MEKPP, ERKPP, which we get confirmed by
the transient behaviour analysis, compare Figure 22 (b). To formalise the visual
evaluation of the diagram we use the continuous linear logic LTLc [CCRFS06]
and PLTL [MC208] in a deterministic setting. Both are interpreted over the
continuous simulation trace of ODEs.

The following three queries confirm together the claim of the expected prop-
agation sequence. In the queries we have to refer to absolute values. The steady
state values are obtained from the steady state analysis in the previous section;
these are 0.12 mMol for RafP, 0.008 mMol for MEKPP and 0.002 mMol for
ERKPP, all of them being zero in the initial state. If a species’ concentration
is above half of its steady state value, we call this concentration level signifi-
cant. Note that in order to simplify the notation, places are interpreted as real
variables in the following.

property C1: The concentration of RafP rises to a significant level, while
the concentrations of MEKPP and ERKPP remain close to zero; i.e. RafP is
really the first species to react.

((MEKPP < 0.001) ∧ (ERKPP < 0.0002)) U (RafP > 0.06)

property C2: if the concentration of RafP is at a significant concentration
level and that of ERKPP is close to zero, then both species remain in these
states until the concentration of MEKPP becomes significant; i.e. MEKPP is
the second species to react.

((RafP > 0.06) ∧ (ERKPP < 0.0002)) ⇒
((RafP > 0.06)∧ (ERKPP < 0.0002)) U (MEKPP > 0.004)

property C3: if the concentrations of RafP and MEKPP are significant, they
remain so, until the concentration of ERKPP becomes significant; i.e. ERKPP
is the third species to react.

((RafP > 0.06) ∧ (MEKPP > 0.004)) ⇒
((RafP > 0.06)∧ (MEKPP > 0.004)) U (ERKPP > 0.0005)

Note that properties C1, C2 and C3 correspond to the qualitative property
Q1, and that S2 is the stochastic counterpart of C1.

We recast these three continuous properties to PLTL and perform model
checking using MC2, which is fed with deterministic simulation traces up to
simulation time 400s, produced with the BioNessie simulator. A comparison of
the MC2 results to the Biocham results is summarised in Table 3.

The difference in the results is due to the different ODE solvers used in
BioNessie and Biocham. Due to the adaptive time steps used in Biocham’s ODE
solver, no state information is outputted for an important time period which is
a counter-example to the C2 query, shown in Figure 24. The fixed time step and
sufficient granularity of time points used in BioNessie do provide state informa-

Petri Nets for Systems and Synthetic Biology 257

Table 3. The results for the replication of C1, C2 and C3 queries in MC2, showing a
discrepancy in C2 with the Biocham results.

Query Biocham BioNessie & MC2

C1 true true
C2 true false
C3 true true

tion which is a counter-example to this query, thus resulting in a false value. This
is an example of where the simulator choice affects the model checking result.

0 20 40 60 80 100

0.
00

0
0.

00
3

MEKPP Simulation

Time

C
on

ce
nt

ra
tio

n

0 20 40 60 80 100

0.
00

00
0

0.
00

02
0

ERKPP Simulation

Time

C
on

ce
nt

ra
tio

n

Fig. 24. The output of Biocham simulation showing that it does not output a state
in the time period where ERKPP (bottom) > 0.0002 before MEKPP (top) > 0.004,
which is a counter example to C2.

6.3 Summary

The continuous Petri net contains tokens with a continuous value and continuous
firing of transitions. In summary, our results show that

1. All of the 118 good states identified by the reachability graph of the validated
qualitative Petri net result in the same set of steady state values for the 22
species in the pathway.

258 M. Heiner, D. Gilbert, and R. Donaldson

2. None of the remaining possible initial states of the qualitative Petri net in
the Boolean semantics results in a final steady state close to that generated
by the good initial markings in the reachability graph.

3. Model checking this Petri net, which contains only a single deterministic
behaviour, is akin to analysing the average behaviour of the system. We
have shown that the properties as derived from the partial order run of the
qualitative model also hold in the average behaviour.

7 Tools

The running example in its interpretation as the three Petri net models have been
done using Snoopy [Sno08], a tool to design and animate or simulate hierarchical
graphs, among them the qualitative, stochastic and continuous Petri nets as
used in this chapter. Snoopy provides export to various analysis tools as well
as Systems Biology Markup Language (SBML) [HFS+03] import and export
[HRS08].

The qualitative analyses have been made with the Petri net analysis tool
Charlie [Cha08]. Charlie’s result vector is inspired by the Integrated Net Analyser
INA [SR99], the analysis tool we have used for about 20 years. The exploration
of the state space growth for increasing level numbers has been done with idd-
ctl, a CTL model checker and reachability analyser utilising interval decision
diagrams for concise state space representations [Tov06]. The Model Checking
Kit [SSE03] has been used for qualitative model checking of 1-bounded models.

The quantitative analyses have been done using Snoopy’s build-in simulation
algorithms for stochastic and continuous Petri nets, and by BioNessie [Bio08],
an SBML-based simulation and analysis tool for biochemical networks. Addi-
tionally, MATLAB [SR97] was used to produce the steady state analysis of all
initial states in the continuous model.

We employed PRISM [PNK06] for probabilistic model checking of branch-
ing time logic, MC2 [MC208], a model checker by Monte Carlo sampling, for
probabilistic and continuous model checking of linear time logic, and Biocham
[CCRFS06] for LTLc-based continuous model checking.

More Petri nets tools and related material can be found on the Petri Nets
World’s web page: http://www.informatik.uni-hamburg.de/TGI/PetriNets/.

8 Further Reading and Related Work

Petri nets, as we understand them today, have been initiated by concepts pro-
posed by Carl Adam Petri in his Ph.D. thesis in 1962 [Pet62]. The first substan-
tial results making up the still growing body of Petri net theory appeared around
1970. Initial textbooks devoted to Petri nets were issued in the beginning of the
eighties. General introductions into Petri net theory can be found, for example,
in [Mur89], [Rei82], [Sta90]; for a comprehensive textbook covering extended free
choice nets see specifically [DE95]. An excellent textbook for theoretical issues

Petri Nets for Systems and Synthetic Biology 259

is [PW03], which however is in German. The text [DJ01] might be useful, if you
just want to get the general flavour in reasonable time.

Petri nets have been employed for technical and administrative systems in
numerous application domains since the mid-seventies. The employment in sys-
tems biology has been first published in [Hof94], [RML93]. Recent surveys on
applying Petri nets for biochemical networks are [Cha07] and [MLM06], offering
a rich choice of further reading pointers, among them numerous case studies
applying Petri nets to biochemical networks. Besides the net classes introduced
in this chapter, coloured Petri nets, duration and interval time Petri nets as well
as hybrid Petri nets in various extensions have been employed.

Stochastic Petri nets are an established concept for performance and depend-
ability analysis of technical systems, see [MBC+95], [BK02], recently extended
by probabilistic model checking [DDS04]. An excellent textbook for numerical
solution of Markov chains is [Ste94]. An overview on stochastic issues for systems
biology is given in [Wil06]. The approximation of continuous behaviour by the
discretisation of species’ concentrations by a finite number of levels has been
proposed in [CVGO06]. The application of stochastic Petri nets to biochemical
networks was first proposed in [GP98], where they were applied to a gene regu-
latory network. Further case studies are discussed in [SPB01], [MSS05], [ST05],
[SSW05], [Cur06]. A precise definition of biochemically interpreted stochastic
Petri nets has been introduced in [GHL07b].

A comprehensive survey on timed Petri net concepts, among them continu-
ous and hybrid Petri nets, however not stochastic Petri nets, in the context of
technical systems can be found in [DA05]. See [MFD+03] for cases studies em-
ploying hybrid Petri nets to model and analyse biochemical pathways. A precise
definition of biochemically interpreted continuous Petri nets has been introduced
in [GH06].

P- and T-invariants are well-known concepts of Petri net theory since the very
beginning [Lau73]. There are corresponding notions in systems biology, called
chemical moieties, elementary modes and extreme pathways, which are elabo-
rated in the setting of biochemical networks in [Pal06]. For biochemical systems
without reversible reactions, the notions T-invariants, elementary modes and ex-
treme pathways coincide. The validation of biochemical networks by means of
T-invariants is demonstrated in [HK04].

Model checking has been very popular for the verification of technical sys-
tems since the eighties. A good starting point for qualitative model checking
(CTL, LTL) is [CGP01]. For biochemical networks, qualitative model checking
(Boolean semantics) has been introduced in [EKL+02], [CF03], and analytical
stochastic model checking in [CVGO06], [HKN+06]. CSL, the stochastic coun-
terpart to CTL, has been originally introduced in [ASSB00], and extended in
[BHHK03]. PRISM [PNK06] provides an efficient numerical implementation for
CSL model checking, also exploiting symbolic representations. Approximative
model checking of CSL using discrete event simulation of probabilistic models
has been proposed in [YS02] and implemented in the tool Ymer [YKNP06]. The
simulative stochastic model checker MC2 has been inspired by the idea of approx-

260 M. Heiner, D. Gilbert, and R. Donaldson

imative LTL checking of deterministic simulation runs, proposed in [APUM03],
[CCRFS06], [FR07].

The Biocham approach [CCRFS06], as it stands now, restricts itself to a
branching time Boolean semantics for qualitative models, while we consider the
more general case of integer semantics, which may collapse to the Boolean one.
Petri net based model checking also supports the partial order semantics. To
analyse continuous models, Biocham provides LTLc, which we used for continu-
ous model checking of the transient behaviour. Meanwhile, this step is facilitated
substantially by the extension introduced in [FR07], which permits the inference
of the variable values fulfilling a given temporal property from a (set of) contin-
uous simulation run(s).

Finally, there is a lot of activity relating stochastic and continuous models –
see [TSB04] for a review. Most work has ignored analysis but instead focussed
on simulation, at the molecular, inherently stochastic, level and the population
(continuous) level using differential equations, possibly stochastic, e.g. [AME04],
[Kie02] and [SK05].

The relation between systems of ordinary differential equations and the net
structure of the underlying Petri nets are discussed in [ADLS06].

The systematic qualitative analysis of a metabolic network is demonstrated in
[KH08], following basically the same outline as used in section 4.2. How to com-
bine qualitative and quantitative analysis techniques is elaborated in [HDG08]
for another signal transduction network and in [GHR+08] for a gene transduction
network.

9 Summary

In this paper we have described an overall framework that relates the three
major ways of modelling biochemical networks – qualitative, stochastic and con-
tinuous – and illustrated this in the context of Petri nets. In doing so we have
given a precise definition of biochemically interpreted stochastic and continuous
Petri nets. We have shown that the qualitative time-free description is the most
basic, with discrete values representing numbers of molecules or levels of con-
centrations. The qualitative description abstracts over two timed, quantitative
models. In the stochastic description, discrete values for the amounts of species
are retained, but a stochastic rate is associated with each reaction. The continu-
ous model describes amounts of species using continuous values and associates a
deterministic rate with each reaction. These two time-dependent models can be
mutually approximated by hazard functions belonging to the stochastic world.

We have illustrated our framework by considering qualitative, stochastic and
continuous Petri net descriptions of the ERK signalling pathway, based on the
model from [LBS00]. We have focussed on analysis techniques available in each
of these three paradigms, in order to illustrate their complementarity. Timing
diagrams as produced by numerical simulation techniques are much harder to
assess in term of plausibility. That is why we start with qualitative analyses to
increase our confidence in the model structure. Our special emphasis has been on

Petri Nets for Systems and Synthetic Biology 261

model checking, which is especially useful for transient behaviour analysis, and
we have demonstrated this by discussing related properties in the qualitative,
stochastic and continuous paradigms. Although our framework is based on Petri
nets, it can be applied more widely to other formalisms which are used to model
and analyse biochemical networks.

The models developed over the three paradigms share the same structure, so
they should share some properties too. However, the interrelationships between
these models are not properly understood, yet.

Acknowledgements The running case study has been partly carried out by
Sebastian Lehrack during his study stay at the Bioinformatics Research Centre
of the University of Glasgow. This stay was supported by the Max Gruenebaum
Foundation [MGF] and the UK Department of Trade and Industry Beacon Bio-
science Programme.

We would like to thank Rainer Breitling, Richard Orton and Xu Gu for the
constructive discussions as well as Vladislav Vyshermirsky for his support in the
computational experiments.

References

[ADLS06] D. Angeli, P. De Leenheer, and E.D. Sontag. On the structural mono-
tonicity of chemical reaction networks. In Proc. 45th IEEE Conference on
Decision and Control, pages 7–12, 2006.

[AME04] D. Adalsteinsson, D. McMillen, and T.C. Elston. Biochemical network
stochastic simulator (BioNetS): software for stochastic modeling of bio-
chemical networks. BMC Bioinformatics, 5:24, 2004.

[APUM03] M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and
model checking for biochemical processes. Cell Biochemistry and Bio-
physics, 38:271–286, 2003.

[ASSB00] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous
time Markov chains. ACM Trans. on Computational Logic, 1(1):162–170,
2000.

[BHHK03] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
algorithms for continuous time Markov chains. IEEE Trans. on Software
Engineering, 29(6):524–541, 2003.

[Bio08] BioNessie website. A biochemical pathway simulation and analysis tool.
University of Glasgow, http://www.bionessie.org, 2008.

[BK02] F. Bause and P.S. Kritzinger. Stochastic Petri Nets. Vieweg, 2002.
[CCRFS06] L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine learning

biochemical networks from temporal logic properties. Trans. on Computat.
Syst. Biol. VI, LNBI 4220, pages 68–94, 2006.

[CF03] N. Chabrier and F. Fages. Symbolic model checking of biochemical net-
works. In Proc. CMSB 2003, pages 149–162. LNCS 2602, Springer, 2003.

[CGP01] E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT Press
1999, third printing, 2001.

[Cha07] C. Chaouiya. Petri net modelling of biological networks. Briefings in
Bioinformatics, 8(4):210–219, 2007.

262 M. Heiner, D. Gilbert, and R. Donaldson

[Cha08] Charlie Website. A Tool for the Analysis of Place/Transition
Nets. BTU Cottbus, http://www-dssz.informatik.tu-
cottbus.de/software/charlie/charlie.html, 2008.

[CKS07] V. Chickarmane, B.N. Kholodenko, and H.M. Sauro. Oscillatory dynamics
arising from competitive inhibition and multisite phosphorylation. Journal
of Theoretical Biology, 244(1):68–76, January 2007.

[Cur06] E. Curry. Stochastic simulation of the entrained circadian rhythm. Master
Thesis, School of Informatics, Univ. of Edinburgh, 2006.

[CVGO06] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling
pathways using continuous time Markov chains. Trans. on Computat. Syst.
Biol. VI, LNBI 4220, pages 44–67, 2006.

[DA05] R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets.
Springer, 2005.

[DDS04] D. D’Aprile, S. Donatelli, and J. Sproston. CSL model checking for the
GreatSPN tool. In Proc. ISCIS 2004, LNCS 3280, pages 543–552, 2004.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University
Press, New York, NY, USA, 1995.

[DJ01] J. Desel and G. Juhás. What is a Petri net? In Unifying Petri Nets -
Advances in Petri Nets, pages 1–25, Tokyo, 2001. LNCS 2128, Spinger.

[DP80] J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta
formulae. J. Comp. Appl. Math., 6:1–22, 1980.

[EKL+02] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez.
Pathway logic: Symbolic analysis of biological signaling. In Proc. Seventh
Pacific Symposium on Biocomputing, pages 400–412, 2002.

[FR07] F. Fages and A. Rizk. On the analysis of numerical data time series in
temporal logic. In Proc. CMSB 2007, pages 48–63. LNCS/LNBI 4695,
Springer, 2007.

[GH06] D. Gilbert and M. Heiner. From Petri nets to differential equations - an
integrative approach for biochemical network analysis. In Proc. ICATPN
2006, pages 181–200. LNCS 4024, Springer, 2006.

[GHL07a] D. Gilbert, M. Heiner, and S. Lehrack. A unifying framework for modelling
and analysing biochemical pathways using Petri nets. TR I-02, CS Dep.,
BTU Cottbus, 2007.

[GHL07b] D. Gilbert, M. Heiner, and S. Lehrack. A unifying framework for modelling
and analysing biochemical pathways using Petri nets. In Proc. CMSB 2007,
pages 200–216. LNCS/LNBI 4695, Springer, 2007.

[GHR+08] D. Gilbert, M. Heiner, S. Rosser, R. Fulton, Xu Gu, and M. TrybiÃlo. A
case study in model-driven synthetic biology. In 2nd IFIP Conference on
Biologically Inspired Collaborative Computing (BICC), IFIP WCC 2008,
Milano, to appear, 2008.

[Gil77] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[GP98] P.J.E. Goss and J. Peccoud. Quantitative modeling of stochastic systems
in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci.
USA, 95(June):2340–2361, 1998.

[HDG08] M. Heiner, R. Donaldson, and D. Gilbert. Petri Nets for Systems Biology,
in Iyengar, M.S. (ed.), Symbolic Systems Biology: Theory and Methods.
Jones and Bartlett Publishers, Inc., to appear, 2008.

[HFS+03] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano,
and et al. The Systems Biology Markup Language (SBML): A medium for

Petri Nets for Systems and Synthetic Biology 263

representation and exchange of biochemical network models. J. Bioinfor-
matics, 19:524–531, 2003.

[HK04] M. Heiner and I. Koch. Petri net based model validation in systems biology.
In Proc. 25th ICATPN 2004, LNCS 3099, pages 216–237. Springer, 2004.

[HKN+06] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn.
Probabilistic model checking of complex biological pathways. In Proc.
CMSB 2006, pages 32–47. LNBI 4210, Springer, 2006.

[Hof94] R. Hofestädt. A Petri net application of metabolic processes. Journal of
System Analysis, Modeling and Simulation, 16:113–122, 1994.

[HRS08] M. Heiner, R. Richter, and M. Schwarick. Snoopy - a tool to design and an-
imate/simulate graph-based formalisms. In Proc. PNTAP 2008, associated
to SIMUTools 2008. ACM digital library, 2008.

[KH08] I. Koch and M. Heiner. Petri Nets, in Junker B.H. and Schreiber, F. (eds.),
Biological Network Analysis, chapter 7, pages 139 – 179. Wiley Book Series
on Bioinformatics, 2008.

[Kie02] A. M. Kierzek. STOCKS: STOChastic kinetic simulations of biochemical
systems with Gillespie algorithm. Bioinformatics, 18(3):470–481, 2002.

[Lau73] K Lautenbach. Exact Liveness Conditions of a Petri Net Class (in German).
Technical report, GMD Report 82, Bonn, 1973.

[LBS00] A. Levchenko, J. Bruck, and P.W. Sternberg. Scaffold proteins may bipha-
sically affect the levels of mitogen-activated protein kinase signaling and
reduce its threshold properties. Proc Natl Acad Sci USA, 97(11):5818–5823,
2000.

[MBC+95] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel
Computing, John Wiley and Sons, 1995. 2nd Edition.

[MC208] MC2 Website. MC2 - PLTL model checker. University of Glasgow,
http://www.brc.dcs.gla.ac.uk/software/mc2/, 2008.

[MFD+03] H. Matsuno, S. Fujita, A. Doi, M. Nagasaki, and S. Miyano. Towards
pathway modelling and simulation. In Proc. 24th ICATPN, LNCS 2679,
pages 3–22, 2003.

[MGF] Max-Gruenebaum-Foundation. http://www.max-gruenebaum-stiftung.de.
[MLM06] H. Matsuno, C. Li, and S. Miyano. Petri net based descriptions for system-

atic understanding of biological pathways. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci., E89-A(11):3166–3174, 2006.

[MSS05] W. Marwan, A. Sujathab, and C. Starostzik. Reconstructing the regula-
tory network controlling commitment and sporulation in Physarum poly-
cephalum based on hierarchical Petri net modeling and simulation. J. of
Theoretical Biology, 236(4):349–365, 2005.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proc.of the
IEEE 77, 4:541–580, 1989.

[Pal06] B.O. Palsson. Systems Biology: Properties of Reconstructed Networks.
Cambridge University Press, 2006.

[Pet62] C.A. Petri. Communication with Automata (in German). Schriften des
Instituts für Instrumentelle Mathematik, Bonn, 1962.

[PNK06] D. Parker, G. Norman, and M. Kwiatkowska. PRISM 3.0.beta1 Users’
Guide, 2006.

[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. Theor. Com-
put. Sci., 13:45–60, 1981.

[PW03] L. Priese and H. Wimmel. Theoretical Informatics - Petri nets (in Ger-
man). Springer, 2003.

264 M. Heiner, D. Gilbert, and R. Donaldson

[Rei82] W. Reisig. Petri nets; An introduction. Springer, 1982.
[RML93] V.N. Reddy, M.L. Mavrovouniotis, and M.L. Liebman. Petri net represen-

tations in metabolic pathways. In ’Proc. of the Int. Conf. on Intelligent
Systems for Molecular Biology’, 1993.

[SK05] H. Salis and Y. Kaznessis. Accurate hybrid stochastic simulation of a
system of coupled chemical or biochemical reactions. J. Chem. Phys.,
122(054103), 2005.

[Sno08] Snoopy Website. A Tool to Design and Animate/Simulate
Graphs. BTU Cottbus, http://www-dssz.informatik.tu-
cottbus.de/software/snoopy.html, 2008.

[SPB01] R. Srivastava, M.S. Peterson, and W.E. Bentley. Stochastic kinetic analysis
of the escherichia coli stress circuit using σ32-targeted antisense. Biotech-
nology and Bioengineering, 75(1):120–129, 2001.

[SR97] L.F. Shampine and M.W. Reichelt. The MATLAB ODE Suite. SIAM
Journal on Scientific Computing, 18:1–22, 1997.

[SR99] P.H. Starke and S. Roch. INA - The Intergrated Net Analyzer. Humboldt
University Berlin, www.informatik.hu-berlin.de/∼starke/ina.html, 1999.

[SSE03] C. Schröter, S. Schwoon, and J. Esparza. The Model Checking Kit. In
Proc. ICATPN, LNCS 2679, pages 463–472. Springer, 2003.

[SSW05] O.J. Shaw, L.J. Steggles, and A. Wipat. Automatic parameterisation of
stochastic Petri net models of biological networks. CS-TR-909, School of
CS, Univ. of Newcastle upon Tyne, 2005.

[ST05] O. Schulz-Trieglaff. Modelling the randomness in biological systems. Mas-
ter Thesis, School of Informatics, University of Edinburgh, 2005.

[Sta89] P.H. Starke. Some properties of timed nets under the earliest firing rule.
Advances in Petri Nets, LNCS 424:418–432, 1989.

[Sta90] P.H. Starke. Analysis of Petri Net Models (in German). B. G. Teubner,
Stuttgart, Stuttgart, 1990.

[Ste94] W.J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton Univ. Press, 1994.

[Tov06] Tovchigrechko, A. Model checking using interval decision diagrams. PhD
thesis, BTU Cottbus, Dep. of CS, submitted 2006.

[TSB04] T.E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for mod-
elling in vivo reactions. Comp. Biology and Chemistry, 28(3):165–178, 2004.

[Wil06] D.J. Wilkinson. Stochastic Modelling for System Biology. CRC Press, New
York, 1st Edition, 2006.

[YKNP06] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs.
statistical probabilistic model checking. STTT, 8(3):216–228, 2006.

[YS02] H.L.S. Younes and R.G. Simmons. Probabilistic verification of descrete
event systems using acceptance sampling. In Computer Aided Verification,
pages 223–235. LNCS 2404, Springer, 2002.

Remark This paper is a substantially extended version of [GHL07b]. The com-
plete model specifications are given in the appendix of [GHL07a]. The data files
of the running example in its three versions and the analysis results are available
at www-dssz.informatik.tu-cottbus.de/examples/levchenko.

